化工原理课程设计 -蒸发汇总
- 格式:doc
- 大小:1.39 MB
- 文档页数:31
附录一、水与蒸汽的物理性质1水的物理性质2 水的饱和蒸气压(-20~100℃)3 饱和水蒸气表(以温度为准)4 饱和水蒸气表(以压强为准)(Ⅰ)5 饱和水蒸气表(以压强为准)(Ⅱ)二、干空气的物理性质(p=101325Pa)四、液体及水溶液的物理性质1 某些液体的重要物理性质2 油类的相对密度3 氢氧化钠水溶液相对密度4 浓硫酸水溶液相对密度5 稀硫酸及硝酸、盐酸水溶液相对密度6 有机液体相对密度共线图7 有机液体的表面张力共线图8 某些无机物水溶液的表面张力/(dyn/cm)9 液体在20℃的体积膨胀系数10 液体黏度共线图11 液体比热容共线图12 某些液体的热导率λ×102/[kcal/(m·h·℃)]13 液体汽化潜热共线图14 无机溶液在大气压(101 3kPa)下的沸点15 液体的普朗特数(算图)五、气体的重要物理性质1 某些气体的重要物理性质2 气体黏度共线图(常压下用)3 气体比热容共线图(常压下用)4 常用气体的热导率5 某些气体的Pr数值六、固体性质1.常用固体材料的重要物理性质2 某些固体材料的黑度(ε)七、管子规格1 水煤气输送钢管(摘自GB 3091—93,GB 3092—93)2 无缝钢管规格简表3 热交换器用HSn62 1,HSn70 1,H68拉制黄铜管(摘自YB 448—64)4 承插式铸铁管规格八、泵与风机九、1 B型水泵性能表(摘录)2 8 18、9 27离心通风机综合特性曲线图九、换热器1 热交换器系列标准(摘录)2 冷凝器规格十一、流体常用流速范围参考文献。
化工原理课程设计第三版课程设计1. 概述本次课程设计旨在通过实际操作和分析,让学生深入了解化工原理的核心概念和应用技能。
在设计中,学生们将探索化工分离过程的原理、工艺流程设计以及设备的选择和优化等方面的知识。
2. 实验目的本课程设计旨在培养学生以下方面的能力:1.理解化工分离过程的基本原理和特点;2.掌握工艺流程设计和设备选择与优化的方法;3.培养实际操作和分析的能力,并通过设计和分析来掌握化工原理的应用技能。
3. 实验设备•微型蒸馏装置•真空干燥器•震荡器•多层螺旋板塔•分离漏斗•等温滴定计•气相色谱分析仪4. 实验内容4.1 实验1:蒸馏分离乙醇和水4.1.1 实验目的通过蒸馏操作分离出乙醇和水,并对蒸馏过程进行分析和优化,掌握蒸馏分离的基本原理和操作技能。
4.1.2 实验步骤1.分别称取50mL乙醇和水混合溶液,加入微型蒸馏装置中;2.开启蒸馏设备,调整冷却水温度和采样速率;3.收集蒸馏出的乙醇和水,分别测定其含量和纯度,记录数据;4.对蒸馏过程进行分析和优化,根据实验数据推算出最优的蒸馏条件。
4.1.3 实验结果在此处列出实验数据及分析结果。
4.2 实验2:干燥和筛分分离颗粒4.2.1 实验目的通过干燥和筛分操作分离出颗粒,并对操作过程进行分析和优化,掌握干燥和筛分的基本原理和操作技能。
4.2.2 实验步骤1.将颗粒放入真空干燥器内,开启干燥器并设定温度和干燥时间;2.在震荡器内加入干燥后的颗粒,进行筛分操作;3.对干燥和筛分过程进行分析和优化,根据实验数据推算出最优的操作条件。
4.2.3 实验结果在此处列出实验数据及分析结果。
4.3 实验3:多层螺旋板塔分离气体混合物4.3.1 实验目的通过在多层螺旋板塔内对气体混合物进行分离操作,分析其分离机理和选择最优的工艺条件。
4.3.2 实验步骤1.将混合气体通过多层螺旋板塔,进行分离处理;2.对分离后的气体进行收集和测量,记录数据;3.对分离过程进行分析和优化,选择最优的工艺条件。
化工原理知识课程设计一、课程目标知识目标:1. 让学生掌握化工原理的基本概念,如流体力学、热力学、传质和反应工程等;2. 引导学生了解化工过程中常见单元操作及其原理,如蒸馏、吸收、萃取等;3. 帮助学生理解化学工程在国民经济发展中的作用,培养他们对化工行业的兴趣。
技能目标:1. 培养学生运用化工原理分析和解决实际问题的能力;2. 提高学生运用数学和物理知识解决化工过程中相关问题的能力;3. 培养学生查阅化工文献、资料,了解化工行业发展趋势的能力。
情感态度价值观目标:1. 培养学生热爱化工专业,树立为化工事业贡献力量的信念;2. 增强学生的环保意识,让他们认识到化学工程在环境保护中的责任和使命;3. 培养学生的团队协作精神,提高他们在实际工作中的沟通与协作能力。
课程性质:本课程为专业基础课,旨在为学生奠定扎实的化工原理知识基础,为后续专业课程学习打下坚实基础。
学生特点:学生处于高中阶段,具有一定的数学、物理和化学基础,思维活跃,求知欲强。
