初中数学复习数学的方程思想教案
- 格式:doc
- 大小:27.50 KB
- 文档页数:2
一元二次方程一、教学目标:知识技能:1.理解一元二次方程的概念;2.掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,确定出二次项系数、一次项系数和常数项;3..理解一元二次方程的根的意义,能够运用代入法检验根的正确性.数学思考:在把实际问题转化为一元二次方程模型的过程中,体会学习一元二次方程的必要性和重要性.问题解决:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移得到一元二次方程的概念.情感态度:通过用数学知识解决实际问题的思想激发学生的学习热情和积极性.二、教学重难点:通过类比一元一次方程,了解一元二次方程的概念、一般形式ax2+bx+c=0(a≠0)及一元二次方程的根等概念,并能用这些概念解决简单问题.把实际问题转化为一元二次方程模型.教学时间:两课时三、教学过程:第一课时洋葱小视频分享一、有关解方程的科学家的故事,激发学生学习方程的兴趣。
洋葱小视频分享二、一元二次方程的定义讲解,激发学生利用手中的工具提前预习,轻松学习知识。
(一)、知识回顾、教师引导学生完成下列题目,复习一元一次方程的相关知识:一元一次方程的知识:1.一元一次方程中的“一元”是指__1个未知数__,“一次”是指__未知数的次数是1__,一元一次方程左右两边都是__整式__的形式.2.一元一次方程的一般形式是__ax+b=0(a,b是常数,且a≠0)__.若关于x的方程(m+1)x|m|+1=0是一元一次方程,则m=____1____.3.什么是一元一次方程的解?如何判断一个数是不是一元一次方程的解?若已知x=1是方程ax+3=0的解,则a=__-3__.(二)、【课堂引入】问题1:有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参加比赛?学生先自主探究、分析,再在小组内合作讨论,设出合适的未知数,根据等量关系列出方程.1.探究交流观察[课堂引入]中所列的方程,分析以上两个方程是不是一元二次方程,它们与一元一次方程有什么区别与联系.学生观察、思考、讨论、交流、汇报.教师重点引导学生观察得到所列方程的特点:①整式;②一元;③二次.引入课题(板书):一元二次方程.2.归纳定义问题:根据找出的一元二次方程的特征,你能给一元二次方程下个定义吗?教师引导学生结合所列方程的三个特征及一元二次方程的名称,类比一元一次方程的定义,得出一元二次方程的定义:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.教师板书:整式;一元;二次.(三)、新知探究运用1、(试一试)抢答:下列各方程是不是一元二次方程:①3x+2=5x-2;②2x2-2x=0;③x2=0;④-=0;⑤3y2=(3y+1)(y-2);⑥ax2+bx+c=0;⑦3x2=5x-1;⑧(x+3)(2x-4)=0.第二课时教学过程:一、简单回顾一元二次方程的定义及判断二、新知探究:(一)、一元二次方程的一般形式:问题1:类比一元一次方程的一般形式,你能写出一元二次方程的一般形式,并说出各项的名称吗?师生共同小结(板书):一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.(试一试)抢答:指出下列各方程的二次项、一次项和常数项.①3x2+2x-1=0;②2x2=3;③=0.(二)、问题2:类比一元一次方程的解的定义,你能给一元二次方程的根下定义吗?师生共同小结(板书):概念:一元二次方程的根:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根. (试一试)下列哪些数是方程x2+x-12=0的根?-4,-3,-2,-1,0,1,2,3,4.(三)、【应用举例】例1将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.