〖8套试卷汇总〗上海市2020年第六次中考模拟考试数学试卷
- 格式:doc
- 大小:2.15 MB
- 文档页数:82
上海中考数学模拟卷考生注意:1.本试卷共25题;2.试卷满分150分,考试时间100分钟3.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;4.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.在下列各数中,是无理数的是()【A 】π;【B 】722;【C 】9;【D 】4.2.在下列方程中,有实数根的是()【A 】2310x x ++=【B 1=-【C 】2230x x ++=【D 】111x x x =--3.如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么()【A 】0k >,0b >【B 】0k >,0b <【C 】0k <,0b >【D 】0k <,0b <4.六个学生进行投篮比赛,投进的个数分别为2、3、3、5、10、13,这六个数的中位数为()【A 】3【B 】4【C 】5【D 】65.在下列图形中,为中心对称图形的是()【A 】等腰梯形;【B 】平行四边形;【C 】正五边形;【D 】等腰三角形.6.已知四边形ABCD 中,90A B C === ∠∠∠,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是()【A 】90D = ∠【B 】AB CD =【C 】AD BC =【D 】BC CD=二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.计算:=•2324a a _____________.8.不等式组⎩⎨⎧>+>-0563x x 的解集是.9.方程x x =+32的解是.10.在一个不透明的袋中装有6个白球和若干个黑球,每个球除颜色外都相同,如果任意摸出一个球是黑球的概率为14,那么袋中的黑球有个.11.已知一次函数y kx b =+的图像经过第三象限且截距为3,那么反比例函数k y x =,在每个象限内,y 随x 的增大而________(填“增大”或“减小”).12.抛物线2421y x x =++的顶点坐标是.13.如图,平行四边形ABCD 中,对角线AC 、BD 交于点O 设向量AD a = 、AB b = ,则向量=DO __________.(结果用a 、b 表示)14.某工厂从100万件同类产品中随机抽取了100件进行质检,发现其中有2件不合格,那么你估计该厂这100万件产品中合格品约为万件15.工厂2016年的年利润为100万元,2017年和2018年连续增长,且这两年的增长率相同,据统计2018年的年利润为136万元,若设这个相同的增长率为x ,那么可列出的方程是________16.如图,在Rt △ABC 中,∠ACB=90°,将边AC 绕着点C 顺时针旋转120°,点A 的对应点是A′,当点A′正好落到边BC 的垂直平分线上时,则A′C:BC 的值为_________17.如图,四边形ABCD 是平行四边形,AB=2,AD=4,且∠B=60°,若以A 为圆心作圆,点C 在⊙A 内,点D 在⊙A 外,以B 为圆心的圆与⊙A 内切,则⊙B 的半径r 的取值范围是__________18.定义梯形较短的腰与较长的腰的比为“对腰比”。
2020年上海市中考数学模拟试卷含答案一、选择题(本大题共6题,每题4分,满分24分)1.在平面直角坐标系中,抛物线y=﹣(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(1,2)C.(2,﹣1)D.(2,1)2.在△ABC中,∠C=90°,AB=5,BC=4,那么∠A的正弦值是()A.B.C.D.3.如图,下列能判断BC∥ED的条件是()A. = B. = C. = D. =4.已知⊙O1与⊙O2的半径分别是2和6,若⊙O1与⊙O2相交,那么圆心距O1O2的取值范围是()A.2<O1O2<4 B.2<O1O2<6 C.4<O1O2<8 D.4<O1O2<105.已知非零向量与,那么下列说法正确的是()A.如果||=||,那么=B.如果||=|﹣|,那么∥C.如果∥,那么||=|| D.如果=﹣,那么||=||6.已知等腰三角形的腰长为6cm,底边长为4cm,以等腰三角形的顶角的顶点为圆心5cm 为半径画圆,那么该圆与底边的位置关系是()A.相离 B.相切 C.相交 D.不能确定二、填空题(本大题共12题,每题4分,满分48分)7.如果3x=4y,那么= .8.已知二次函数y=x2﹣2x+1,那么该二次函数的图象的对称轴是.9.已知抛物线y=3x2+x+c与y轴的交点坐标是(0,﹣3),那么c= .10.已知抛物线y=﹣x2﹣3x经过点(﹣2,m),那么m= .11.设α是锐角,如果tanα=2,那么cotα=.12.在直角坐标平面中,将抛物线y=2x2先向上平移1个单位,再向右平移1个单位,那么平移后的抛物线解析式是.13.已知⊙A的半径是2,如果B是⊙A外一点,那么线段AB长度的取值范围是.14.如图,点G是△ABC的重心,联结AG并延长交BC于点D,GE∥AB交BC与E,若AB=6,那么GE= .15.如图,在地面上离旗杆BC底部18米的A处,用测角仪测得旗杆顶端C的仰角为30°,已知测角仪AD的高度为1.5米,那么旗杆BC的高度为米.16.如图,⊙O1与⊙O2相交于A、B两点,⊙O1与⊙O2的半径分别是1和,O1O2=2,那么两圆公共弦AB的长为.17.如图,在梯形ABCD中,AD∥BC,AC与BD交于O点,DO:BO=1:2,点E在CB的延长线上,如果S△AOD:S△ABE=1:3,那么BC:BE= .18.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是AB的中点,点E在边AC上,将△ADE沿DE翻折,使得点A落在点A'处,当A'E⊥AC时,A'B= .三、解答题(本大题共7题,满分78分)19.计算:sin30°•tan30°﹣cos60°•cot30°+.20.如图,在△ABC中,D是AB中点,联结CD.(1)若AB=10且∠ACD=∠B,求AC的长.(2)过D点作BC的平行线交AC于点E,设=, =,请用向量、表示和(直接写出结果)21.如图,△ABC中,CD⊥AB于点D,⊙D经过点B,与BC交于点E,与AB交与点F.已知tanA=,cot∠ABC=,AD=8.求(1)⊙D的半径;(2)CE的长.22.如图,拦水坝的横断面为梯形ABCD,AB∥CD,坝顶宽DC为6米,坝高DG为2米,迎水坡BC的坡角为30°,坝底宽AB为(8+2)米.(1)求背水坡AD的坡度;(2)为了加固拦水坝,需将水坝加高2米,并且保持坝顶宽度不变,迎水坡和背水坡的坡度也不变,求加高后坝底HB的宽度.23.如图,已知正方形ABCD,点E在CB的延长线上,联结AE、DE,DE与边AB交于点F,FG∥BE且与AE交于点G.(1)求证:GF=BF.(2)在BC边上取点M,使得BM=BE,联结AM交DE于点O.求证:FO•ED=OD•EF.24.在平面直角坐标系中,抛物线y=﹣x2+2bx+c与x轴交于点A、B(点A在点B的右侧),且与y轴正半轴交于点C,已知A(2,0)(1)当B(﹣4,0)时,求抛物线的解析式;(2)O为坐标原点,抛物线的顶点为P,当tan∠OAP=3时,求此抛物线的解析式;(3)O为坐标原点,以A为圆心OA长为半径画⊙A,以C为圆心, OC长为半径画圆⊙C,当⊙A与⊙C外切时,求此抛物线的解析式.25.已知△ABC,AB=AC=5,BC=8,∠PDQ的顶点D在BC边上,DP交AB边于点E,DQ交AB 边于点O且交CA的延长线于点F(点F与点A不重合),设∠PDQ=∠B,BD=3.(1)求证:△BDE∽△CFD;(2)设BE=x,OA=y,求y关于x的函数关系式,并写出定义域;(3)当△AOF是等腰三角形时,求BE的长.参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.在平面直角坐标系中,抛物线y=﹣(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(1,2)C.(2,﹣1)D.(2,1)【考点】二次函数的性质.【分析】由抛物线解析式可求得答案.【解答】解:∵y=﹣(x﹣1)2+2,∴抛物线顶点坐标为(1,2),故选B.2.在△ABC中,∠C=90°,AB=5,BC=4,那么∠A的正弦值是()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据sinA=代入数据直接得出答案.【解答】解:∵∠C=90°,AB=5,BC=4,∴sinA==,故选D.3.如图,下列能判断BC∥ED的条件是()A. = B. = C. = D. =【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理,对每一项进行分析即可得出答案.【解答】解:∵=,∴BC∥ED;故选C.4.已知⊙O1与⊙O2的半径分别是2和6,若⊙O1与⊙O2相交,那么圆心距O1O2的取值范围是()A.2<O1O2<4 B.2<O1O2<6 C.4<O1O2<8 D.4<O1O2<10【考点】圆与圆的位置关系.【分析】本题直接告诉了两圆的半径及两圆相交,求圆心距范围内的可能取值,根据数量关系与两圆位置关系的对应情况便可直接得出答案.相交,则R﹣r<P<R+r.(P表示圆心距,R,r分别表示两圆的半径).【解答】解:两圆半径差为4,半径和为8,两圆相交时,圆心距大于两圆半径差,且小于两圆半径和,所以,4<O1O2<8.故选C.5.已知非零向量与,那么下列说法正确的是()A.如果||=||,那么=B.如果||=|﹣|,那么∥C.如果∥,那么||=|| D.如果=﹣,那么||=||【考点】*平面向量.【分析】根据向量的定义,可得答案.【解答】解:A、如果||=||,与的大小相等,与的方向不一向相同,故A错误;B、如果||=||,与的大小相等,与不一定平行,故B错误;C、如果∥,与的大小不应定相等,故C错误;D、如果=﹣,那么||=||,故D正确;故选:D.6.已知等腰三角形的腰长为6cm,底边长为4cm,以等腰三角形的顶角的顶点为圆心5cm为半径画圆,那么该圆与底边的位置关系是()A.相离 B.相切 C.相交 D.不能确定【考点】直线与圆的位置关系;等腰三角形的性质.【分析】作AD⊥BC于D,由等腰三角形的性质得出BD=CD=BC=2,由勾股定理求出AD=4>5,即d>r,即可得出结论.【解答】解:如图所示:在等腰三角形ABC中,作AD⊥BC于D,则BD=CD=BC=2,∴AD===4>5,即d>r,∴该圆与底边的位置关系是相离;故选:A.二、填空题(本大题共12题,每题4分,满分48分)7.如果3x=4y,那么= .【考点】比例的性质.【分析】根据等式的性质,可得答案.【解答】解:由3x=4y,得x:y=4:3,故答案为:.8.已知二次函数y=x2﹣2x+1,那么该二次函数的图象的对称轴是x=1 .【考点】二次函数的性质.【分析】用配方法将抛物线的一般式转化为顶点式,可求抛物线的对称轴.【解答】解:∵y=x2﹣2x+1=(x﹣1)2,对称轴是:x=1.故本题答案为:x=1.9.已知抛物线y=3x2+x+c与y轴的交点坐标是(0,﹣3),那么c= ﹣3 .【考点】二次函数图象上点的坐标特征.【分析】y轴上点的坐标特点为横坐标为0,纵坐标为y,把x=0代入即可求得交点坐标为(0,c),再根据已知条件得出c的值.【解答】解:当x=0时,y=c,∵抛物线y=3x2+x+c与y轴的交点坐标是(0,﹣3),∴c=﹣3,故答案为﹣3.10.已知抛物线y=﹣x2﹣3x经过点(﹣2,m),那么m= 4 .【考点】二次函数图象上点的坐标特征.【分析】直接把点(﹣2,m)代入抛物线y=﹣x2﹣3x中,列出m的一元一次方程即可.【解答】解:∵y=﹣x2﹣3x经过点(﹣2,m),∴m=﹣×22﹣3×(﹣2)=4,故答案为4.11.设α是锐角,如果tanα=2,那么cotα=.【考点】同角三角函数的关系.【分析】根据一个角的余切等于它余角的正切,可得答案.【解答】解:由α是锐角,如果tanα=2,那么cotα=,故答案为:.12.在直角坐标平面中,将抛物线y=2x2先向上平移1个单位,再向右平移1个单位,那么平移后的抛物线解析式是y=2(x﹣1)2+1 .【考点】二次函数图象与几何变换.【分析】先确定抛物线y=2x2的顶点坐标为(0,0),再利用点平移的规律写出(0,0)平移后对应点的坐标,然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=2x2的顶点坐标为(0,0),把点(0,0)向上平移1个单位,再向右平移1个单位所得对应点的坐标为(1,1),所以平移后的抛物线解析式为y=2(x﹣1)2+1.故答案为y=2(x﹣1)2+1.13.已知⊙A的半径是2,如果B是⊙A外一点,那么线段AB长度的取值范围是AB>2 .【考点】点与圆的位置关系.【分析】根据点P在圆外⇔d>r,可得线段AB长度的取值范围是AB>2.【解答】解:∵⊙A的半径是2,B是⊙A外一点,∴线段AB长度的取值范围是AB>2.故答案为:AB>2.14.如图,点G是△ABC的重心,联结AG并延长交BC于点D,GE∥AB交BC与E,若AB=6,那么GE= 2 .【考点】三角形的重心;平行线分线段成比例.【分析】先根据点G是△ABC的重心,得出DG:DA=1:3,再根据平行线分线段成比例定理,得出=,即=,进而得出GE的长.【解答】解:∵点G是△ABC的重心,∴DG:AG=1:2,∴DG:DA=1:3,∵GE∥AB,∴=,即=,∴EG=2,故答案为:2.15.如图,在地面上离旗杆BC底部18米的A处,用测角仪测得旗杆顶端C的仰角为30°,已知测角仪AD的高度为1.5米,那么旗杆BC的高度为6+1.5 米.【考点】解直角三角形的应用﹣仰角俯角问题.【分析】根据正切的定义求出CE,计算即可.【解答】解:在Rt△CDE中,tan∠CDE=,∴CE=DE•tan∠CDE=6,∴BC=CE+BE=6+1.5(米),故答案为:6+1.5.16.如图,⊙O1与⊙O2相交于A、B两点,⊙O1与⊙O2的半径分别是1和,O1O2=2,那么两圆公共弦AB的长为.【考点】相交两圆的性质.【分析】首先连接O1A,O2A,设AC=x,O1C=y,由勾股定理可得方程组,解方程组即可求得x 与y的值,继而求得答案.【解答】解:连接O1A,O2A,如图所示设AC=x,O1C=y,则AB=2AC=2x,∵O1O2=2,∴O2C=2﹣y,∵AB⊥O1O2,∴AC2+O1C2=O1A2,O2C2+AC2=O2A2,∴,解得:,∴AC=,∴AB=2AC=;故答案为:.17.如图,在梯形ABCD中,AD∥BC,AC与BD交于O点,DO:BO=1:2,点E在CB的延长线上,如果S△AOD:S△ABE=1:3,那么BC:BE= 2:1 .【考点】相似三角形的判定与性质;梯形.【分析】由平行线证出△AOD∽△COB,得出S△AOD:S△COB=1:4,S△AOD:S△AOB=1:2,由S△AOD:S=1:3,得出S△ABC:S△ABE=2:1,即可得出答案.△ABE【解答】解:∵AD∥BC,∴△AOD∽△COB,∵DO:BO=1:2,∴S△AOD:S△COB=1:4,S△AOD:S△AOB=1:2,∵S△AOD:S△ABE=1:3,∴S△ABC:S△ABE=6:3=2:1,∴BC:BE=2:1.18.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是AB的中点,点E在边AC上,将△ADE 沿DE翻折,使得点A落在点A'处,当A'E⊥AC时,A'B= 或7.【考点】翻折变换(折叠问题);勾股定理.【分析】分两种情况:①如图1,作辅助线,构建矩形,先由勾股定理求斜边AB=10,由中点的定义求出AD和BD 的长,证明四边形HFGB是矩形,根据同角的三角函数列式可以求DG和DF的长,并由翻折的性质得:∠DA′E=∠A,A′D=AD=5,由矩形性质和勾股定理可以得出结论:A′B=;②如图2,作辅助线,构建矩形A′MNF,同理可以求出A′B的长.【解答】解:分两种情况:①如图1,过D作DG⊥BC与G,交A′E与F,过B作BH⊥A′E与H,∵D为AB的中点,∴BD=AB=AD,∵∠C=90,AC=8,BC=6,∴AB=10,∴BD=AD=5,sin∠ABC=,∴,∴DG=4,由翻折得:∠DA′E=∠A,A′D=A D=5,∴sin∠DA′E=sin∠A=,∴,∴DF=3,∴FG=4﹣3=1,∵A′E⊥AC,BC⊥AC,∴A′E∥BC,∴∠HFG+∠DGB=180°,∵∠DGB=90°,∴∠HFG=90°,∵∠EHB=90°,∴四边形HFGB是矩形,∴BH=FG=1,同理得:A′E=AE=8﹣1=7,∴A′H=A′E﹣EH=7﹣6=1,在Rt△AHB中,由勾股定理得:A′B==;②如图2,过D作MN∥AC,交BC与于N,过A′作A′F∥AC,交BC的延长线于F,延长A′E 交直线DN于M,∵A′E⊥AC,∴A′M⊥MN,A′E⊥A′F,∴∠M=∠MA′F=90°,∵∠ACB=90°,∴∠F=∠ACB=90°,∴四边形MA′FN是矩形,∴MN=A′F,FN=A′M,由翻折得:A′D=AD=5,Rt△A′MD中,∴DM=3,A′M=4,∴FN=A′M=4,Rt△BDN中,∵BD=5,∴DN=4,BN=3,∴A′F=MN=DM+DN=3+4=7,BF=BN+FN=3+4=7,Rt△ABF中,由勾股定理得:A′B==7;综上所述,A′B的长为或7.故答案为:或7.三、解答题(本大题共7题,满分78分)19.计算:sin30°•tan30°﹣cos60°•cot30°+.【考点】实数的运算;特殊角的三角函数值.【分析】原式利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=×﹣××+=﹣+2=+2.20.如图,在△ABC中,D是AB中点,联结CD.(1)若AB=10且∠ACD=∠B,求AC的长.(2)过D点作BC的平行线交AC于点E,设=, =,请用向量、表示和(直接写出结果)【考点】相似三角形的判定与性质;*平面向量.【分析】(1)求出AD=AB=5,证明△ACD∽△ABC,得出,即可得出结果;(2)由平行线的性质得出AE=EC,由向量的定义容易得出结果.【解答】解:(1)∵D是AB中点,∴AD=AB=5,∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴,∴AC2=AB•AD=10×5=50,∴AC==5;(2)如图所示:∵DE∥BC,D是AB的中点,∴AD=DB,AE=EC,∵=, =,∴==,∴,∵==,∴.21.如图,△ABC中,CD⊥AB于点D,⊙D经过点B,与BC交于点E,与AB交与点F.已知tanA=,cot∠ABC=,AD=8.求(1)⊙D的半径;(2)CE的长.【考点】圆周角定理;解直角三角形.【分析】(1)根据三角函数的定义得出CD和BD,从而得出⊙D的半径;(2)过圆心D作DH⊥BC,根据垂径定理得出BH=EH,由勾股定理得出BC,再由三角函数的定义得出BE,从而得出CE即可.【解答】解:(1)∵CD⊥AB,AD=8,tanA=,在Rt△ACD中,tanA==,AD=8,CD=4,在Rt△CBD,cot∠ABC==,BD=3,∴⊙D的半径为3;(2)过圆心D作DH⊥BC,垂足为H,∴BH=EH,在Rt△CBD中∠CDB=90°,BC==5,cos∠ABC==,在Rt△BDH中,∠BHD=90°,cos∠ABC==,BD=3,BH=,∵BH=EH,∴BE=2BH=,∴CE=BC﹣BE=5﹣=.22.如图,拦水坝的横断面为梯形ABCD,AB∥CD,坝顶宽DC为6米,坝高DG为2米,迎水坡BC的坡角为30°,坝底宽AB为(8+2)米.(1)求背水坡AD的坡度;(2)为了加固拦水坝,需将水坝加高2米,并且保持坝顶宽度不变,迎水坡和背水坡的坡度也不变,求加高后坝底HB的宽度.【考点】解直角三角形的应用﹣坡度坡角问题;梯形.【分析】(1)作CP⊥AB于点P,即可知四边形CDGP是矩形,从而得CP=DG=2、CD=GP=6,由BP==2根据AG=AB﹣GP﹣BP可得DG:AG=1:1;(2)根据题意得EF=MN=4、ME=CD=6、∠B=30°,由BF=、HN=、NF=ME,根据HB=HN+NF+BF可得答案.【解答】解:(1)如图,过点C作CP⊥AB于点P,则四边形CDGP是矩形,∴CP=DG=2,CD=GP=6,∴BP===2,∴AG=AB﹣GP﹣BP=8+2﹣6﹣2=2=DG,∴背水坡AD的坡度DG:AG=1:1;(2)由题意知EF=MN=4,ME=CD=6,∠B=30°,则BF===4,HN===4,NF=ME=6,∴HB=HN+NF+BF=4+6+4=10+4,答:加高后坝底HB的宽度为(10+4)米.23.如图,已知正方形ABCD,点E在CB的延长线上,联结AE、DE,DE与边AB交于点F,FG∥BE且与AE交于点G.(1)求证:GF=BF.(2)在BC边上取点M,使得BM=BE,联结AM交DE于点O.求证:FO•ED=OD•EF.【考点】相似三角形的判定与性质;正方形的性质.【分析】(1)根据已知条件可得到GF∥AD,则有=,由BF∥CD可得到=,又因为AD=CD,可得到GF=FB;(2)延长GF交AM于H,根据平行线分线段成比例定理得到,由于BM=BE,得到GF=FH,由GF∥AD,得到,等量代换得到,即,于是得到结论.【解答】证明:(1)∵四边形ABCD是正方形,∴AD∥BC,AB∥CD,AD=CD,∵GF∥BE,∴GF∥BC,∴,∵AB∥CD,∴,∵AD=CD,∴GF=BF;(2)延长GF交AM于H,∵GF∥BC,∴FH∥BC,∴,∴,∵BM=BE,∴GF=FH,∵GF∥AD,∴,∴,∴,∴FO•ED=OD•EF.24.在平面直角坐标系中,抛物线y=﹣x2+2bx+c与x轴交于点A、B(点A在点B的右侧),且与y轴正半轴交于点C,已知A(2,0)(1)当B(﹣4,0)时,求抛物线的解析式;(2)O为坐标原点,抛物线的顶点为P,当tan∠OAP=3时,求此抛物线的解析式;(3)O为坐标原点,以A为圆心OA长为半径画⊙A,以C为圆心, OC长为半径画圆⊙C,当⊙A与⊙C外切时,求此抛物线的解析式.【考点】圆的综合题.【分析】(1)利用待定系数法即可确定出函数解析式;(2)用tan∠OAP=3建立一个b,c的关系,再结合点A得出的等式即可求出b,c进而得出函数关系式;(3)用两圆外切,半径之和等于AC建立方程结合点A代入建立的方程即可得出抛物线解析式.【解答】解:(1)把点A(2,0)、B(﹣4,0)的坐标代入y=﹣x2+2bx+c得,,∴b=﹣1.c=8,∴抛物线的解析式为y=﹣x2﹣2x+8;(2)如图1,设抛物线的对称轴与x轴的交点为H,把点A(2,0)的坐标代入y=﹣x2+2bx+c 得,﹣4+4b+c=0①,∵抛物线的顶点为P,∴y=﹣x2+2bx+c=﹣(x﹣b)2+b2+c,∴P(b,b2+c),∴PH=b2+c,AH=2﹣b,在Rt△PHA中,tan∠OAP=,∴=3②,联立①②得,,∴(不符合题意,舍)或,∴抛物线的解析式为y=﹣x2﹣2x+8;(3)∵如图2,抛物线y=﹣x2+2bx+c与y轴正半轴交于点C,∴C(0,c)(c>0),∴OC=c,∵A(2,0),∴OA=2,∴AC=,∵⊙A与⊙C外切,∴AC=c+2=,∴c=0(舍)或c=,把点A(2,0)的坐标代入y=﹣x2+2bx+c得,﹣4+4b+c=0,∴b=,∴抛物线的解析式为y=﹣x2+x+.25.已知△ABC,AB=AC=5,BC=8,∠PDQ的顶点D在BC边上,DP交AB边于点E,DQ交AB 边于点O且交CA的延长线于点F(点F与点A不重合),设∠PDQ=∠B,BD=3.(1)求证:△BDE∽△CFD;(2)设BE=x,OA=y,求y关于x的函数关系式,并写出定义域;(3)当△AOF是等腰三角形时,求BE的长.【考点】相似形综合题.【分析】(1)根据两角对应相等两三角形相似即可证明.(2)过点D作DM∥AB交AC于M(如图1中).由△BDE∽△CFD,得=,推出FC=,由DM∥AB,得=,推出DM=,由DM∥AB,推出∠B=∠MDC,∠MDC=∠C,CM=DM=,FM=﹣,于DM∥AB,得=,代入化简即可.(3)分三种情形讨论①当AO=AF时,②当FO=FA时,③当OA=OF时,分别计算即可.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵∠EDC=∠B+∠BED,∴∠FDC+∠EDO=∠B+∠BED,∵∠EDO=∠B,∴∠BED=∠EDC,∵∠B=∠C,∴△BDE∽△CFD.(2)过点D作DM∥AB交AC于M(如图1中).∵△BDE∽△CFD,∴=,∵BC=8,BD=3,BE=x,∴=,∴FC=,∵DM∥AB,∴=,即=,∴DM=,∵DM∥AB,∴∠B=∠MDC,∴∠MDC=∠C,∴CM=DM=,FM=﹣,∵DM∥AB,∴=,即=,∴y=(0<x<3).(3)①当AO=AF时,由(2)可知AO=y=,AF=FC﹣AC=﹣5,∴=﹣5,解得x=.∴BE=②当FO=FA时,易知DO=AM=,作DH⊥AB于H(如图2中),BH=BD•cos∠B=3×=,DH=BD•sin∠B=3×=,∴HO==,∴OA=AB﹣BH﹣HO=,由(2)可知y=,即=,解得x=,∴BE=.③当OA=OF时,设DP与CA的延长线交于点N(如图3中).∴∠OAF=∠OFA,∠B=∠C=∠ANE,由△ABC≌△CDN,可得CN=BC=8,ND=5,由△BDE≌△NAE,可得NE=BE=x,ED=5﹣x,作EG⊥BC于G,则BG=x,EG=x,∴GD=,∴BG+GD=x+=3,∴x=>3(舍弃),综上所述,当△OAF是等腰三角形时,BE=或.。
2020年上海市中考数学模拟试题含答案(满分150分,100分钟完成)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂] 1. 212-等于(A )2; (B )2-; (C )22; (D )22-. 2.下列二次根式里,被开方数中各因式的指数都为1的是(A )22y x ; (B )22y x +; (C )2)(y x +; (D )2xy . 3.关于x 的一元二次方程012=--mx x 的根的情况是(A )有两个不相等的实数根; (B )有两个相等的实数根; (C )没有实数根; (D )不能确定.4.一次数学作业共有10道题目,某小组8位学生做对题目数的情况如下表:那么这8位学生做对题目数的众数和中位数分别是(A )9和8; (B )9和8.5 ; (C )3和2; (D )3和1. 5.在下列图形中,一定是中心对称图形,但不一定是轴对称图形的为(A )正五边形; (B )正六边形; (C )等腰梯形; (D )平行四边形.做对题目数 6 7 8 9 10 人数112316.已知四边形ABCD 中,对角线AC 与BD 相交于点O ,AD //BC ,下列判断中错误..的是 (A )如果AB =CD ,AC =BD ,那么四边形ABCD 是矩形; (B )如果AB //CD ,AC =BD ,那么四边形ABCD 是矩形; (C )如果AD =BC ,AC ⊥BD ,那么四边形ABCD 是菱形; (D )如果OA =OC ,AC ⊥BD ,那么四边形ABCD 是菱形. 二、填空题:(本大题共12题,每题4分,满分48分) [在答题纸相应题号后的空格内直接填写答案] 7.计算:=--0122 ▲ .8.在实数范围内分解因式:=-622x ▲ .9.不等式组⎩⎨⎧->->-5,032x x 的解集是 ▲ .10.函数32--=x x y 的定义域是 ▲ . 11.如果函数xm y 13-=的图像在每个象限内,当自变量x 的值逐渐增大时,y 的值随着逐渐增大,那么m 的取值范围是 ▲ . 12.如果实数x 满足02)1()1(2=-+-+x x x x ,那么xx 1+的值是 ▲ . 13.为了解全区5000名初中毕业生的体重情况,随机抽 测了400名学生的体重,频率分布如图所示(每小 组数据可含最小值,不含最大值),其中从左至右前四个小长方形的高依次为0.02、0.03、0.04、0.05,由此可估计全区初中毕业生的体重不小于60千克 的学生人数约为 ▲ 人.14.布袋里有三个红球和两个白球,它们除了颜色外其他都相同, 从布袋里摸出两个球,摸到两个红球的概率是 ▲ . 15.如图,在△ABC 中,点D 是边AC 的中点,如果b BC a AB ==,, 那么= ▲ (用向量表示). 16.如图,在正方形ABCD 中,点E 、F 分别在边BC 、CD 上, △AEF 是等边三角形,如果AB =1,那么CE 的长是 ▲ . ABCD F(第16题图)(第15题图)AD(第13题图)组距频率 体重(千克)40 45 50 55 60 65 7017. 在Rt △ABC 中,∠C =90°,∠B =70°,点D 在边AB 上, △ABC 绕点D 旋转后点B 与点C 重合,点C 落在点C ’, 那么∠ACC ’的度数是 ▲ .18.如图,⊙A 和⊙B 的半径分别为5和1,AB =3,点O 在直线 AB 上,⊙O 与⊙A 、⊙B 都内切,那么⊙O 半径是 ▲ .三、解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上]19.(本题满分10分) 化简:(632-++x x x -42-x x )21+÷x ,并求321-=x 时的值. 20.(本题满分10分)解方程:.1521=-++x x 21.(本题满分10分,每小题满分5分)已知:如图,在Rt △ABC 和Rt △BCD 中,∠ABC =∠BCD =90°,BD 与AC 相交于点E ,AB =9,53cos =∠BAC ,125tan =∠DBC .求:(1)边CD 的长; (2)△BCE 的面积.22.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)有两种包装盒,大盒比小盒可多装20克某一物品.已知120克这一物品单独装满小盒比单独装满大盒多1盒.(1)问小盒每个可装这一物品多少克?(2)现有装满这一物品两种盒子共50个.设小盒有n 个,所有盒子所装物品的总量为w 克.①求w 关于n 的函数解析式,并写出定义域;②如果小盒所装物品总量与大盒所装物品总量相同,求所有盒子所装物品的总量.23.(本题满分12分,第小题满分6分)已知:如图,在菱形ABCD 中,点E 在边BC 上,点F 在BA 的延长线上,BE =AF ,C F //AE ,EC(第21题图)CF 与边AD 相交于点G .求证:(1)FD =CG ; (2)FC FG CG ⋅=2.24.