变式练习:将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.例2已知关于x的方程x2-2x+k2=0的一个根是1,那么k的值是________.变式练习:已知关于x的一元二次方程x2+ax+b=0有一个非零根-b,则a-b的值为________.(四)、【拓展提升】例3已知关于x的方程(2a-4)x2-2x+a=0,在什么条件下,此方程为一元一次方程?在什么条件下,此方程为一元二次方程?例4已知关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,求a的值.例5求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.学生自主思考,教师做好指导,最后由个别学生进行课堂解答,教师给予评价和辅导.教师指出解答问题的易错点和方法应用.三、【达标测评】1.若方程mx2-2x+m=0是关于x的一元二次方程,则( C )A.m为任意实数B.m=0C.m≠0 D.m=0或m=12.下列方程中,不含一次项的是(D)A.3x2-5=2x B.16x=x2C.x(x-7)=0 D.(x+5)(x-5)=03.若关于x的一元二次方程ax2+bx+c=0有一个根为1,则a+b+c=__0__;若a-b+c=0,则方程必有一根为__-1__.4.一元二次方程2x2=1-4x的二次项系数、一次项系数和常数项之和为__5__.5.若关于x的方程(k-1)x|k|-1-x-2=0是一元二次方程,求k的值.学生进行当堂检测,完成后,教师进行批阅、点评、讲解.四、课堂总结:(1)本节课主要学习了哪些知识?学习了哪些数学思想和方法?(2)本节课还有哪些疑惑?说一说!五、【教学反思】①[授课流程反思]在问题导入环节中,出示的问题有难度,需要教师进一步讲解;在新知探究环节中,学生充分发挥主动性,总结新知能力较强;在能力训练环节中,学生完成较好,值得鼓励与表扬.②[讲授效果反思]对于一元二次方程的定义,教师必须强调:(1)把握一般形式;(2)二次项系数不为0;(3)分清各项系数.③[师生互动反思]从课堂过程和效果分析,学生能够充分交流、合作,对于问题思考和解答都有独立性,效果较好.。
《一元二次方程》数学教案8篇作为一位兢兢业业的人民教师,通常需要准备好一份教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
那么什么样的教案才是好的呢?这里作者为大家分享了8篇《一元二次方程》数学教案,希望在一元二次方程教案的写作这方面对您有一定的启发与帮助。
元二次方程教案篇一一、教材分析:1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。
本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。
2、教学目标要求:(1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;(2)能根据具体问题的实际意义,检验结果是否合理;(3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。
3、教学重点和难点:重点:列一元二次方程解与面积有关问题的应用题。
难点:发现问题中的等量关系。
二.教法、学法分析:1、本节课的设计中除了探究3教师参与多一些外,其余时间都坚持以学生为主体,充分发挥学生的主观能动性。
教学过程中,教师只注重点、引、激、评,注重学生探究能力的培养。
还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。
同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。
2、本节内容学习的关键所在,是如何寻求、抓准问题中的数量关系,从而准确列出方程来解答。
因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