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)已知二次函数c bx x y ++-=221的图像与x 轴的正半轴相交于点A (2,0)和点B 、 与y 轴相交于点C ,它的顶点为M 、对称轴与x 轴相交于点N . (1) 用b 的代数式表示顶点M 的坐标; (2) 当tan∠MAN =2时,求此二次函数的解析式 及∠ACB 的正切值.25.(本题满分14分,第(1)小题满分6分,第(2)小题满分8分)如图,已知⊙O 的半径OA 的长为2,点B 是⊙O 上的动点,以AB 为半径的⊙A 与线段OB 相交于点C ,AC 的延长线与⊙O 相交于点D .设线段AB 的长为x , 线段OC 的长为y .(1)求y 关于x 的函数解析式,并写出定义域; (2)当四边形ABDO 是梯形时,求线段OC 的长.(第25题图)ABDOC(第24题图)AOx2y2数学试卷参考答案及评分标准 一、选择题:(本大题共6题,每题4分,满分24分) 1.C ; 2.B ; 3.A ; 4.B ; 5.D ; 6.A .二.填空题:(本大题共12题,满分48分)7.21-; 8.)3)(3(2+-x x ; 9.523<<x ;10.3≠x ; 11.31<m ; 12.2;13.1500; 14.103; 15.a b 2121-;16.13-; 17.50°; 18.23或29.三、(本大题共7题, 第19~22题每题10分, 第23、24题每题12分, 第25题14分, 满分78分) 19.解:原式=21])2)(2()2)(3(3[+÷-+--++x x x x x x x ……………………………………(3分) =)2(])2)(2()2)(2(2[+⋅-+--++x x x xx x x ……………………………………(2分) =22-x .…………………………………………………………………………(2分) 当32321+=-=x 时,…………………………………………………………(1分) 原式=32=332.……………………………………………………………………(2分)20.解:1152+-=-x x ,………………………………………………………………(1分)112152+++-=-x x x ,…………………………………………………………(2分)x x -=+712.………………………………………………………………………(1分)2144944x x x +-=+,………………………………………………………………(2分)045182=+-x x ,……………………………………………………………………(1分)15,321==x x ,………………………………………………………………………(1分)经检验:15,321==x x 都是增根,………(1分)所以原方程无解.…………(1分)21.解:(1)在Rt △ABC 中,53cos ==∠AC AB BAC .………………………………………(1分)∴1535==AB AC ,………………………………………………………………(1分)∴BC =129152222=-=-AB AC .…………………………………………(1分)在Rt △BCD 中,125tan ==∠BC CD DBC ,………………………………………(1分)∴CD =5.…………………………………………………………………………(1分)(2)过点E 作EH ⊥BC ,垂足为H ,…………………………………………………(1分)∵∠ABC =∠BCD =90°,∴∠ABC +∠BCD =180°,∴CD //AB . ∴95==AB DC AE CE .………………………………………………………………(1分)∵∠EHC =∠ABC =90°,∴EH//AB ,∴145==CA CE AB EH .…………………(1分) ∴14459145145=⨯==AB EH .…………………………………………………(1分)∴71351445122121=⨯⨯=⋅=∆EH BC S EBC .……………………………………(1分)22.解:(1)设小盒每个可装这一物品x 克,…………………………………………………(1分)∴120120120=+-x x ,…………………………………………………………………(2分)02400202=-+x x ,……………………………………………………………(1分)60,4021-==x x ,………………………………………………………………(1分)它们都是原方程的解,但60-=x 不合题意.∴小盒每个可装这一物品40克.(1分)(2)①n n n w 203000)50(6040-=-+=,(n n ,500<<为整数)…………(2分)②)50(6040n n -=,30=n ,2400=w .…………………………………(2分)∴所有盒子所装物品的总量为2400克.23.证明:(1)∵在菱形ABCD 中,AD //BC ,∴∠FAD =∠B ,……………………………(1分)又∵AF=BE ,AD =BA ,∴△ADF ≌△BAE .……………………………………(2分)∴FD =EA ,…………………………………………………………………………(1分)∵CF //AE ,AG //CE ,∴EA =CG .…………………………………………………(1分) ∴FD=CG .…………………………………………………………………………(1分)(2)∵在菱形ABCD 中,CD //AB ,∴∠DCF =∠BFC .……………………………(1分) ∵CF //AE ,∴∠BAE =∠BFC ,∴∠DCF =∠BAE .……………………………(1分)∵△ADF ≌△BAE ,∴∠BAE =∠FDA ,∴∠DCF =∠FDA .…………………(1分) 又∵∠DFG =∠CFD ,∴△FDG ∽△FCD .……………………………………(1分) ∴FDFGFC FD =,FC FG FD ⋅=2.…………………………………………………(1分)∵FD=CG ,FC FG CG ⋅=2.……………………………………………………(1分)24.解:(1)∵二次函数c bx x y ++-=221的图像经过点A (2,0),∴c b ++⨯-=24210,………………………………………………………………(1分)∴b c 22-=,…………………………………………………………………………(1分)∴244)(212221212222+-+--=-++-=++-=b b b x b bx x c bx x y ,………(2分)∴顶点M 的坐标为(b ,2442+-b b ).……………………………………………(1分)(2)∵tan∠MAN ==ANMN2,∴MN =2AN .………………………………………………(1分)∵M (b ,2442+-b b ),∴ N (b ,0),22)2(21244-=+-=b b b MN .……(1分)①当点B 在点N 左侧时, AN =b -2,∴)2(2)2(212b b -=-,2-=b .不符合题意.…………………………………………………………………………(1分)②当点B 在点N 右侧时, AN =2-b , ∴)2(2)2(212-=-b b ,6=b .…………(1分)∴二次函数的解析式为106212-+-=x x y .………………………………………(1分)∴点C (0,–10),∵点A 、B 关于直线MN 对称,∴点B (10,0).∵OB =OC =10,∴BC =102,∠OBC =45°.………………………………………(1分)过点A 作AH ⊥BC ,垂足为H ,∵AB =8,∴AH =BH =42,∴CH =62.∴322624tan ===∠CH AH ACB .……………………………………………………(1分)25.解:(1)在⊙O 与⊙A 中,∵OA=OB ,AB=AC ,∴∠ACB =∠ABC =∠OAB .……(2分)∴△ABC ∽△OAB .…………………………………………………………………(1分)∴OAABAB BC =,∴2x x BC =,………………………………………………………(1分)∴221x BC =,∵OC=OB –BC ,∴y 关于x 的函数解析式2212x y -=,……(1分)定义域为20<<x .………………………………………………………………(1分)(2)①当OD //A B 时,∴OD AB CO BC =,∴22122122x x x=-,……………………………(1分)∴2212x x -=,∴0422=-+x x ,……………………………………………(1分)∴51±-=x (负值舍去).……………………………………………………(1分)∴AB =15-,这时AB ≠OD ,符合题意. ∴OC =15)15(21221222-=--=-x .………………………………………(1分)②当BD //OA 时,设∠ODA =α,∵BD //OA ,OA =OD ,∴∠BDA =∠OAD =∠ODA =α, 又∵OB =OD ,∴∠BOA =∠OBD =∠ODB =α2.…………………………………(1分) ∵AB =AC ,OA =OB ,∴∠OAB =∠ABC =∠ACB =∠COA +∠CAO =α3.………(1分) ∵∠AOB +∠OAB +∠OBA =180°,∴︒=++180332ααα,∴︒=5.22α,∠BOA =45°.………………………………………………………(1分)∴∠ODB =∠OBD =45°,∠BOD =90°,∴BD =22. ∵BD //OA ,∴OABDCO BC =. ∴2222=-y y ,∴222-=y .222-=OC .………………………………(1分)由于BD ≠OA ,222-=OC 符合题意.∴当四边形ABDO 是梯形时,线段OC 的长为15-或222-.或:过点B 作BH ⊥OA ,垂足为H , BH =OH =2,AH =2–2, ∴248)2()22(22222-=+-=+=BH AH AB . ∴222)224(221221222-=--=-=-=AB x OC .…………………………(1分)。
2020年中考沪教版数学模拟试卷6一、选择题(本大题共6题,每题4分,满分24分)1.下列运算正确的是( )A .()325a =a B .248a a =a ⋅ C .632a a =a ÷ D .()333ab =a b2.的算术平方根为( )A. B C .2± D .2 3.关于x 的一元二次方程240x x k +-=有两个实数根,则k 的取值范围是() A .≤k -4 B .k <-4 C .≤k 4 D .k <44. 直线4+-=x y 不经过( )A 第一象限B . 第二象限C .第三象限D . 第四象限5.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:关于以上数据,说法正确的是( )A .甲、乙的众数相同B .甲、乙的中位数相同C . 甲的平均数小于乙的平均数D .甲的方差小于乙的方差6. 如图,已知AB 是的直径,点P 在BA 的延长线上,PD 与相切于点D ,过点B 作PD 的垂线交PD 的延长线于点C ,若的半径为4,,则PA 的长为( )A .4B .C .3D .2.5二、填空题(本大题共12题,每题4分,满分48分)7.计算:32-= .8.在实数范围内分解因式:=-23a a .9.函数2-=x x y 的定义域是 . 10.方程134=-x 的解是 .11.如果关于x 的方程()03222=++-m x m x 有两个不相等的实数根,那么取值m 范围是 .12.将抛物线132++=x x y 向下平移两个单位,那么所得抛物线的表达式为 .13.将分别写有“创建”、“文明”、“城市”的三张大小、质地相同的卡片随机排列,那么恰好排列成“创建文明城市”的概率为 .14.某校随机抽取80名同学进行关于“创全”的调查问卷,通过调查发现其中76人对“创全”了解的比较全面,由此可以估计全校的1500名学生中,对于“创全”了解的比较全面的学生约有 人.15.在梯形ABCD 中,BC AD //,F 、E 分别是变边CD AB 、的中点,如果6=AD ,10=EF ,那么=BC .16.如图,已知在圆O 中,半径OC 垂直于弦AB ,垂足为点D ,如果13=OC ,24=AB ,那么=OD .17.如图,在三角形ABC 中,点D 在边AC 上,∠=ABD ∠ACB ,如果,5,5,4===∆∆CD S ABD S BCD 那么=AB 米.。
2020年上海市中考数学模拟试卷一.选择题(共6小题,满分24分,每小题4分)1.在下列运算中,正确的是()A.(x﹣y)2=x2﹣y2B.(a+2)(a﹣3)=a2﹣6C.(a+2b)2=a2+4ab+4b2D.(2x﹣y)(2x+y)=2x2﹣y22.若a<b,则下列各式中不一定成立的是()A.a﹣1<b﹣1B.3a<3b C.﹣a>﹣b D.ac<bc3.下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣2x+1B.y =C.y=﹣2x2+1D.y=2x4.方差是刻画数据波动程度的量.对于一组数据x1,x2,x3,…,x n,可用如下算式计算方差:s2=[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(x n﹣5)2],其中“5”是这组数据的()A.最小值B.平均数C.中位数D.众数5.下列命题中是假命题的有()A.一组邻边相等的平行四边形是菱形B.对角线互相垂直的四边形是矩形C.一组邻边相等的矩形是正方形D.一组对边平行且相等的四边形是平行四边形6.已知两圆半径分别为6.5cm和3cm,圆心距为3.5cm,则两圆的位置关系是()A.相交B.外切C.内切D.内含二.填空题(共12小题,满分48分,每小题4分)7.计算:(﹣2)2019×0.52018=.8.已知函数y =,当x=2时,函数值y为.9.已知≈1.766,≈5.586,则≈.10.关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是.11.从1、2、3中任取一个数作为十位上的数字,再从余下的数字中任取一个数作为个位上的数字,那么组成的两位数是4的倍数的概率是12.有大小两种货车,2辆大货车与1辆小货车一次可以运货7吨,1辆大货车与2辆小货第1 页共24 页。
2020年上海市中考数学模拟考试试卷
一.选择题(共6小题,满分24分,每小题4分)
1.下列计算正确的是()
A .
B .
C .
D .
2.下列一元二次方程中,有两个相等的实数根的是()
A.x2﹣4x﹣4=0B.x2﹣36x+36=0
C.4x2+4x+1=0D.x2﹣2x﹣1=0
3.二次函数y=x2+2x﹣3的图象的对称轴是()
A.直线x=1B.直线x=﹣1C.直线x=4D.直线x=﹣4 4.为了解居民用水情况,在某小区随机抽查了15户家庭的月用水量,结果如下表:
则这15户家庭的月用水量的众数与中位数分别为()
A.9、6B.6、6C.5、6D.5、5
5.已知▱ABCD,对角线AC,BD相交于点O,要使▱ABCD为矩形,需添加下列的一个条件是()
A.OA=OB B.∠BAC=∠DAC C.AC⊥BD D.AB=BC
6.如图,半径为4的两等圆外切,它们的一条外公切线与两圆围成的部分中,存在最大圆的半径等于()
A.B.C.D.1
二.填空题(共12小题,满分48分,每小题4分)
7.计算=.
8.若x+y=1,x﹣y=5,则xy=.