三.教学流程分析:本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:活动1复习回顾解决课前参与活动2封面设计问题的探究活动3草坪规划问题的延伸活动4课堂回眸这有名程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
初中方程的教案教学目标:1. 了解一元一次方程的概念和特点;2. 学会解一元一次方程的方法;3. 能够应用一元一次方程解决实际问题。
教学重点:1. 一元一次方程的概念和特点;2. 解一元一次方程的方法。
教学难点:1. 一元一次方程的解法;2. 应用方程解决实际问题。
教学准备:1. 教学课件或黑板;2. 练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾数学知识,如加减乘除等运算;2. 提问:你们认为数学和现实生活有什么关系呢?二、新课讲解(20分钟)1. 介绍一元一次方程的概念和特点,如形式为ax+b=0,其中a和b是常数,a≠0;2. 解释一元一次方程的解的概念,即使得方程成立的未知数的值;3. 教授解一元一次方程的方法,如加减消元法、乘除消元法等;4. 通过例题演示解一元一次方程的过程,并解释每一步的操作。
三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固所学知识;2. 引导学生思考如何将实际问题转化为方程,并解决问题。
四、应用拓展(10分钟)1. 提供一些实际问题,让学生应用一元一次方程解决;2. 引导学生思考方程在现实生活中的应用,如购物、行程等。
五、总结与反思(5分钟)1. 让学生回顾本节课所学内容,总结一元一次方程的概念和解法;2. 提问:你们认为一元一次方程在实际生活中有什么作用呢?教学评价:1. 课后作业的完成情况;2. 课堂练习的答题正确率;3. 学生对实际问题转化为方程的能力。
以上是一份关于初中方程的教案,希望对您的教学有所帮助。
在实际教学中,可以根据学生的实际情况适当调整教学内容和教学过程。
祝您教学顺利!。
七年级数学一元一次方程的教案推荐7篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如心得体会、工作报告、工作总结、工作计划、申请书、读后感、作文大全、合同范本、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as insights, work reports, work summaries, work plans, application forms, post reading reviews, essay summaries, contract templates, speech drafts, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!七年级数学一元一次方程的教案推荐7篇本文将为大家推荐七年级数学一元一次方程的教案,共计7篇。
一、教学目标1. 让学生理解方程的概念,掌握方程的基本性质。
2. 培养学生解决实际问题的能力,提高学生的数学思维水平。
3. 通过对方程的学习,培养学生团结协作、积极探究的精神。
二、教学内容1. 方程的定义与分类2. 方程的解法3. 方程的实际应用三、教学重点与难点1. 重点:方程的概念、分类和解法。
2. 难点:方程的解法及应用。
四、教学过程1. 导入:通过实例引入方程的概念,让学生感受方程在实际生活中的应用。
2. 讲解:(1) 方程的定义与分类:解释方程的概念,引导学生理解方程的本质,并对方程进行分类。
(2) 方程的解法:讲解方程的解法,包括代入法、消元法、分解因式法等,并通过例题进行演示。
(3) 方程的实际应用:结合实际问题,让学生学会用方程解决问题。
3. 练习:布置练习题,让学生巩固所学知识,并及时给予解答和指导。
4. 总结:对本节课的内容进行总结,强调方程的重要性和应用价值。
五、教学方法1. 讲授法:讲解方程的概念、解法和实际应用。