第1 页共21 页。
2019-2020学年数学中考模拟试卷一、选择题1.如图 1,动点 K 从△ABC 的顶点 A 出发,沿 AB﹣BC 匀速运动到点 C 停止.在动点 K 运动过程中,线段 AK 的长度 y 与运动时间 x 的函数关系如图 2 所示,其中点 Q 为曲线部分的最低点,若△ABC 的面积是 10 ,则 a 的值为( )A.5B.35C.7D.452.已知二次函数y=ax2+bx的图象经过点A(﹣1,1),则ab有()A.最小值0B.最大值1C.最大值2D.有最小值﹣3.关于x的一元二次方程(m-5)x2+2x+2=0有实根,则m的最大整数解是()A.2 B.3 C.4 D.54.如图所示的几何体是将一圆锥截去一部分后所得到的,则它的左视图是()A.B.C.D.5.样本数据3,a,4,b,8的平均数是5,众数是3,则这组数据的中位数是()A.2 B.3 C.4 D.86.由个大小相同的正方形搭成的几何体,被小颖拿掉两个后,得到如图所示的几何体,如图是原几何体的三视图,请你判断小颖拿掉的两个正方体原来放在()A.4号的左右B.3号的前后C.1号的前后D.2号的前后7.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1,BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B②当x=1时,四边形ABC1D1是菱形③当x=2时,△BDD1为等边三角形④s 3(x﹣2)2(0<x<2),其中正确的有()A .1 个B .2 个C .3 个D .4 个8.在下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .9.在Rt △ABC 中,∠C =90°,sinA =35,BC =6,则AB =( ) A .4 B .6 C .8 D .1010.如图是二次函数2y ax bx c =++的图象过点(-1,0),其对称轴为1x =,下列结论:①0abc >;②20a b +=;③420a b c ++<;④此二次函数的最大值是a b c ++,其中结论正确的是( )A .①②B .②③C .②④D .①③④ 11.已知m 是方程好x 2-2x -1=0的一个根,则代数式2m 2-4m +2019的值为( ) A .2022 B .2021 C .2020D .2019 12.一个个“刻度”,印证着中国高铁的不断前行.截至2017年底,全国铁路营业里程达到127000千米,其中高铁里程为25000千米,占世界高铁里程总量的66.3%,是当之无愧的“世界冠军”,其中25000千米用科学记数法表示为( )A .25×107米B .2.5×107米C .C.2.5×104米D .D.0.25×108米 二、填空题13.如图,若△ABC 内一点P 满足∠PAC =∠PCB =∠PBA ,则称点P 为△ABC 的布罗卡尔点,已知△ABC 中,CA =CB ,∠ACB =120°,P 为△ABC 的布罗卡尔点,若,则PB+PC =_____.14.已知P 1(1-a ,y 1),P 2(a -1,y 2)两点都在反比例函数y =-2x的图象上,则y 1与y 2的数量关系是____________. 15.如图,BC AE ⊥,垂足为C ,过C 作CD AB P .若48ECD ∠=︒,则B ∠=__________.16.已知反比例函数y=,若y<3,则x的取值范围为_____.17.若式子3x 有意义,那么x的取值范围是________.18.已知x2+2x﹣1=0,则3x2+6x﹣2=___.三、解答题19.如图,已知⊙O的半径为R,AB是⊙O的直径,C是»AB的中点,动点M在»BC上运动(不与B、C重合),AM交OC于点P,OM与PB交于点N.(1)求证:AP•AM是定值;(2)请添加一个条件(要求添加的条件是图中两条线段或多条线段之间的数量关系),使OM⊥PB.并加以证明.20.(1)阅读理解利用旋转变换解决数学问题是一种常用的方法.如图1,点P是等边三角形ABC内一点,PA=1,PB=3,PC=2.求∠BPC的度数.为利用已知条件,不妨把△BPC绕点C顺时针旋转60°得△AP′C,连接PP′,则PP′的长为_____;在△PAP′中,易证∠PAP′=90°,且∠PP′A的度数为_____,综上可得∠BPC的度数为_____;(2)类比迁移如图2,点P是等腰Rt△ABC内的一点,∠ACB=90°,PA=2,PB=2,PC=1,求∠APC的度数;(3)拓展应用如图3,在四边形ABCD中,BC=3,CD=5,AB=AC=12AD.∠BAC=2∠ADC,请直接写出BD的长.21.如图,PA、PB是⊙O的切线,A、B为切点,连接AO并延长,交PB的延长线于点C,连接PO,交⊙O于点D.(1)求证:∠APO=∠CPO;(2)若⊙O的半径为3,OP=6,∠C=30°,求PC的长.22.飞机飞行需加适量燃油,既能飞到目的地,又使着陆时飞机总重量(自重+载重+油重)不超过它的最大着陆重量,否则飞机需通过空中放油(如图1)减重,达标后才能降落.某客机的主要指标如图2,假定该客机始终满载飞行且它的加油量要使它着陆时的总重量恰好达到135 t .例如,该客机飞1 h 的航班,需加油1×5+(135-120)=20 t .(1)该客机飞3 h 的航班,需加油 t ;(2)该客机飞x h 的航班,需加油y t ,则y 与x 之间的函数表达式为 ;(3)该客机飞11 h 的航班,出发2 h 时有一位乘客突发不适,急需就医.燃油有价,生命无价,机长决定立刻按原航线原速返航,同时开始以70 t/h 的速度实施空中放油.①客机应放油 t;②设该客机在飞行x h 时剩余燃油量为R t ,请在图3中画出R 与x 之间的函数图像,并标注必要数据.23.(1)计算:(12)﹣238(π+2019)03 (2)先化简,再求值:21(1)11a a a -÷+-,其中a =2020. 24.在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数8,请帮他计算出最后结果:[(8+1)2﹣(8﹣1)2]×25÷8(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等”小明同学想验证这个结论,于是,设心里想的数是a (a≠0),请你帮小明完成这个验证过程.25.设a ,b 是任意两个不等实数,我们规定满足不等式a≤x≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数闭区间[m,n]上的“闭函数”.如函数y=﹣x+4.当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,有1≤y≤3,所以说函数y=﹣x+4是闭区间[1,3]上的“闭函数”(1)反比例函数2019yx=是闭区间[1,2019]上的“闭函数”吗?请判断并说明理由.(2)若二次函数y=x2﹣2x﹣k是闭区间[1,2]上的“闭函数”,求k的值;(3)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此函数的解析式(用含m,n的代数式表示).【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B D C D C D C A D C B B13.1+14.y1+ y2=015.42°16.x>2或x<017.x≥318.三、解答题19.(1)见解析;(2)当AM OMOM PM=时,OM⊥PB,见解析.【解析】【分析】(1)要证明AP•AM是定值,就要证明它们的积与圆的半径的关系,在圆中往往不变的量是圆的半径,本题中证明△AMO∽△ABP就可以.(2)是一个条件开放试题,要证明OM⊥PB,就与90°有联系,只要证明这两直线相交的四个角中有一个角是直角就可以了,如图就只要证明∠1+∠3=90°,∵∠1+∠2=90°,只要证明∠2=∠B,要证明∠2=∠B,只要证明△AOM∽△OPM,结论可以得出,而证这两个三角形相似就联想到了需要加的条件是边的关系,利用两边对应成比例且夹角相等的两三角形相似,就有AMOM=OMPM,而问题解决.【详解】(1)证明:∵C是弧AB的中点,且AB是直径, ∴弧AC=弧BC,∴∠AOC=∠BOC=90°∵AO=BO∴CO是AB的垂直平分线∴AP=BP∴∠A=∠B∵AO=MO∴∠A=∠M∴∠B=∠M,且∠A=∠A ∴△AOM∽△APB∴AM AO AB AP=,∴AM•AP=AB•AO∵AO=R,AB=2R∴AM•AP=2R2在圆O中R是定值,∴2R2也是定值, ∴AM•AP=2R2是定值;(2)解:当AM OMOM PM=时,OM⊥PB.证明:∵AM OMOM PM=,∠M=∠M,∴△AOM∽△OPM∴∠2=∠A∴∠2=∠B∵∠2+∠1=∠BOC=90°∴∠1+∠B=90°∴∠3=90°∴OM⊥PB.【点睛】本题考查了相似三角形的判定与性质,圆心角与弧的关系,垂径定理的运用,直角三角形的判定等多个知识点.20.(1)2;30°;90°;(2)∠APC=90°;(3)61.【解析】【分析】(1)由旋转性质、等边三角形的判定可知△CP′P是等边三角形,由等边三角形的性质知∠CP′P=60°,根据勾股定理逆定理可得△AP′P是直角三角形,继而可得答案.(2)如图2,把△BPC绕点C顺时针旋转90°得△AP'C,连接PP′,同理可得△CP′P是等腰直角三角形和△AP′P是直角三角形,所以∠APC=90°;(3)如图3,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,根据勾股定理求CG的长,就可以得BD的长.【详解】解:(1)把△BPC绕点C顺时针旋转60°得△AP'C,连接PP′(如图1).由旋转的性质知△CP′P是等边三角形;∴P′A=PB=3、∠CP′P=60°、P′P=PC=2,在△AP′P中,∵AP2+P′A2=12+(3)2=4=PP′2;∴△AP′P是直角三角形;∴∠P′AP=90°.∵PA=12 PC,∴∠AP′P=30°;∴∠BPC=∠CP′A=∠CP′P+∠AP′P=60°+30°=90°.故答案为:2;30°;90°;(2)如图2,把△BPC绕点C顺时针旋转90°得△AP'C,连接PP′.由旋转的性质知△CP′P是等腰直角三角形;∴P′C=PC=1,∠CPP′=45°、P′P=2,PB=AP'=2,在△AP′P中,∵AP'2+P′P2=(2)2+(2)2=2=AP2;∴△AP′P是直角三角形;∴∠AP′P=90°.∴∠APP'=45°∴∠APC=∠APP'+∠CPP'=45°+45°=90°(3)如图3,∵AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,∵∠BAD=∠CAG,∴∠BAC=∠DAG,∵AB=AC,AD=AG,∴∠ABC=∠ACB=∠ADG=∠AGD,∴△ABC∽△ADG,∵AD=2AB,∴DG=2BC=6,过A作AE⊥BC于E,∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ADG+∠ADC=90°,∴∠GDC=90°,∴==∴.【点睛】本题是四边形的综合题,考查了等腰直角三角形的判定和性质、三角形全等的性质和判定、等腰三角形的性质、勾股定理、相似三角形的判定和性质和旋转的性质等知识,解题的关键是学会用旋转法添加辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.21.(1)详见解析;(2).【解析】【分析】(1)根据切线长定理证明;(2)根据切线的性质得到∠PAC=90°,根据勾股定理求出AP,根据含30°的直角三角形的性质计算即可.【详解】(1)证明:∵PA、PB是⊙O的切线,∴∠APO=∠CPO;(2)解:∵PA是⊙O的切线,∴∠PAC=90°,∴AP=,在Rt△CAP中,∠C=30°,∴PC=2AP=.【点睛】本题考查的是切线的性质、直角三角形的性质,掌握切线长定理、勾股定理是解题的关键.22.(1)30;(2)y=5x+15.(3)①35;②见解析【解析】【分析】(1)根据题意列式解答即可;(2)根据飞机油耗5t/h可得y与x的关系式;(3)①根据题意列式解答即可;②根据题意画图即可.【详解】解:(1)客机飞3h的航班,需加油3×5+(135-120)=30t.故答案为:30;(2)根据飞机油耗5t/h可得:y=5x+15.故答案为:y=5x+15;(3)①客机应放油:5×(11-2×2)=35(t).故答案为:35;②如图所示,【点睛】本题考查了一次函数的应用,解题的关键是根据数量关系,找出函数关系式.23.(1)10;(2)2019.【解析】【分析】(1)根据负整数指数幂以及零指数幂的意义即可求出答案;(2)根据分式的运算法则即可求出答案. 【详解】解:(1)原式=33=4+2+1+3=10;(2)原式=11(1)(1)(1)(1)1 11a a a a a aaa a a a+-+-+-⋅=⋅=-++当a=2020时,原式=2020﹣1=2019.【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型. 24.(1)100;(2)100.【解析】【分析】(1)原式先计算括号中的乘方运算,再计算减法运算,最后算乘除运算即可求出值;(2)列出代数式,计算即可得到结果.【详解】解:(1)原式=(81﹣49)×25÷8=800÷8=100;(2)根据题意得:[(a+1)2﹣(a﹣1)2]×25÷a=4a×25÷a=100.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.25.(1)是;(2)k的值是﹣2;(3)y=﹣x+m+n.【解析】【分析】(1)根据反比例函数2019yx=的单调区间进行判断;(2)由于二次函数y=x2-2x-k的图象开口向上,对称轴为x=1,所以二次函数y=x2-2x-k在闭区间[1,2]内,y随x的增大而增大.当x=1时,y=1,所以k=-2.当x=2时,y=2,所以k=-2.即图象过点(1,1)和(2,2),所以当1≤x≤2时,有1≤y≤2,符合闭函数的定义,所以k=-2.(3)根据新定义运算法则,分两种情况:k>0,k<0,列出关于系数k、b的方程组,通过解该方程组即可求得系数k、b的值,即可解答.【详解】解:(1)反比例函数2019yx=是闭区间[1,2019]上的“闭函数”,理由:∵当x=1时,y=2019,当x=2019时,y=1,∴反比例函数2019yx=是闭区间[1,2019]上的“闭函数”;(2)∵二次函数y=x2﹣2x﹣k=(x﹣1)2﹣1﹣k,∴当x>1时,y随x的增大而增大,∵二次函数y=x2﹣2x﹣k是闭区间[1,2]上的“闭函数”,∴当x=1时,12﹣2×1﹣k=1,得k=﹣2,即k的值是﹣2;(3)∵一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,∴当k>0时,km b m kn b n+=⎧⎨+=⎩,得k1b0=⎧⎨=⎩,即此函数的解析式为y=x;当k<0时,km b n kn b m+=⎧⎨+=⎩,得k1b m n=-⎧⎨=+⎩,即此函数的解析式为y=﹣x+m+n.【点睛】本题考查的是反比例函数的性质,解题的关键是弄清楚“闭函数”的定义.解题时,也要注意“分类讨论”数学思想的应用.2019-2020学年数学中考模拟试卷一、选择题1.在-2,4,2,3.14, 327-,5π,这6个数中,无理数共有( ) A .4个 B .3个 C .2个 D .1个2.如图,AB ∥CD ,∠1=45°,∠3=80°,则∠2的度数为( )A.30°B.35°C.40°D.45°3.在同一直角坐标系中,函数y =kx+1与y =k x(k≠0)的图象大致是( ) A . B .C .D .4.如图,已知平行四边形的对角线交于点.2cm BD =,将AOB V 绕其对称中心旋转180︒.则点所转过的路径长为( )km.A .B .C .D .5.函数y=|x-3|·(x+1)的图象为( )A. B. C. D.6.