2. 案例分析法:通过例题,让学生掌握方程的解法。
3. 实践操作法:让学生在实际问题中运用方程解决问题。
1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习成果:评估学生在练习中的表现,检验学生对知识的掌握程度。
3. 课后反馈:收集学生的学习反馈,了解学生在课堂外的应用情况。
七、教学资源1. 教材:选用符合新课程标准的教材,为学生提供权威、系统的学习资料。
2. 课件:制作生动、直观的课件,帮助学生更好地理解方程。
3. 练习题:准备适量的练习题,巩固学生的学习成果。
八、教学时间1课时九、课后作业1. 复习方程的概念、解法和实际应用。
2. 完成课后练习题。
通过本节课的教学,使学生掌握方程的基本知识和解法,提高学生解决实际问题的能力,培养学生对数学的兴趣和自信心。
一元二次方程【知识与技能】进一步加深对一元二次方程及其解的理解,能选择恰当的方法解一元二次方程,掌握用一元二次方程解决实际问题的思路方法,加强对应用问题的分析和解决能力.【过程与方法】经历分析问题和解决问题的过程,拓展对一元二次方程的认识.【情感态度】进一步提高在实际问题中运用方程思想解决问题的能力,增强数学应用的兴趣和意识,感悟解一元二次方程的策略的多样性和合理性,培养开拓创新精神.【教学重点】理解并掌握一元二次方程的解法、根与系数关系和根的判别式,加强构建一元二次方程解决应用问题的能力.【教学难点】综合运用一元二次方程定义、根的判别式及根与系数关系解决具体问题.一、知识框图,整体把握二、释疑解惑,加深理解1.一元二次方程的一般形式为ax2+bx+c=0(a,b,c为常数,且a≠0),这里二次项系数a≠0是必要条件,而这一点往往在解题过程中易忽视,而致结论出错.思考 若关于x 的一元二次方程(m-1)x 2+5x+m 2-3m+2=0有一根为0,则常数m 的值为.(参考答案:m=2)2.一元二次方程的解法有:开平方法、配方法、公式法和因式分解法.对于具体的方程,一定要认真观察,分析方程特征,选择恰当的方法予以求解.无论选择哪种方法来解方程,降次思想是它的基本思想.3.根的判别式及根与系数的关系:(1)根的判别式Δ=b 2-4ac 与0的大小关系可直接确定方程的根的情况,当Δ=b 2-4ac >0时,方程有两个不相等的实数根;当Δ=b 2-4ac=0时,方程有两个相等的实数根.当Δ=b 2-4ac <0时方程没有实数根.(2)根与系数的关系:若方程ax 2+bx+c=0(a ≠0)的两个实数根为x 1,x 2,则x 1+x 2=-b a ,x 1·x 2=c a.(3)利用根与系数的关系确定方程的待定字母系数时,千万应注意验证Δ=b 2-4ac 是否大于等于0,否则所求出的值就不合题意应舍去,这点应引起学生高度重视.4.列一元二次方程解实际应用问题是数学应用的具体体现,如解决传播类问题、增长率类问题、利润问题及几何图形的计算问题等,而解决这些实际问题的关键是弄清题意,找出其中的等量关系,恰当设未知数,建立方程并予以求解.需注意的是,应根据问题的实际意义检验结果是否合理.【教学说明】在对上述知识的回顾过程中,既可师生根据教材的主要知识点进行剖析,也可由教师设置问题,让学生思考后进行总结交流,从而整体上加强对本章知识的理解,同时,对易错点给予强调,引起学生注意.三、典例精析,复习新知例1已知关于x 的方程(m+n-1)x(m+n)2+1-(m+n)x+mn=0是一元二次方程,则m+n 的值为 .分析:由题意应有(m+n)2+1=2,故(m+n)2=1,∴m+n=±1,又因为一元二次方程的二次项系数m+n-1≠0,∴m+n ≠1,从而可知m+n=-1.例2已知a 是方程x 2-2014x+1=0的一个根,求代数式a 2-2013a+220141a +的值. 解:根据方程根的定义有a 2-2014a+1=0,从而a 2-2013a=a-1.a 2+1=2014a,故原式=a-1+1a =21a a a -+ =2014a a a - =2013.