将直线21y x =+向下平移n 个单位长度得到新直线21y x =-,则n 的值为( )A .2-B .1-C .1D .2 7.下列所述图形中,是中心对称图形,但不是轴对称图形的是 A .正三角形B .平行四边形C .正五边形D .圆 8.如图,在菱形ABCD 中,120BAD ∠=︒ ,已知△ABC 的周长为15,则菱形ABCD 的对角线BD 的长为( ).A .53B .532C .103D .5349.给出下列4个命题:①对顶角相等;②同位角相等;③在同一个圆中,同一条弦所对的圆周角都相等;④圆的内接四边形对角互补.其中,真命题为 ( )A .①②④B .①③④C .①④D .①②③④10.有一张矩形ABCD 的纸片(AB <BC ),按如图所示的方式,在A ,C 两端截去两个矩形AEFG 和CE′F′G′,且AE =CE′,AG =CG′,再分别过EF ,FG ,E′F′,F′G′四边的中点,沿平行于原矩形各边的方向剪裁,得到如图的阴影部分,分别记为L 1,L 2.若L 1的周长是矩形ABCD 的34,L 2的周长是矩形ABCD 的35,则AE AG的值为( )A .54B .85C .32D .20911.如图,AB 是⊙O 的直径,点C 、D 是圆上两点,且∠AOC =126°,则∠CDB =( )A .54°B .64°C .27°D .37°12.下列图形是由同样大小的三角形按一定规排列面成的.其中第①个图形有3个三角形,第②个图形有6个三角形,第③个图形有11个三角形,第④个图形有18个三角形,……按此规律,则第⑦个图形中三角形的个数为( )A .47B .49C .51D .53二、填空题 13.已知 5 个数据:8,8,x ,10,10.如果这组数据的某个众数与平均数相等,那么这组数据的中位数是 __________.14.如图,AD和BE分别为三角形ABC的中线和角平分线,AD BE⊥,若4AD BE==,则AC的长__________.15.抛物线y=2x2+8x+5的顶点坐标为_____.16.函数y=231xx+中自变量x的取值范围是____________ .17.如图,点A在双曲线y= 3x上,点B在双曲线y=kx(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D,连接OB,与AD相交于点C,若AC=2CD,则k的值为________.18.一个三角形三个内角的度数之比为1:2:3,则三角形按角分它的形状是_____三角形.三、解答题19.如图,点O是Rt△ABC斜边AB上的一点,⊙O经过点A与BC相切于点D,分别交AB,AC于E,F,OA=2cm,AC=3cm.(1)求BE的长;(2)求图中阴影部分的面积.20.校园安全受到全社会的广泛关注,某市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)在这次活动中抽查了多少名中学生?(2)若该中学共有学生1600人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”程度的人数.(3)若从对校园安全知识达到“了解程度的2个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.21.如图1,在▱ABCD中,AE⊥BC于E,E恰为BC的中点.tanB=2.(1)求证:AD=AE;(2)如图2.点P在BE上,作EF⊥DP于点F,连结AF.线段DF、EF与AF之间有怎样的数量关系?并说明理由;(3)请你在图3中画图探究:当P为射线EC,上任意一点(P不与点E重合)时,作EF⊥DP于点F,连结AF,线段DF、EF与AF之间有怎样的数量关系?请在图3中补全图形,直接写出结论.22.太阳能热水器的玻璃吸热管与太阳光线垂直时,吸收太阳能的效果最佳.如图,某户根据本地区冬至时刻太阳光线与地面水平线的夹角(θ)确定玻璃吸热管的倾斜角(太阳光与玻璃吸热管垂直).已知:支架CF=100 cm,CD=20 cm,FE⊥AD于E,若θ=37°,求EF的长.(参考数据:sin37°≈35,cos37°≈45,tan37°≈34)23.如图,一架无人机在距离地面高度为13.3米的点A处,测得地面点M的俯角为53°,这架无人机沿仰角为35°的方向飞行了55米到达点B,恰好在地面点N的正上方,M、N在同一水平线上求出M、N 两点之间的距离.(结果精确到1米)(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70.)24.我国为了实现到2020年达到全面小康社会的目标,近几年加大了扶贫工作的力度,合肥市某知名企业为了帮助某小型企业脱贫,投产一种书包,每个书包制造成本为18元,试销过程中发现,每月销售量y(万个)与销售单价x(元)之间的关系可以近似看作一次函数y=kx+b,据统计当售价定为30元/个时,每月销售40万个,当售价定为35元/个时,每月销售30万个.(1)请求出k、b的值.(2)写出每月的利润w(万元)与销售单价x(元)之间的函数解析式.(3)该小型企业在经营中,每月销售单价始终保持在25≤x≤36元之间,求该小型企业每月获得利润w(万元)的范围.25.解不等式组:()-324 21152 x xx x⎧-≥⎪⎨-+<⎪⎩并把其解集在数轴上表示出来.【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 C B D D B D B A C B C C13.或 1014.3515.(﹣2,﹣3)16.x≠-1317.918.直角三、解答题19.(1)BE=2;(2)74323π-【解析】【分析】(1)证△BOD∽△BAC,得比例线段即可求出BE的长;(2)连OF,求出BC的长及∠BOF的度数,则阴影部分的面积可用S△ABC-S△AOF-S扇形OFE求出.【详解】(1)连结OD,∵BC与⊙O相切于点D,∴OD⊥BC,又∵∠C=90°,∴AC∥OD,∴△BOD∽△BAC,OD OBAC AB∴=,即2234BEBE+=+,∴BE=2;(2)连结OF,在Rt △ODB 中,OD =2,OB =4,∴∠B =30°,∠BOD =∠BAC =60°,∴BC =33,∠AOF =60°,∠BOF =120°,221313332223ABC AOF OFE S S S π∆∴--=⨯⨯-⨯-⨯V 扇形, 74323π=-. 【点睛】本题考查圆的综合问题,涉及切线的性质,直角三角形的性质、相似三角形的判定与性质,扇形面积公式等知识.20.(1)80(2)400(3)23 【解析】【分析】(1)用“基本了解”的人数除以它所占的百分比得到调查的总人数;(2)计算出样本中“了解”程度的人数,然后用1600乘以基本中“了解”程度的人数的百分比可估计该中学学生中对校园安全知识达到“了解”程度的人数.(3)画树状图展示所有12种等可能的结果数,找出恰好抽到1个男生和1个女生的结果数,然后利用概率公式求解.【详解】解:(1)32÷40%=80(名),所以在这次活动中抽查了80名中学生;(2)“了解”的人数为80﹣32﹣18﹣10=20,1600×2080=400, 所以估计该中学学生中对校园安全知识达到“了解”程度的人数为400人;(3)由题意列树状图:由树状图可知,在 4 名同学中随机抽取 2 名同学的所有等可能的结果有12 种,恰好抽到一男一女(记为事件A )的结果有8种,所以P (A )=82123=. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了统计图.21.(1)见解析;(2)DF ﹣EF 2,见解析;(3)①当EP 在线段BC 上时,有DF ﹣EF 2AF ,②当点F 在PD 上,DF+EF 2AF ,③当点F 在PD 的延长线上,EF ﹣DF 2AF ,见解析.【解析】【分析】(1)首先根据∠B 的正切值知:AE=2BE ,而E 是BC 的中点,结合平行四边形的对边相等即可得证.(2)此题要通过构造全等三角形来求解;作GA⊥AF,交BD于G,通过证△AFE≌△AGD,来得到△AFG 是等腰直角三角形且EF=GD,由此得证.(3)辅助线作法和解法同(2),只不过结论有所不同而已.【详解】(1)证明:如图1中,∵tanB=2,∴AE=2BE;∵E是BC中点,∴BC=2BE,即AE=BC;又∵四边形ABCD是平行四边形,则AD=BC=AE;(2)证明:作AG⊥AF,交DP于G;(如图2)∵AD∥BC,∴∠ADG=∠DPC;∵∠AEP=∠EFP=90°,∴∠PEF+∠EPF=∠PEF+∠AEF=90°,即∠ADG=∠AEF=∠FPE;又∵AE=AD,∠FAE=∠GAD=90°﹣∠EAG,∴△AFE≌△AGD,∴AF=AG,即△AFG是等腰直角三角形,且EF=DG;∴FG=2AF,且DF=DG+GF=EF+FG,故DF﹣EF=2AF;(3)解:如图3,①当EP在线段BC上时,有DF﹣EF2AF,证明方法类似(2).②如图3﹣1中,点F在PD上,DF+EF2AF.理由:将△AEF 绕点A 逆时针旋转90°得到△ADG∴△AEF ≌△ADG ,同(1)可得:DG =EF ,AG =AF ,GF =2AF ,则EF+DF =2AF .③如图3﹣2,点F 在PD 的延长线上,EF ﹣DF =2AF ,证明方法类似(2).【点睛】此题主要考查的是平行四边形的性质以及全等三角形的判定和性质,难度适中,正确地构造出全等三角形是解答此题的关键.22.EF 的长为76 cm .【解析】 【分析】地面水平线与吸热管夹角∠1与θ互余,延长ED 交BC 的延长线于点H ,则∠H=θ=37°,然后根据锐角三角函数的定义即可求出答案.【详解】解:如图,依题意知,地面水平线与吸热管夹角∠1与θ互余,延长ED 交BC 的延长线于点H .则 ∠H=θ=37°.在Rt △CDH 中, HC=tan37CD ︒. ∴ HF=HC+CF=tan37CD ︒+ CF . 在Rt △EFM 中, EF=(tan37CD ︒+ CF) sin37°≈3803×35=76(cm ). 答: EF 的长为76 cm .【点睛】题考查解直角三角形,熟练运用是解题的关键.23.35米【解析】【分析】过点A 作AC ⊥BN 于C .过点M 作MD ⊥AC 于D ,在Rt △AMD 中,通过解直角三角形可求出AD 的长,在Rt △ABC 中,通过解直角三角形可求出AC 的长,由AC ⊥BN ,MD ⊥AC ,MN ⊥BN 可得出四边形MDCN 是矩形,再利用矩形的性质即可求出MN 的长,此题得解.【详解】过点A 作AC ⊥BN 于C .过点M 作MD ⊥AC 于D ,如图所示.在Rt △AMD 中,DM=13.3,∠DAM=53°,∴AD DM tan53==︒10; 在Rt △ABC 中,AB=55,∠BAC=35°,∴AC=AB•cos53°=55×0.82=45.1.∵AC ⊥BN ,MD ⊥AC ,MN ⊥BN ,∴四边形MDCN 是矩形,∴MN=DC=AC ﹣AD≈35.答:MN 两点的距离约是35米.【点睛】本题考查了解直角三角形的应用:仰角俯角问题以及矩形的判定与性质,通过解直角三角形,求出AD ,AC 的长度是解题的关键.24.(1)k 的值为﹣2,b 的值为100;(2)w =﹣2x 2+136x ﹣1800;(3)该小型企业每月获得利润w(万元)的范围是350≤w≤512.【解析】【分析】(1)待定系数法求出k 和b 的值即可;(2)利用(售价-成本)乘以销售量等于利润可列式求解;(3)根据二次函数的顶点值,及顶点左右两侧增减变化的性质来求解即可.【详解】解:(1)由题意得:30403530k b k b +=⎧⎨+=⎩, 解得2100k b =-⎧⎨=⎩. 答:k 的值为﹣2,b 的值为100;(2)由题意得w =(x ﹣18)(﹣2x+100)=﹣2x 2+136x ﹣1800,答:函数解析式为:w =﹣2x 2+136x ﹣1800;(3)∵w =﹣2x 2+136x ﹣1800=﹣2(x ﹣34)2+512,∴当x =34时,w 取最大值,最大值为512;当x <34时,w 随着x 的增大而增大;当x >34时,w 随着x 的增大而减小.∵当x =25时,w =﹣2×252+136×25﹣1800=350;当x =36时,w =﹣2×362+136×36﹣1800=504.综上,w 的范围为350≤w≤512.答:该小型企业每月获得利润w(万元)的范围是350≤w≤512.【点睛】本题属于二次函数的应用题,解题时需要明确利润与成本及销量的关系,求符合要求的值时需要结合二次函数对称轴左右两侧函数值的变化性质综合考虑求解.25.−7<x ⩽1,见解析.【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解不等式x −3(x −2)⩾4,得:x ⩽1, 解不等式52112x x -+< ,得:x>−7, 则不等式组的解集为−7<x ⩽1,将解集表示在数轴上如下:【点睛】此题考查在数轴上表示不等式的解集,解一元一次不等式组,解题关键在于掌握运算法则.2019-2020学年数学中考模拟试卷一、选择题1.一个圆锥的轴截面是一个边长为2cm 的等边三角形,则它的侧面积是( ).A .4πB .2πC .πD .23π 2.向一个半径为2的圆中投掷石子(假设石子全部投入圆形区域内),那么石子落在此圆的内接正方形中的概率是( ). A .22 B .2π C .2π D .2π3.如果3y x =-+,且x y ≠,那么代数式22x y x y y x+--的值为( ) A .3 B .3- C .13 D .13- 4.如图是某几何体的三视图,则该几何体的表面积为( )A .24+123B .16+123C .24+63D .16+63 5.菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为28,则OH 的长等于( )A .3.5B .4C .7D .146.如图,正比例函数y =kx (k >0),与反比例函数1y x =的图象相交于A ,C 两点,过A 作AB ⊥x 轴于B ,连接BC ,若△ABC 的面积为S ,则( )A.S =1B.S =2C.S =kD.S =k 27.如图,矩形ABCD 中,AB 2=,AD 3=,点E 、F 、G 、H 分别是矩形AB 、BC 、CD 、DA 的中点,则四边形EFGH 的周长为( )A .10B .5C 13D .138.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )A .200米B .2003米C .2203米D .100(31)+米9.如图,在圆O 中,点A 、B 、C 在圆上,∠OAB =50°,则∠C 的度数为( )A .30°B .40°C .50°D .60°10.下列图案,既是轴对称图形又是中心对称图形的有( )A.1个B.2个C.3个D.4个1110最接近的是( )A.1B.2C.3D.4 12.抛物线2y ax bx c =++(,,a b c 为常数,0a <)经过点(0,2),且关于直线1x =-对称,()1,0x 是抛物线与x 轴的一个交点.有下列结论:①方程22ax bx c ++=的一个根是x=-2;②若112x <<,则2134a -<<-;③若4m =时,方程2ax bx c m ++=有两个相等的实数根,则2a =-;④若302x -≤≤时,23y ≤≤,则1a =-.其中正确结论的个数是( ) A .1B .2C .3D .4 二、填空题13.观察下列等式:第1层1+2=3第2层4+5+6=7+8第3层9+10+11+12=13+14+15第4层16+17+18+19+20=21+22+23+24…在上述数字宝塔中,从上往下数,2019在第_____层.14.如图,点A 是双曲线6y x=-在第二象限分支上的一个动点,连接AO 并延长交另一分支于点B ,以AB 为底作等腰ABC △,且120ACB ∠=︒,点C 在第一象限,随着点A 的运动点C 的位置也不断变化,但点C 始终在双曲线k y x=上运动,则k 的值为________.15.已知242a a 0-+=,则24a 2a 3--的值为______.16.