在评讲本例时,要防止少数学生利用求根公式求出a 的值再代入计算的做法,解释这种解法的弊端,并引导学生学会用整体代入思想解题的方法和技巧.例3已知关于x 的方程x 2-2(m+1)x+m 2=0有两个实数根,试求m 的最小整数值.解:由题意有Δ=[-2(m+1)]2-4×1×m 2=8m+4≥0,∴m ≥-1/2,故m 的最小整数值为0. 例4已知关于x 的方程x 2-2x-a=0.(1)若方程有两个不相等的实数根,求a 的取值范围;(2)若此方程的两个实数根为x 1,x 2,则1211x x 的值能等于23吗?如果可以,请求出a 的值;如果不能,请说明理由.例5某零售商购进一批单价为16元的玩具,销售一段时间后,为了获得更多利润,商店决定提高销售价格,经试验发现,若按每件20元销售时,每月可销售360件;若按每件25元销售时,每月能卖出210件,假定每月销售件数y (件)是价格x 的一次函数.(1)试求y 与x 之间的关系式;(2)当销售价定为多少时,每月获得1800元利润?(3)每月的利润能达到2000元吗?为什么?解:在(1)中,设y=kx+b ,把(20,360),(25,210)代入,可得y=-30x+960(16≤x ≤32);在(2)中,设获利为w(元),则w=(x-16)(-30x+960),当w=1800时,有(x-16)(-30x+960)=1800,解得x 1=22,x 2=26,故销售价定为22元或26元时,每月可获得1800元利润;在(3)中,令(x-16)(-30x+960)=2000,整理,得3x 2-144x+1736=0,此时Δ=b 2-4ac=(-144)2-4×3×1736=-96<0,原方程无解,即每月利润不可能为2000元.【教学说明】在具体教学时,教师可根据自己的设想设置例题,对所选例题的处理仍应先让学生自主探究,尝试着独立完成,让学生边回顾边思考,加深对本章知识的掌握.四、复习训练,巩固提高1.若方程(m2-2)x2-1=0有一根为1,则m的值是多少?2.若方程3x2-5x-2=0有一根为a,则6a2-10a的值是多少?3.已知关于x的方程(a-2)x2-2(a-1)x+(a+1)=0,a为何非负整数时,(1)方程只有一个实数根?(2)方程有两个相等实数根?(3)方程有两个不等实数根?4.百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六·一”国际儿童节,商店决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天可多售出2件.要想平均每天销售这种童装盈利1200元,在对顾客利益最大基础上,那么每件童装应降价多少元?【教学说明】这4个小题的设置旨在帮助学生复习知识,其中第1、2题较简单,由学生自主完成,第3、4题可由师生共同完成.【答案】1.m= 2.4 3.(1)a=2;(2)a=3;(3)a=0或a=14.每件降价20元.五、师生互动,课堂小结通过这节课学习,对本章的知识你有哪些新的认识?有何体会?【教学说明】师生共同进行小结反思,让学生进一步加深对本章知识的理解和领悟,积累解题方法和经验,完善知识体系.1.布置作业:从教材“复习题21”中选取.2.完成本课的热点专题训练.1.本节课为复习课,所以首先要让学生了解本章的知识体系,该掌握哪些知识点,所以教学的展开都以问题的解决为中心,使教学过程成为在老师指导下学生的一种自主探索的学习活动过程,在探索中体现数学思想方法的渗透、应用,巩固知识内容.2.本章的内容,关键是在经历和体验知识的形成与应用过程中,体会方程是刻画现实世界的一个有效的数学模型,一元二次方程是初中阶段最重要的方程,它是解答数学问题的重要工具和方法,并且对学习函数,尤其是二次函数的综合问题起着决定性作用,它在中考试题中占有一定的比例.。
方程教案初中教学目标:1. 让学生掌握方程的基本概念和意义。
2. 培养学生解决实际问题的能力,提高学生运用数学知识解决问题的能力。
3. 培养学生合作学习、积极思考的良好学习习惯。
教学内容:1. 方程的定义及基本概念。
2. 一元一次方程的解法。
3. 二元一次方程组的解法。