在一个袋子中装有大小相同的5个小球,其中2个蓝色,3个红色,从袋中随机摸出1个,则摸到的是蓝色小球的概率为_______.17.计算:(﹣2)2019×0.52018=_______.18.如图,将厚度为0.02cm 的卷筒纸,在直径为10cm 的圆筒上卷成直径20cm 的大小,那么这卷卷筒纸的总长度约为_____m (结果精确到1m ).三、解答题19.国家“一带一路”倡议提出以后,得到全世界的广泛参与,助推我国界经济的发展,某校数学兴趣小组为了解所在城市市民对“一带一路”倡议的关注情况,在本市街头随机调查了部分市民,并根据调查结果制成了如下尚不完善的统计图表 关注情况频数 频率 A .高度关注m 0.1 B .一般关注100 0.5 C .不关注30 n D .不知道 50 0.25)填空:此次调查人数为 ,= ,(2)请补全条形统计图.(3)根据调查结果,可估计本市120万市民中,高度关注“一带一路”倡议的有多少人?20.如图,一次函数y 1=kx+b (k ,b 为常数,k≠0)的图象与反比例函数y 2=m x (m 为常数,m≠0)的图象相交于点M (1,4)和点N (4,n ).(1)反比例函数与一次函数的解析式.(2)函数y 2=m x的图象(x >0)上有一个动点C ,若先将直线MN 平移使它过点C ,再绕点C 旋转得到直线PQ ,PQ 交x 轴于点A ,交y 轴点B ,若BC =2CA ,求OA•OB 的值.21.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)求证:BD=CD;(2)不在原图添加字母和线段,对△ABC只加一个条件使得四边形AFBD是菱形,写出添加条件并说明理由.22.如图,抛物线y=﹣12x2+bx+c与x轴交于A(﹣1,0)和B(3,0),与y轴交于C点,点C关于抛物线的对称轴的对称点为点D.抛物线顶点为H.(1)求抛物线的解析式.(2)当点E在抛物线的对称轴上运动时,在直线AD上是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.(3)点P为直线AD上方抛物线的对称轴上一动点,连接PA,PD.当S△PAD=3,若在x轴上存在以动点Q,使PQ+5QB最小,若存在,请直接写出此时点Q的坐标及PQ+5QB的最小值.23.我国古代第一部数学专著《九章算术》中有这样一道题:今有上禾7束,减去其中之实1斗,加下禾2束,则得实10斗.下禾8束,加实1斗和上禾2束,则得实10斗,问上禾、下禾1束得实多少?译文为:今有上等禾7捆结出的粮食,减去1斗再加上2捆下等禾结出的粮食,共10斗;下等禾8捆结出的粮食,加上1斗和上等禾2捆结出的粮食,共10斗,问上等禾和下等禾1捆各能结出多少斗粮食?(斗为体积单位)24.传统文化与我们生活息息相关,中华传统文化包括古文古诗、词语、乐曲、赋、民族音乐、民族戏剧、曲艺、国画、书法、对联、灯谜、射覆、酒令、歇后语等.在中华优秀传统文化进校园活动中,某校为学生请“戏曲进校园”和民族音乐”做节目演出,其中一场“戏曲进校园”的价格比一场“民族音乐”节目演出的价格贵600元,用20000元购买“戏曲进校园”的场数是用8800元购买“民族音乐节目演出场数的2倍,求一场“民族音乐”节目演出的价格.。
112020年上海市中考数学仿真模拟试卷06一、选择题〔共6小题,每题4分,共24分。
下列选项中有且只有一个选项是正确的,选择正确选项的代号并填涂在答题纸的相应位置上〕1. 抛物线y=-3x 2+6x+2的对称轴是( )A.直线x=2B.直线x=-2C.直线x=1D.直线x=-1.【答案】C.【解析】根据试卷提供的参考公式.2.已知正多边形的一个外角为36°,则该正多边形的边数为( )A .12B .10C .8D .6 【答案】B【解析】利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.360°÷36°=10,所以这个正多边形是正十边形.3.如图,一个圆形转盘被平均分成6个全等的扇形,任意旋转这个转盘1次,则当转盘停止转动时,指针指向阴影部分的概率是( )A .B .C .D .【答案】D . 【解析】当转盘停止转动时,指针指向阴影部分的概率是.4.下图均由正六边形与两条对角线所组成,其中不是轴对称图形的( ) A .B .C .D .【答案】D . 【解析】根据轴对称图形的概念求解可得.22不是轴对称图形.5.若正多边形的一个内角是150°,则该正多边形的边数是( )A .6B .12C .16D .18【答案】B .【解析】根据多边形的内角和,可得答案.设多边形为n 边形,由题意,得(n ﹣2)180°=150n,解得n=126.如果两个圆的半径长分别为6和2,圆心距为3,那么这两个圆的位置关系应该是( )A .外离B .相切C .相交D .内含【答案】D【解析】∵两个圆的半径分别为6和2,圆心距为3,又∵6﹣2=4,4>3,∴这两个圆的位置关系是内含。
二、填空题〔共12小题,每题4分,共48分。
请将结果直接填入答题纸相应位置上〕7.计算:(﹣m 3)2÷m 4= .【答案】m 2【解析】原式=m 6÷m 4=m 6-4=m 28.数轴上表示﹣3的点到原点的距离是 .【答案】3.【解析】表示﹣3的点与原点的距离是﹣3的绝对值.在数轴上表示﹣3的点与原点的距离是|﹣3|=3.9.计算:(﹣)﹣1+|2﹣|= . 【答案】﹣;【解析】(﹣)﹣1+|2﹣|=﹣2+2﹣=﹣ 10.下面三个命题:①底边和顶角对应相等的两个等腰三角形全等;②两边及其中一边上的中线对应相等33的两个三角形全等;③斜边和斜边上的中线对应相等的两个直角三角形全等,其中正确的命题的序号为.【答案】①②.【解析】①底边和顶角对应相等的两个等腰三角形全等;正确;②两边及其中一边上的中线对应相等的两个三角形全等;正确;③斜边和斜边上的中线对应相等的两个直角三角形全等;不正确.11.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x 的式子表示m = ;(2)当y =﹣2时,n 的值为 .【答案】1.【解析】(1)根据约定的方法可得:m =x +2x =3x ;故答案为:3x ;(2)根据约定的方法即可求出nx +2x +2x +3=m +n =y .当y =﹣2时,5x +3=﹣2.解得x =﹣1.∴n =2x +3=﹣2+3=1.12. 一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.连续掷两次骰子,在骰子向上的一面上,第二次出现的点数是第一次出现的点数的2倍的概率是 .【答案】121. 【解析】由树状图知总共有36种,符合条件的有3种.13.如图,边长为2的正方形ABCD 中心与半径为2的⊙O 的圆心重合,E 、F 分别是AD 、BA 的延长与⊙O 的44交点,则图中阴影部分的面积是.(结果保留π)【答案】π﹣1.【解析】延长DC ,CB 交⊙O 于M ,N ,根据圆和正方形的面积公式即可得到结论.延长DC ,CB 交⊙O 于M ,N ,则图中阴影部分的面积=×(S 圆O ﹣S 正方形ABCD )=×(4π﹣4)=π﹣1,14.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45°,测得该建筑底部C 处的俯角为17°.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为 m .(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)【答案】262.【解析】作AE ⊥BC 于E ,根据正切的定义求出AE ,根据等腰直角三角形的性质求出BE ,结合图形计算即可. 作AE ⊥BC 于E ,则四边形ADCE 为矩形,∴EC =AD =62,在Rt △AEC 中,tan ∠EAC =, 则AE =≈=200,55在Rt △AEB 中,∠BAE =45°,∴BE =AE =200,∴BC =200+62=262(m ),则该建筑的高度BC 为262m ,15.如图,在平面直角坐标系xOy 中,△AOB 可以看作是△OCD 经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一中由△OCD 得到△AOB的过程: .【答案】△OCD 绕C 点旋转90°,并向左平移2个单位得到△AOB .【解析】根据旋转的性质,平移的性质即可得到由△OCD得到△AOB 的过程.△OCD 绕C 点旋转90°,并向左平移2个单位得到△AOB (答案不唯一).16.在△ABC 中,点D 、E 分别在AB 、AC 上,∠AED=∠B ,如果AE=2,△ADE 的面积为4,四边形BCDE 的面积为5,那么AB 的长为________.【答案】3【解析】∵∠AED=∠B ,∠A 是公共角,∴△ADE ∽△ACB ,66 ∴,∵△ADE 的面积为4,四边形BCDE 的面积为5,∴△ABC 的面积为9,∵AE=2, ∴解得:AB=317. 如图,四边形ABCD 是矩形,AB=4,AD=22,以点A 为圆心,AB 长为半径画弧,交CD 于点E ,交AD 的延长线于点F ,则图中阴影部分的面积是 .【答案】828 .【解析】连AE ,易得∠EAD=45°.18.如图,在△ABC 中,AB =AC =4,将△ABC 绕点A 顺时针旋转30°,得到△ACD ,延长AD 交BC 的延长线于点E ,则DE 的长为 .【答案】2﹣2.77 【解析】根据旋转过程可知:∠CAD =30°=∠CAB ,AC =AD =4.∴∠BCA =∠ACD =∠ADC =75°.∴∠ECD =180°﹣2×75°=30°.∴∠E =75°﹣30°=45°.过点C 作CH ⊥AE 于H 点,在Rt △ACH 中,CH =AC =2,AH =2.∴HD =AD ﹣AH =4﹣2. 在Rt △CHE 中,∵∠E =45°,∴EH =CH =2.∴DE =EH ﹣HD =2﹣(4﹣2)=2﹣2.三、解答题〔共7小题,满分共78分〕19.(8分)计算:(1)﹣tan45°﹣(1﹣)0; (2)ab (3a ﹣2b )+2ab 2.【答案】见解析。
2020年上海中考数学仿真试卷6(测试时间:100分钟,满分:150分)考生注意: 1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.3.考试中不能使用计算器.一、选择题(本大题共6题,每题4分,满分24分) 1.下列实数中,是无理数的为( ) 【A 】 3.14 【B 】 13【C 】 3 【D 】9【答案】C2.在平面直角坐标系中,反比例函数 y = kx ( k <0 ) 图像的量支分别在( )【A 】第一、三象限 【B 】第二、四象限 【C 】 第一、二象限 【D 】第三、四象限 【答案】B3.已知一元二次方程210x x --=,下列判断正确的是( )【A 】该方程有两个相等的实数根 【B 】该方程有两个不相等的实数根【C 】 该方程无实数根 【D 】该方程根的情况不确定 【答案】B4.某市五月份连续五天的日最高气温分别为23、20、20、21、26(单位:°C ),这组数据的中位数和众数分别是( ) 【A 】 22°C ,26°C 【B 】 22°C ,20°C 【C 】 21°C ,26°C 【D 】21°C ,20°C 【答案】D5.下列命题中,是真命题的为( ) 【A 】锐角三角形都相似 【B 】直角三角形都相似 【C 】 等腰三角形都相似 【D 】等边三角形都相似 【答案】D6.已知圆O 1、圆O 2的半径不相等,圆O 1的半径长为3,若圆O 2上的点A 满足AO 1 = 3,则圆O 1与圆O 2的位置关系是( ) 【A 】相交或相切 【B 】相切或相离 【C 】 相交或内含 【D 】 相切或内含 【答案】A二、填空题(本大题共12题,每题4分,满分48分) 7.计算:2-41)(= 【答案】168.在实数范围内分解因式:=-932x【答案】)3)(33+-x x (9.解方程12-4-=x x 【答案】3=x10.如果关于x 的方程042=++m x x 有两个不相等的实数根,那么m 的取值范围是 【答案】4<m11. 已知反比例函数为常数)k k xky ,0(≠=图像在第一三象限,点),(11y x A 和点),(22y x B 在函数的图像上,当021<<x x 时,可得1y 2y (填"""",""≠<>,) 【答案】>12. 函数231-=x y 的定义域为【答案】32>x13.某校从八年级中随机抽取部分学生,调查他们上学的交通方式,得到骑车、乘车、步行的人数等资料绘制成不完整的统计图(如图)。
2020年数学中考模拟试卷一、选择题1.如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米/秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()A.B.C .D .2.不等式组211(2)13xx x-≤⎧⎪⎨-+⎪⎩的所有整数解的和为()A.0 B.1 C.3 D.23.如图所示,在菱形ABCD中,∠BAD=70°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.75°B.70°C.60°D.55°4.某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空,据了解学生还急需3倍数量这种计算器,由于量大,每个进价比上次优惠1元,该店又用2580元购进所需计算器,该店第一次购进计算器的单价为()A.20元B.42元C.44元D.46元5.下列命题是真命题的是( )A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相垂直平分的四边形是正方形D.对角线互相平分的四边形是平行四边形6.观察下列表格,求一元二次方程x2﹣x=1.1的一个近似解是()7.《语文课程标准》规定:7﹣9年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著.那么260万用科学记数法可表示为()A.26×105B.2.6×102C.2.6×106D.260×1048.反比例函数y=-3x-1的图象上有P1(x1,-2),P2(x2,-3)两点,则x1与x2的大小关系是()A.x1<x2B.x1=x2C.x1>x2D.不确定9.在4, 5, 6, 6, 9这组数据中,去掉一个数后,余下的数据的中位数不变,且方差减小,则去掉的数是( )A.4 B.5 C.6 D.710.下列命题中,假命题的是()A.正八边形的外角和为360°B.两组对角相等的四边形是平行四边形C.位似图形必相似D.若两直线被第三条直线所截,则同位角相等二、填空题11.如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC,BD于点E,F,CE=2,连接CF.给出以下结论:①△ABF≌△CBF;②点E到AB的距离是3;③tan∠DCF=;④△ABF的面积为.其中正确的结论序号是_____12.植树节这天有20名同学共种了52棵树苗,其中男生每人种树苗3棵,女生每人种树苗2棵,则男同学的人数为______________人.13.抛物线y=﹣2(x+1)2+3的顶点坐标是_____.14.如图,AE、BD交于点C,AB∥DE,若AC=4,BC=2,DC=1,则EC=_____.15.菱形ABCD的边长是4,∠ABC=120°,点M、N分别在边AD、AB上,且MN⊥AC,垂足为P,把△AMN沿MN折叠得到△AˊMN,若△AˊDC恰为等腰三角形,则AP的长为_____.16.月球离地球近地点的距离为363300千米,数据363300用科学记数法表示是______.17.如果a是方程x2﹣2x﹣1=0的根,那么代数式3a2﹣6a的值是_____.18.四边形ABCD是边长为4的正方形,点E在边AD上,以EC为边作正方形CEFG(点D,点F在直线CE的同侧).连接BF.(1)如图1,当点E与点A重合时,BF=_______;(2)如图2,当点E在线段AE=,则BF=______.AD上时,119.