4. 实际问题与方程的结合。
教学过程:一、导入(5分钟)1. 利用数学故事或现实生活中的问题,引发学生对方程的兴趣。
2. 引导学生思考:什么是方程?你在生活中遇到过哪些方程问题?二、新课导入(15分钟)1. 讲解方程的定义及基本概念,让学生理解方程的意义。
2. 引导学生通过观察、分析、归纳方程的特点,掌握一元一次方程的解法。
3. 讲解二元一次方程组的解法,让学生学会如何解决复杂的方程问题。
三、课堂练习(15分钟)1. 布置一些简单的方程题目,让学生独立完成,巩固所学知识。
2. 组织学生进行小组讨论,共同解决一些复杂的方程问题。
四、实际问题与方程的结合(15分钟)1. 给学生提供一些实际问题,让学生运用方程知识解决问题。
2. 引导学生总结解题思路和方法,提高学生运用数学知识解决实际问题的能力。
五、课堂小结(5分钟)1. 回顾本节课所学内容,让学生巩固方程的基本概念和解题方法。
2. 强调方程在实际生活中的应用,激发学生学习方程的兴趣。
六、作业布置(5分钟)1. 布置一些有关的课后练习题,让学生进一步巩固方程知识。
2. 鼓励学生参加数学竞赛或研究性学习,提高学生的数学素养。
教学反思:本节课通过讲解方程的基本概念和解题方法,让学生掌握一元一次方程和二元一次方程组的解法。
在教学过程中,要注意关注学生的学习情况,针对不同学生的需求进行有针对性的指导。
同时,结合现实生活中的问题,让学生体验到方程的重要性,提高学生运用数学知识解决实际问题的能力。
在课堂小结环节,要强调方程在实际生活中的应用,激发学生学习方程的兴趣。
【导语】教案是教师为顺利⽽有效地开展教学活动,根据课程标准,教学⼤纲和教科书要求及学⽣的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学⽅法等进⾏的具体设计和安排的⼀种实⽤性教学⽂书。
©⽆忧考⽹准备了以下内容,供⼤家参考!篇⼀:应⽤⼆元⼀次⽅程组——鸡兔同笼 教学⽬标: 知识与技能⽬标: 通过对实际问题的分析,使学⽣进⼀步体会⽅程组是刻画现实世界的有效数学模型,初步掌握列⼆元⼀次⽅程组解应⽤题.初步体会解⼆元⼀次⽅程组的基本思想“消元”。
培养学⽣列⽅程组解决实际问题的意识,增强学⽣的数学应⽤能⼒。
过程与⽅法⽬标: 经历和体验列⽅程组解决实际问题的过程,进⼀步体会⽅程(组)是刻画现实世界的有效数学模型。
情感态度与价值观⽬标: 1.进⼀步丰富学⽣数学学习的成功体验,激发学⽣对数学学习的好奇⼼,进⼀步形成积极参与数学活动、主动与他⼈合作交流的意识. 2.通过"鸡兔同笼",把同学们带⼊古代的数学问题情景,学⽣体会到数学中的"趣";进⼀步强调课堂与⽣活的联系,突出显⽰数学教学的实际价值,培养学⽣的⼈⽂精神。
重点: 经历和体验列⽅程组解决实际问题的过程;增强学⽣的数学应⽤能⼒。
难点: 确⽴等量关系,列出正确的⼆元⼀次⽅程组。
教学流程: 课前回顾 复习:列⼀元⼀次⽅程解应⽤题的⼀般步骤 情境引⼊ 探究1:今有鸡兔同笼, 上有三⼗五头, 下有九⼗四⾜, 问鸡兔各⼏何? “雉兔同笼”题:今有雉(鸡)兔同笼,上有35头,下有94⾜,问雉兔各⼏何? (1)画图法 ⽤表⽰头,先画35个头 将所有头都看作鸡的,⽤表⽰腿,画出了70只腿 还剩24只腿,在每个头上在加两只腿,共12个头加了两只腿 四条腿的是兔⼦(12只),两条腿的是鸡(23只) (2)⼀元⼀次⽅程法: 鸡头+兔头=35 鸡脚+兔脚=94 设鸡有x只,则兔有(35-x)只,据题意得: 2x+4(35-x)=94 ⽐算术法容易理解 想⼀想:那我们能不能⽤更简单的⽅法来解决这些问题呢? 回顾上节课学习过的⼆元⼀次⽅程,能不能解决这⼀问题? (3)⼆元⼀次⽅程法 今有鸡兔同笼,上有三⼗五头,下有九⼗四⾜,问鸡兔各⼏何? (1)上有三⼗五头的意思是鸡、兔共有头35个, 下有九⼗四⾜的意思是鸡、兔共有脚94只. (2)如设鸡有x只,兔有y只,那么鸡兔共有(x+y)只; 鸡⾜有2x只;兔⾜有4y只. 解:设笼中有鸡x只,有兔y只,由题意可得: 鸡兔合计头xy35⾜2x4y94 解此⽅程组得: 练习1: 1.设甲数为x,⼄数为y,则“甲数的⼆倍与⼄数的⼀半的和是15”,列出⽅程为_2x+05y=15 2.⼩刚有5⾓硬币和1元硬币各若⼲枚,币值共有六元五⾓,设5⾓有x枚,1元有y枚,列出⽅程为05x+y=65. 三、合作探究 探究2:以绳测井。
一元一次方程整理与复习复习目标1. 理解一元一次方程及其相关概念.2. 掌握等式的性质,并能运用它解一元一次方程.3. 掌握一元一次方程的解法,并能运用一元一次方程解决实际问题(重点).4. 能在对实际问题的数量关系的分析中寻求等量关系,从而抽象出方程模型(难点). 构建知识结构图梳理知识方法(一)一元一次方程及相关概念、性质1. 一元一次方程的构成要素:(1)是__等式__;(2)含有未知数,且只能是__一__个;(3)未知数的次数都是“__1__”(一次整式),且系数不为“__0__”.2. 一元一次方程的解:使方程中等号左右两边相等的__未知数的值__.我们据此可以把含参数的方程的已知解代入得新的方程,解之得到所含参数的值.3. 解方程的理论依据:等式的基本性质.性质1:等式两边都__加__(或__减__)同一个数(或式子),结果仍相等. 用式子形式表示为:如果a =b ,那么__a±c =b±c __;性质2:等式两边__乘__同一个数,或除以__同一个不为0__的数,结果仍相等.用式子形式表示为:如果a =b 那么__ac =bc __,__a c =b c(c≠0)__; (二)解一元一次方程的基本步骤: 变形步骤 具体方法 变形根据 注意事项 去分母方程两边都乘以各个分母的最小公倍等式性质21.不能漏乘不含分母的项;注意:我们在解一元一次方程时,既要学会按部就班(严格按步骤) 地解方程,又要善于认真观察方程的结构特征,灵活采用解方程的一些技巧,随机应变(灵活打乱步骤)解方程,能达到事半功倍的效果.对于一般解题步骤与解题技巧来说,前者是基础,后者是机智,只有真正掌握了一般步骤,才能熟能生巧.解一元一次方程常用的技巧有:(1)有多重括号,去括号与合并同类项可交替进行(2)当括号内含有分数时,常由外向内先去括号,再去分母(3)当分母中含有小数时,可根据__分数的基本性质__把分母化成整数(4)运用整体思想,即把含有未知数的代数式看作整体进行变形(三)实际问题与一元一次方程1.用一元一次方程解决实际问题的一般步骤是:(1)审题,搞清已知量和待求量,分析数量关系. ( 审题,寻找等量关系)(2)根据数量关系与解题需要设出未知数,建立方程;(3)解方程;(4) 检查和反思解题过程,检验答案的正确性以及是否符合题意,并作答.2.用一元一次方程解决实际问题的典型类型(1)数字问题:①数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c则这个三位数表示为__100a+10b+c__(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9).②用一个字母表示连续的自然数、奇数、偶数等规律数.(2)和、差、倍、分问题:关键词是“是几倍,增加几倍,增加到几倍,增加百分之几,增长率,哪个量比哪个量……”.(3)工程问题:工作总量=__工作效率__×__工作时间__,注意产品配套问题;(4)行程问题:路程=__速度__×__时间__.(5)利润问题:商品利润=__商品售价__-__商品成本价__=__商品利润率__×__商品成本价__,商品售价=商品成本价×( __1__+__利润率__).(6)利息问题:①顾客存入银行的钱叫做__本金__,银行付给顾客的酬金叫__利息__,__本金__和__利息__合称本息和,存入银行的单位时间数叫做__期数__,__利息__与__本金__的比叫做利率.②利息=__本金__×__利率__×__期数__,本息和=本金+利息.(7)几何问题:必须掌握几何图形的性质、周长、面积等计算公式,注意等积变形;(8)盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量.(9)年龄问题:抓住人与人的岁数是同时增长的.