如图所示的网格是正方形网格,则∠AOB_____∠COD.(填“>”,“=”或“<”)三、解答题20.如图,在四边形ABCD中,O是BD的中点,且AD=8,BD=12,AC=20,∠ADB=90°.求BC的长和四边形ABCD的面积.21.已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥BF.22.每年的4月23日,是“世界读书日”.据统计,“幸福家园小区”1号楼的住户一年内共阅读纸质图书460本,2号楼的住户一年内共阅读纸质图书184本,1号楼住户的人数比2号楼住户人数的2倍多20人,且两栋楼的住户一年内人均阅读纸质图书的数量相同.求这两栋楼的住户一年内人均阅读纸质图书的数量是多少本?23.某校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min):⑴用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为_____;⑵如果该校现有学生400人,估计等级为“B”的学生有多少人?⑶假设平均阅读一本课外书的时间为320分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?24.已知:如图,在平面直角坐标系xOy中,抛物线y=ax2+bx(a≠0)经过点A(6,﹣3),对称轴是直线x=4,顶点为B,OA与其对称轴交于点M,M、N关于点B对称.(1)求这条抛物线的表达式和点B的坐标;(2)联结ON、AN,求△OAN的面积;(3)点Q在x轴上,且在直线x=4右侧,当∠ANQ=45°时,求点Q的坐标.25.现有A、B型两种客车,它们的载客量和租金如下表:(Ⅰ)设租用A型客车x辆(x为非负整数),根据题意,用含x的式子填写下表:26.大众服装店今年4月用4000元购进了一款衬衣若干件,上市后很快售完,服装店于5月初又购进该款衬衣,进货量比第一批增加了20%,由于第二批衬衣进货时价格比第一批衬衣进货时价格提高了20元,结果第二批衬衣进货用了6000元(1)第一批衬衣进货时价格是多少?(2)第一批衬衣售价为120元/件,为保证第二批衬衣的利润率不低于第一批衬衣的利润率,那么第二批衬衣每件售价至少是多少元?(提示:利润=售价﹣成本,利润率=利润÷成本×100%)【参考答案】***一、选择题1.D2.C3.A4.C5.D6.C7.C8.C9.A10.D二、填空题11.①②③④12.1213.(﹣1,3). 14.2 15或2. 16.53.63310⨯ 17.318.. 19.= 三、解答题20.BC=8,平行四边形ABCD 的面积为96. 【解析】 【分析】根据勾股定理求得OA 的长,再根据对角线互相平分的四边形是平行四边形证明四边形ABCD 是平行四边形,则AD=BC ;由平行四边形的面积公式求得四边形ABCD 的面积. 【详解】在△AOD 中,∠ADB=90°,AD=8,OD 12=BD=6,根据勾股定理,得:OA 2=OD 2+AD 2=62+82=100,∴OA=10. ∵AC=20,OA=10,∴OA=OC=10.又∵DO=OB=6,∴四边形ABCD 为平行四边形,∴BC=AD=8; ∴平行四边形ABCD 的面积=AD •BD=8×12=96. 【点睛】本题考查了对平行四边形的判定与性质,勾股定理等知识点的理解和掌握,能根据性质进行计算是解答此题的关键. 21.证明见解析. 【解析】分析:可证明△ACE ≌△BDF ,得出∠A=∠B ,即可得出AE ∥BF ; 详证明:∵AD=BC ,∴AC=BD , 在△ACE 和△BDF 中,AC BD AE BF CE DF ⎧⎪⎨⎪⎩===, ∴△ACE ≌△BDF (SSS ) ∴∠A=∠B , ∴AE ∥BF ;点睛:本题考查了全等三角形的判定及性质以及平行线的判定问题,关键是用SSS 证明△ACE ≌△BDF . 22.这两栋楼的住户一年内人均阅读纸质图书的数量为4.6本 【解析】 【分析】设这两栋楼的住户一年内人均阅读纸质图书的数量为x 本.根据等量关系“1号楼住户的人数比2号楼住户人数的2倍多20人”列出方程并解答. 【详解】解:设这两栋楼的住户一年内人均阅读纸质图书的数量为x 本. 由题意,得460218420x x⨯=+.解得 x=4.6.经检验,x=4.6是原方程的解,且符合题意.答:这两栋楼的住户一年内人均阅读纸质图书的数量为4.6本.【点睛】本题考查了分式方程的应用.分析题意,找到合适的等量关系是解决问题的关键.23.整理数据:5;4;分析数据:81;81;得出结论:(1)B;(2)160人;(3)13本.【解析】【分析】整理数据:从表格中的数据直接找出40≤x<80有5人,120≤x<160有4人;中位数:先把数据从小到大(或从大到小)进行排列,如果数据的个数是奇数,那么最中间的那个数据就是中位数,如果数据的个数是偶数,那么最中间的那两个数据的平均数就是中位数;众数:是一组数据中出现次数最多的数据;据此求出即可.(1)根据分析数据统计显示,平均数是80 ,中位数与众数都是81,都是B等级,据此可估计该校学生每周用于课外阅读时间的情况等级为B.(2)直接用400乘以B等级在样本中所占比列即得.(3)根据题意选择样本平均数来估计.【详解】解:整理数据:5;4.分析数据:81;81.得出结论:⑴B⑵等级为“B”的学生有820×400=160(人)⑶以平均数来估计:80320×52=13,∴假设平均阅读一本课外书的时间为320分钟,以样本的平均数来估计,该校学生每人一年(按52周计算)平均阅读13本课外书。
【点睛】此题考查用样本估计总体,中位数,众数,解题关键在于掌握运算法则24.(1)y=14x2﹣2x,点B的坐标(4,﹣4);(2)S△OAN=12;(3)点Q的坐标(34,0).【解析】【分析】(1)根据直线x=4和A(6,﹣3)列出方程组,求出a、b即可求出解析式,然后将x=4代入函数解析式,求得得y=﹣4,所以点B的坐标(4,﹣4);(2)连结ON、AN,先求出M(4,﹣2),由M、N关于点B对称,求出N(4,﹣6),于是MN=4,所以S△OAN=12MN•|x A|=12×4×6=12;(3)设对称轴直线x=4与x轴交于点T,抛物线与x轴另一个交点为P,则P(8,0),直线AN与x 轴交于点P,连接NQ,连接NA、AP,过点P作PR⊥PN,与NQ交于点R,过R作RH⊥x轴于点H.由∠PNR=∠ANQ=45°,则∠PRN=45°=∠PNR,所以PR=PN,易证△PTN≌△RHP(AAS),则RH=PT=4,PH=TN=6,TH=10,由HR∥TN,列出比例式求出HQ=20,于是OQ=OP+PH+HQ=8+6+20=34,所以点Q 的坐标(34,0).【详解】(1)由题意可得423663ba ab ⎧-=⎪⎨⎪+=-⎩, 解得a =14,b =﹣2, ∴抛物线的表达式y =14x 2﹣2x 将x =4代入,得y =﹣4, ∴点B 的坐标(4,﹣4); (2)连结ON 、AN ,如图1.∵A (6,﹣3), ∴直线OA :y =﹣14x , 将x =4代入,y =﹣2, ∴M (4,﹣2),∵M 、N 关于点B 对称,B (4,﹣4), ∴N (4,﹣6), ∴MN =4, ∴S △OAN =14MN •|x A |=14×4×6=12; (3)设对称轴直线x =4与x 轴交于点T ,抛物线与x 轴另一个交点为P ,则P (8,0). ∵A (6,﹣3),N (4,﹣6), ∴直线AN :y =3122x -, 令y =0,则x =8,∴直线AN 与x 轴交点(8,0), 即直线AN 与x 轴交于点P ,如图2,连接NQ ,连接NA 、AP ,过点P 作PR ⊥PN ,与NQ 交于点R ,过R 作RH ⊥x 轴于点H .∵∠PNR =∠ANQ =45°, ∴∠PRN =45°=∠PNR , ∴PR =PN ,易证△PTN ≌△RHP (AAS ), ∴RH =PT =4,PH =TN =6, ∴TH =10,RH HQTN QT = 4HQ 6HQ 10∴=+∴HQ =20, ∴OQ =OP+PH+HQ =8+6+20=34, 点Q 的坐标(34,0). 【点睛】本题考查了二次函数,熟练掌握二次函数的相关性质与全等三角形的判定与性质是解题的关键. 25.(Ⅰ)15030,1400280x x --;(Ⅱ)能完成此项任务的最节省费用的租车方案 是A 型客车3辆,B 型客车2辆 【解析】 【分析】(Ⅰ)B 型客车载客量=车辆数×每辆车载客量;B 型客车租金=车辆数×每辆车租金(Ⅱ)当租用A 型客车x 辆(x 为非负整数)时,设租车总费用为y 元,则两种客车的总费用为y=400x+280(5-x)=120x+1400,为使195名九年级师生有车坐,x 不能小于3;为使租车费用不超过1900元,x 不能超过4,即可求解 【详解】(Ⅰ)150-30x,1400-280x.(Ⅱ)能完成此项任务的最节省费用的租车方案 是A 型客车3辆,B 型客车2辆. 理由:当租用A 型客车x 辆(x 为非负整数)时,设租车总费用为y 元, 则 两种客车的总费用为y=400x+280(5-x)=120x+1400;为使195名九年级师生有车坐,x 不能小于3;为使租车费用不超过1900元,x 不能超过4.综合起来可知x 的取值为3或4.∵120>0,∴在函数y=4120x+1400中,y 随x 的增大而增大. ∴当x=3时,y 取得最小值.即能完成此项任务的最节省费用的租车方案 是A 型客车3辆,B 型客车2辆. 【点睛】此题主要考查一次函数的应用,准确找到自变量的范围是解题关键 26.(1)80;(2)150.【解析】【分析】(1)设第一批衬衣进货时价格是x元/件,则第二批衬衣进货时价格是(x+20)元/件,根据数量=总价÷单价结合第二批进货量比第一批增加了20%,即可得出关于x的分式方程,解之即可得出结论;(2)第二批衬衣每件售价是m元,根据第二批衬衣的利润率不低于第一批衬衣的利润率,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,取其中的最小值即可得出结论.【详解】解:(1)设第一批衬衣进货时价格是x元/件,则第二批衬衣进货时价格是(x+20)元/件,依题意,得:60004000(120%)x20x=+⨯+,解得:x=80,经检验,x=80是原方程的解,且符合题意.答:第一批衬衣进货时价格是80元/件.(2)由(1)可知:第二批衬衣的进价为100元.设第二批衬衣每件售价是m元,依题意,得:m10012080100%100% 10080--⨯≥⨯,解得:m≥150.答:第二批衬衣每件售价至少是150元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.2020年数学中考模拟试卷一、选择题1.函数11y x =-中自变量x 的取值范围是( ) A .2x ≤ B .2x ≤且1x ≠C .x <2且1x ≠D .1x ≠2.在同一平面直角坐标系中,一次函数y =kx ﹣2k 和二次函数y =﹣kx 2+2x ﹣4(k 是常数且k≠0)的图象可能是( )A. B.C. D.3.如图,在⊙O 中,OC ⊥AB ,∠ADC =26°,则∠COB 的度数是( )A.52°B.64°C.48°D.42° 4.已知直线y =kx ﹣2经过点(3,1),则这条直线还经过下面哪个点( ) A .(2,0)B .(0,2)C .(1,3)D .(3,﹣1)5.下列说法中正确的是( ) A .两条对角线互相垂直的四边形是菱形 B .两条对角线互相平分的四边形是平行四边形 C .两条对角线相等的四边形是矩形D .两条对角线互相垂直且相等的四边形是正方形6.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =4,以点A 为圆心作圆,如果圆A 与线段BC 没有公共点,那么圆A 的半径r 的取值范围是( )A .5≥r≥3B .3<r <5C .r =3或r =5D .0<r <3或r >5 7.若一元二次方程x 2﹣2kx+k 2=0的一根为x =﹣1,则k 的值为( )A .﹣1B .0C .1或﹣1D .2或08.如图,在△ABC 中,∠BAC =90°,点A 在x 轴正半轴,点C 在y 轴正半轴,点D 是边BC 的中点,反比例函数ky x=(k >0,x >0)的图象经过B ,D .若点C 的纵坐标为6,点D 的横坐标为3.5,则k 的值是( )A .6B .8C .12D .149.如图,在二次函数y =ax 2+bx+c(a≠0)的图象中,小明同学观察得出了下面几条信息:①b 2﹣4ac >0;②abc <0;③02a b c a b++<-;④b 2=4a(c ﹣1);⑤关于x 的一元二次方程ax 2+bx+c =3无实数根,共中信息错误的个数为( )A .4B .3C .2D .110.将一副三角板按照如图所示的位置摆放在同一水平面上,两条斜边互相平行,两个直角顶点重合,则∠1的度数是( )A.30oB.45oC.75oD.105o二、填空题 11.已知关于x 的方程x 2﹣(a+b )x+ab ﹣1=0,x 1、x 2是此方程的两个实数根,现给出三个结论:①x 1≠x 2;②x 1x 2<ab ;③x 12+x 22<a 2+b 2;④当a+b =ab 时,方程有一根为1.则正确结论的序号是_____.(填上你认为正确结论的所有序号)12.已知△ABC ∽△A′B′C′且S △ABC :S △A′B′C′=1:2,则AB :A′B′=_____.13.计算)22的结果是________. 14.不等式组112(3)33x x x +⎧⎨+->⎩…的解集是_____. 15.如图,已知直线y=334x -与x 轴、y 轴分别交于A 、B 两点,P 是以C (0,1)为圆心,1为半径的圆上一动点,连结PA 、PB .则△PAB 面积的最小值是_____.16.如图,在线段AD , AE , AF 中,△ABC 的高是线段________.17.已知在网格中每个小正方形的边长都是1,图1中的阴影图案是由一条对角线和以格点为圆心,半径为2的圆弧围成的弓形.(1)图1中阴影部分的面积是(结果保留π);(2)请你在图2中以图1为基本图案,借助轴对称,平移或旋转设计一个轴对称的花边图案(要求至少含有两种图形变换).18﹣1)0﹣(﹣12)﹣2=___.19.在半径为2 cm的⊙O中,用刻度尺(单位:cm)测得弦AB的长如图所示,则劣弧AB的长为____cm.三、解答题20.综合与探究如图,已知抛物线y=ax2﹣3x+c与y轴交于点A(0,﹣4),与x轴交于点B(4,0),点P是线段AB 下方抛物线上的一个动点.(1)求这条抛物线的表达式及其顶点的坐标;(2)当点P移动到抛物线的什么位置时,∠PAB=90°求出此时点P的坐标;(3)当点P从点A出发,沿线段AB下方的抛物线向终点B移动,在移动中,设点P的横坐标为t,△PAB的面积为S,求S关于t的函数表达式,并求t为何值时S有最大值,最大值是多少?21.汉江是长江最长的支流,在历史上占居重要地位,陕西省境内的汉江为汉江上游段.李琳利用热气球探测器测量汉江某段河宽,如图,探测器在A处观测到正前方汉江两岸岸边的B、C两点,并测得B、C两点的俯角分别为45°,30°已知A处离地面的高度为80m,河平面BC与地面在同一水平面上,请你求出汉江该段河宽BC .(结果保留根号)22.(1)计算:2102331)2sin 30---⨯++︒(2)先化简,再求值:211()2x x x x x++÷-,其中+1.23.(1)计算:|﹣3|(2)化简:(n ﹣3)2+6(1+n )24.在一个不透明的布袋里有3个标有1、2、3的小球,它们的形状、大小完全相同,小明从布袋中随机取出一个小球,记下数字为x ,小红在剩下的2个小球中随机取出一个小球,记下数字为y ,这样确定了点Q 的坐标(x ,y ).(1)画树状图或列表,写出点Q 所有可能的坐标;(2)小明和小红约定做一个游戏,其规则为:若x 、y 满足xy >4,则小明胜,若x 、y 满足xy <4,则小红胜,这个游戏公平吗?说明理由.25.如图,AB 是⊙O 的直径,AD 、BD 是半圆的弦,且∠PDA =∠PBD .