(10)增长率问题:原量×(1+增长率)=增长后的量,原量×(1-减少率)=减少后的量.(四)思想方法(1)建模思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立方程的思想.(2)方程思想:用方程解决实际问题的思想就是方程思想.(3)化归思想:解一元一次方程的过程,实质上就是利用__去分母__、__去括号__、__移项__、__合并同类项__、__未知数的系数化为1__等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a的形式. 体现了化“未知”为“已知”的化归思想.(4)数形结合思想:在列方程解决问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越性.(5)分类思想:在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.考点呈现与学用同达标检测与学用同。
认识方程复习课教案一、教学目标:1. 知识与技能:a. 理解方程的概念和基本性质;b. 掌握解一元一次方程的方法;c. 能够应用所学知识解决实际问题。
2. 过程与方法:a. 通过教师讲解、示范和学生练习相结合的方式,帮助学生理解方程的概念和解题方法;b. 引导学生运用所学知识解决实际问题,培养学生的数学建模能力。
3. 情感态度价值观:a. 培养学生对数学的兴趣和自信心;b. 培养学生的合作意识和团队精神。
二、教学重点与难点:1. 重点,方程的概念、一元一次方程的解法、实际问题的建模与解决。
2. 难点,一元一次方程的应用题,如何将实际问题转化为数学问题并解决。
三、教学过程:1. 导入新课。
a. 通过引入一个简单的实际问题,如小明买苹果的例子,引出方程的概念;b. 让学生思考如何用数学语言描述这个问题,引出一元一次方程的概念。
2. 概念讲解。
a. 讲解方程的定义和基本性质;b. 介绍一元一次方程的一般形式和解题方法;c. 举例说明方程的解法。
3. 练习与训练。
a. 让学生做一些简单的练习,巩固所学知识;b. 引导学生分组合作,解决一些实际问题,如两个人同时开车相遇的问题等。
4. 拓展应用。
a. 引入一些复杂的实际问题,如两个水龙头同时放水,问多久能装满一个池塘等;b. 让学生分组讨论并解决这些问题,培养学生的团队合作能力。
5. 总结与反思。
a. 对本节课所学知识进行总结,强调方程的重要性和应用价值;b. 让学生反思本节课的收获和不足之处,为下节课的学习做准备。
四、教学手段:1. 课件,通过PPT展示方程的概念、解题方法和实际应用,提高学生的学习兴趣;2. 黑板,用于讲解和举例说明;3. 教材,辅助教师讲解,帮助学生理解和掌握知识点;4. 小组讨论,让学生分组合作,解决实际问题,培养学生的团队合作能力。
五、教学反思:本节课通过引入实际问题,让学生从生活中感受到方程的重要性和应用价值,激发了学生学习数学的兴趣。
数学的方程思想
在解决数学问题时,有一种从未知转化为已知的手段就是通过设元,寻找已知与未知之间的等量关系,构造方程或方程组,然后求解方程完成未知向已知的转化,这种解决问题的思想称为方程思想。
【范例讲析】:
例1:已知:如图,正方形ABCD的边长为a,△PQA是其内接等边三角形。
求:PB的长。
例2:如图,在△ABC中,∠B=30°,∠ACB=120°,D是BC上一点,且∠ADC=45°,若CD=8,求BD的长。
B C
D
P
Q
A
C
D
【闯关夺冠】
1: 如图,EB 是直径,O 是圆心,CB 、CD 切半圆于B 、D 、CD 交BE 延长线于A 点,若BC=6,AD=2AE ,求半圆的面积。
2.如图,某农场要用总长24 m 的木栏建一个长方形的养鸡场,鸡场的一边靠墙(墙长12m),且中间隔有一道木栏,设鸡场的宽AB 为xm ,面积为S m2;
(1)求S 关于x 的函数关系式;
(2)若鸡场的面积为45 m2,试求出鸡场的宽AB 的长;
(3)鸡场的面积能否达到50 m2?若能,请给出设计方案;若不能,请说明理由.
B。