(1)求证:PD 是⊙O 的切线;(2)如果tan BDE ∠=PD ,求PA 的长.26.阅读下列材料,解决材料后的问题:材料一:对于实数x 、y ,我们将x 与y 的“友好数”用f (x ,y )表示,定义为:f (x )=2x y +,例如17与16的友好数为f (17,16)=17162+=1718. 材料二:对于实数x ,用[x]表示不超过实数x 的最大整数,即满足条件[x]≤x<[x]+1,例如:[﹣1.5]=[﹣1.6]=﹣2,[0]=[0.7]=0,[2.2]=[2.7]=2,……(1)由材料一知:x 2+2与1的“友好数”可以用f (x 2+2,1)表示,已知f (x 2+2,1)=2,请求出x 的值;(2)已知[12a ﹣1]=﹣3,请求出实数a 的取值范围; (3)已知实数x 、m 满足条件x ﹣2[x]=72,且m≥2x+112,请求f (x ,m 2﹣32m )的最小值.【参考答案】***一、选择题1.B2.C3.A4.A5.B6.D7.A8.D9.C10.C二、填空题11.①②④.12.113.-1 14.0≤x<315.11 216.AF17.(1)π-2;(2)答案见解析. 18.﹣3.19.2 3三、解答题20.(1)y=x2﹣3x﹣4,(2)(2,﹣6);(3)当t=2时,S取得最大值,最大值为8.【解析】【分析】(1)根据点A,B的坐标,利用待定系数法即可求出抛物线的解析式,再利用配方法即可求出抛物线的顶点坐标;(2)过点P作PQ⊥OA于点Q,由OA=OB结合∠PAB=90°可得出∠PAQ=45°,进而可得出AQ=PQ,设点P的坐标为(m,m2﹣3m﹣4),由点A的坐标结合AQ=PQ可得出关于m的一元二次方程,解之取其正值即可得出结论;(3)根据点A,B的坐标,利用待定系数法即可求出直线AB的解析式,过点P作PM⊥x轴,垂足为点M,由点P的横坐标为t可得出点P,M的坐标,进而可得出PM的长,由S△PAB=S梯形OAPM+S△PBM﹣S△AOB可得出S关于t的函数表达式,再利用二次函数的性质即可解决最值问题.【详解】(1)将A(0,﹣4),B(4,0)代入y=ax2﹣3x+c,得:,解得:,∴抛物线的解析式为y=x2﹣3x﹣4.∵,∴抛物线的顶点坐标为.(2)过点P作PQ⊥OA于点Q,如图1所示.∵OA=OB,∴∠OAB=45°.又∵∠PAB=90°,∴∠PAQ=45°,∴AQ=PQ.设点P的坐标为(m,m2﹣3m﹣4),∴m=﹣4﹣(m2﹣3m﹣4),解得:m1=0(舍去),m2=2,∴点P的坐标为(2,﹣6).(3)设直线AB的解析式为y=kx+b(k≠0),将A(0,﹣4),B(4,0)代入y=kx+b,得:,解得:,∴直线AB的解析式为y=x﹣4.过点P作PM⊥x轴,垂足为点M,如图2所示.∵点P的坐标为(t,t2﹣3t﹣4),∴点M的坐标为(t,0),∴PM=﹣t2+3t+4∴S△PAB=S梯形OAPM+S△PBM﹣S△AOB,=(OA+PM)•OM+PM•BM﹣OA•OB,= [4+(﹣t2+3t+4)]•t+(﹣t2+3t+4)•(4﹣t)﹣×4×4,=﹣2t2+8t,即S=﹣2t2+8t(0≤t≤4).S=﹣2t2+8t=﹣2(t﹣2)2+8,∵﹣2<0,∴当t=2时,S取得最大值,最大值为8.【点睛】本题考查了待定系数法求二次函数解析式、二次函数的性质、二次函数图象上点的坐标特征、等腰直角三角形、解一元二次方程以及三角形的面积,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线的解析式;(2)利用等腰直角三角形的性质,找出关于m 的一元二次方程;(3)利用分割图形求面积法,找出S 关于t 的函数关系式.21.(80)米【解析】【分析】过A 作AD ⊥BD 于点D ,在Rt △ACD 中,根据正切的概念求出CD 的值,进而可求出BC 的值.【详解】解:过A 作AD ⊥BD 于点D ,在Rt △ADB 中,∠ABD =45°∴BD =AD =80,在Rt △ACD 中,∠ACD =30°∴tan ∠ACD =AD CD ,∴CD =80tan 30tan 30AD ︒︒=803=÷∴BC =CD ﹣BD =80∴汉江该段河宽BC 为(﹣80)米.【点睛】本题考查的是解直角三角形的应用,理解仰角和俯角的概念、掌握锐角三角函数的定义是解题的关键,解答时注意正确作出辅助线构造直角三角形.22.(1)-3;(2)21x -. 【解析】【分析】(1)根据有理数的乘方运算、负指数幂的性质、0指数幂的性质以及特殊角的锐角三角函数值依次进行计算后,再合并即可;(2)首先根据分式的四则混合运算顺序进行计算化简,然后代值计算.【详解】(1)原式=﹣4﹣1+1+2×12=﹣3; (2)原式=221212x x x x x+--÷ =2112x x x x+-÷ =12(1)(1)x x x x x +⋅+- =21x -,当x+1时,.【点睛】本题考查了幂运算的性质、特殊角的锐角三角函数值、分式的混合运算.在求分式的值时,要把分式化到最简,然后代值计算.23.(1)12(2)n2+15【解析】【分析】(1)直接利用绝对值的性质以及特殊角的三角函数值分别化简得出答案;(2)直接利用完全平方公式去括号进而合并同类项得出答案.【详解】(1)|﹣3|=3﹣3+1 2=12;(2)(n﹣3)2+6(1+n)=n2﹣6n+9+6+6n=n2+15.【点睛】此题主要考查了完全平方公式以及实数运算,正确掌握相关运算法则是解题关键.24.(1)(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2);(2)不公平,理由见解析【解析】【分析】(1)先利用树状图展示所有6种等可能的结果数,即可得出点Q所有可能的坐标;(2)找到所列6种等可能结果中xy>4和xy<4的结果数,再利用概率公式求出两人获胜的概率,比较大小即可得出答案.【详解】解:(1)画树状图为:所以点Q所有坐标为(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2);(2)不公平,由树状图知,共有6种等可能结果,其中xy>4的有2种结果,xy<4的有4种结果,∴小明获胜的概率为,小红胜的概率为,∵,∴此游戏不公平.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.25.(1)证明见解析;(2)PA=1.【解析】【分析】(1)连接OD,由AB是圆O的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD为⊙O的切线;(2)根据BE是⊙O的切线,则∠EBA=90°,即可求得∠P=30°,再由PD为⊙O的切线,得∠PDO=90°,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA.【详解】(1)证明:如图1,连接OD,∵AB是圆O的直径,∴∠ADB=90°∴∠ADO+∠BDO=90°,又∵DO=BO,∴∠BDO=∠PBD∵∠PDA=∠PBD,∴∠BDO=∠PDA∴∠ADO+∠PDA=90°,即PD⊥OD∵点D在⊙O上,∴直线PD为⊙O的切线.(2)∵BE是⊙O的切线,∴∠EBA=90°∵∠BED=60°,∴∠P=30°∵PD为⊙O的切线,∴∠PDO=90°在Rt△PDO中,∠P=30°,PD∴tan30°=ODPD,解得OD=1∴PO 2∴PA=PO-AO=2-1=1【点睛】此题考查了切线的判定及三角函数的有关计算等知识点,难度中等.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.26.(1)x=±2;(2)﹣4≤a<﹣2;(3)当m=34时,y有最大值是﹣238,此时f(x,m2﹣32m)有最小值,最小值是﹣40 23.【解析】【分析】(1)由题意得到22212x+=+,计算即可得到答案;(2)由题意得到131312a -≤-<-+,解不等式即可得到答案; (3)先由题意得到171712424x x x -≤<-+,则7322x -≤<-,设1724x k -=,由题意得到111222m x ≥+=,设y =﹣2m 2+3m ﹣4,根据二次函数的性质即可得到答案. 【详解】 解:(1)∵f (x 2+2,1)=2, ∴22212x +=+, ∴x 2=4,∴x =±2;(2)∵[x]≤x<[x]+1, ∴131312a -≤-<-+, 解得﹣4≤a<﹣2; (3)∵x ﹣2[x]=74, ∴[x]=1724x -, ∴171712424x x x -≤<-+, ∴7322x -≤<-, 设1724x k -=, 又x =2k+72, ∴7522k -≤<-, ∴整数k =﹣3,∴x =52-, 又111222m x ≥+=, ∴f (x ,m 2﹣32m ), =2322xm m -+, =252322m m --+,=25234m m-+-,设y=﹣2m2+3m﹣4,则y=﹣2(m34-)2238-,∵﹣2<0,∴当m=34时,y有最大值是238-,此时f(x,m2﹣32m)有最小值,最小值是5238-=﹣4023,此时最小值为﹣40 23.【点睛】本题考查分式方程的计算和二次函数,解题的关键是读懂题意,掌握分式方程的计算和二次函数的性质.2020年数学中考模拟试卷一、选择题1.数据-5,-1,0,1,x 的众数为0,则方差为( )A .0B .125CD .2252.如图,在等边ABC △中,已知6AB =,N 为AB 上一点,且2AN =,BAC ∠的平分线交BC 于点D ,M 是AD 上的动点,连结BM ,MN ,则BM MN +的最小值是( )A .8B .10C .D . 3.在数列3、12、30、60……中,请你观察数列的排列规律,则第5个数是( ) A .75B .90C .105D .1204.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )A. B. C. D.5.对于一次函数y =2x+4,下列结论中正确的是( )①若两点A(x 1,y 1),B(x 2,y 2)在该函数图象上,且x 1<x 2,则y 1<y 2. ②函数的图象不经过第四象限.③函数的图象与x 轴的交点坐标是(0,4).④函数的图象向下平移4个单位长度得y =2x 的图象. A .1个 B .2个C .3个D .4个6.已知关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值范围是( )A.a >2B.a <2C.a <2且a≠1D.a <-27.如图,E 、F 分别是矩形ABCD 边AB 、CD 上的点,将矩形ABCD 沿EF 折叠,使A 、D 分别落在A '和D '处,若150∠=︒,则2∠的度数是( )A .65︒B .60︒C .50︒D .40︒8.如图,点A (0,2),在x 轴上取一点B ,连接AB ,以A 为圆心,任意长为半径画弧,分别交OA 、AB 于点M 、N ,再以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点D ,连接AD 并延长交x 轴于点P .若△OPA 与△OAB 相似,则点P 的坐标为( )A .(1,0)B 0)C .(23,0) D .(0)95的大小关系是( )A5 B 5CD 10.2018年国庆小长假,泰安市旅游再次交出漂亮“成绩单”,全市纳入重点监测的21个旅游景区、旅游大项目、乡村旅游点实现旅游收入近132000000元,将132000000用科学记数法表示为( ) A .1.32×109B .1.32×108C .1.32×107D .1.32×106二、填空题11.如图,将ABC ∆沿BC 所在的直线平移得到DEF ∆,如果7AB =,2GC =,5DF =,那么GE =______.12.太阳半径约是6.97万千米,科学记数法表示约是____千米. 13.因式分解:4﹣a 2=_____.14.抛物线y=(x ﹣1)2+3的对称轴是直线_____. 15.双曲线124,ky y x x==在第一象限的图象如图,过y 1上的任意一点A ,作x 轴的平行线交y 2于B ,交y 轴于C ,若S △AOB =3,则k 的值为_____.16.15的相反数是_____. 17.已知a+b=3,ab=1,则a 2+b 2=____________. 18.如图,点A 在反比例函数()0ky k x=≠的第二象限内的图像上,点B 在x 轴的负半轴上,AB AO =,ABO 的面积为6,则k 的值为______19.从-2,-1,0,1这四个数中任取两个不同的数作为一次函数y=kx+b 的一次项系数k 和常数项b .那么一次函数y=kx+b 图象不经过第三象限的概率为 ____. 三、解答题20.如图,正方形ABCD 的边BC 在y 轴上,点D 的坐标为(2,3),反比例函数y =kx的图象经过点A ,交边CD 于点N ,过点M (t ,0),作直线EM 垂直于x 轴,交双曲线于点E ,交直线AB 于点F . (1)求反比例函数的解析式;(2)当t =6时,求四边形ADFE 的面积;(3)当以A 、D 、E 、F 为顶点的四边形是平行四边形,求t 的值.21.中华文化,源远流长,在文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》被称为“四大古典名著”,是我国古代长篇小说的经典代表,小花和等等两名同学,准备从这四大名著中各自随机选择一部来阅读,请你用画树状图(或列表)的方法,求他们选中同一名著的概率.22.某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛,各参赛选手的成绩如下:九(1)班:88,91,92,93,93,93,94,98,98,100; 九(2)班:89,93,93,93,95,96,96,98,98,99. 通过整理,得到数据分析表如下:(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好.”但也有人说(2)班的成绩要好.请给出两条支持九(2)班成绩更好的理由;(3)学校确定了一个标准成绩,等于或大于这个成绩的学生被评定为“优秀”等级,如果九(2)班有一半的学生能够达到“优秀”等级,你认为标准成绩应定为______分,请简要说明理由.23.如图,为了测量建筑物AD 的高度,小亮从建筑物正前方10米处的点B 出发,沿坡度i =1斜坡BC 前进6米到达点C ,在点C 处放置测角仪,测得建筑物顶部D 的仰角为40°,测角仪CE 的高为1.3米,A 、B 、C 、D 、E 在同一平面内,且建筑物和测角仪都与地面垂直求建筑物AD 的高度.(结果精确到0.124.求不等式组21223x x x <+⎧⎪-⎨≤⎪⎩的整数解.25.解方程: (1)2x ﹣3=1(2)1+221x x -=2x(3)2x 2﹣4x+1=0.26.如图,在矩形OABC 中,OA =3,OC =2,点F 是AB 上的一个动点(F 不与A ,B 重合),过点F 的反比例函数y =kx的图象与BC 边交于点E . (1)当F 为AB 的中点时,求该函数的解析式;(2)当k 为何值时,△EFA 的面积最大,最大面积是多少?【参考答案】***一、选择题 1.D 2.D 3.C 4.D 5.C 6.C 7.A 8.C 9.C 10.B 二、填空题 11.14512.46.7910⨯ 13.(2+a )(2﹣a ) 14.x=1 15.10 16.-1517.7 18.-6 19.13. 三、解答题 20.(1)x y 2=;(2)316;(3)t =﹣2,或t =23. 【解析】 【分析】(1)根据正方形的性质和待定系数法可求反比例函数的解析式;(2)先得到E 的坐标,F 的坐标,根据四边形ADFE 的面积=三角形ADF 的面积+AFE 的面积即可求解; (3)先得到EF =1﹣2t 或EF =2t ﹣1,再根据平行四边形的性质得到1﹣2t =2或2t﹣1=2,解方程即可求解. 【详解】(1)∵正方形ABCD 中,D (2,3), ∴CO =3,CD =AB =2, ∵BC =2,OB =1, ∴A (2,1), 因为反比例函数:y =k x, ∴k =2 即y =2x;。