教学要求:结合学生特点,注重理论与实践相结合,提高学生运用知识解决实际问题的能力。
在教学过程中,关注学生的情感态度价值观培养,激发他们的学习兴趣和责任感。
通过具体的学习成果分解,使教学设计和评估更具针对性。
二、教学内容1. 流体力学基础:流体静力学、流体动力学、流体阻力、流体输送设备原理及计算;2. 热力学基础:热力学第一定律、热力学第二定律、热力学循环、热量传递方式及设备;3. 传质过程:质量传递原理、分子扩散、对流传质、传质设备及应用;4. 反应工程基础:化学反应动力学、反应器设计、反应条件优化;5. 单元操作:蒸馏、吸收、萃取、吸附、离子交换等操作原理及设备;6. 化工工艺:典型化工工艺流程分析、工艺参数优化、设备选型及操作;7. 化工设备:常见化工设备结构、原理、材料及强度计算;8. 化工安全与环保:化工生产过程中的安全措施、环境保护及三废处理。
教学内容安排和进度:第一周:流体力学基础;第二周:热力学基础;第三周:传质过程;第四周:反应工程基础;第五周:单元操作(蒸馏、吸收);第六周:单元操作(萃取、吸附);第七周:化工工艺;第八周:化工设备;第九周:化工安全与环保。
化工原理课程设计
化工原理课程设计是化工专业学生在学习化工原理课程后,根
据所学知识和理论进行实际操作和设计的一门课程。
在进行化工原
理课程设计时,学生需要结合所学的化工原理知识,从实际工程问
题出发,进行设计、分析和论证。
首先,化工原理课程设计通常包括以下几个方面的内容,设计
题目的确定、设计依据的分析、设计方案的制定、设计计算的进行、设计结果的分析与讨论以及设计报告的撰写等环节。
学生需要根据
所学的化工原理知识,选择合适的设计题目,明确设计的目的和依据,合理制定设计方案,并进行相关的计算和分析,最终撰写设计
报告。
其次,在化工原理课程设计中,学生需要运用所学的化工原理
知识,如物质平衡、能量平衡、传质过程等理论,结合实际工程问
题进行设计。
例如,可以设计化工流程中的反应装置、分离装置、
传热装置等,通过计算和分析来确定设计方案的合理性和可行性。
此外,化工原理课程设计还需要学生具备一定的实验操作能力
和科学研究能力,能够独立进行设计计算和实验操作,并能够准确
地记录实验数据和结果,进行数据处理和分析,最终得出科学的结论。
总的来说,化工原理课程设计是化工专业学生综合运用化工原
理知识进行实际操作和设计的重要环节,通过这样的设计,学生能
够加深对化工原理理论的理解,提高实际操作能力和科学研究能力,为将来的工程实践打下坚实的基础。
化工原理课程设计一、教学目标本节课的教学目标是让学生掌握化工原理的基本概念和基本原理,了解化工过程的基本单元操作,包括流体流动、传质、传热等,培养学生分析和解决化工问题的能力。
具体来说,知识目标包括:1.掌握流体流动的基本原理和计算方法;2.了解传质和传热的基本原理和计算方法;3.掌握化工过程的基本单元操作和流程。
技能目标包括:1.能够运用流体流动、传质、传热的基本原理分析和解决实际问题;2.能够运用化工原理的基本单元操作设计和优化化工过程。
情感态度价值观目标包括:1.培养学生的科学精神和创新意识,使其能够积极面对和解决化工过程中的问题;2.培养学生的团队合作意识和责任感,使其能够有效地参与和完成化工项目。
二、教学内容本节课的教学内容主要包括化工原理的基本概念、基本原理和基本单元操作。
具体来说,教学大纲如下:1.流体流动:流体的性质、流动的类型和计算方法;2.传质:传质的类型和计算方法、传质的设备;3.传热:传热的基本原理和计算方法、传热的设备;4.化工过程的基本单元操作:反应器、分离器、输送设备等。
三、教学方法为了激发学生的学习兴趣和主动性,本节课将采用多种教学方法,包括讲授法、讨论法、案例分析法、实验法等。
具体来说:1.讲授法:通过教师的讲解,让学生掌握化工原理的基本概念和基本原理;2.讨论法:通过小组讨论,让学生深入理解和掌握化工原理的知识;3.案例分析法:通过分析实际案例,让学生了解化工过程的基本单元操作和流程;4.实验法:通过实验操作,让学生亲自体验和验证化工原理的知识。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备以下教学资源:1.教材:化工原理教材,用于提供基础知识和理论框架;2.参考书:化工原理相关参考书,用于提供更多的知识和案例;3.多媒体资料:化工原理相关的视频、图片等资料,用于辅助讲解和展示;4.实验设备:化工原理实验设备,用于进行实验操作和验证。
化工原理课程设计1. 引言化工原理课程设计是化学工程专业本科学生的一门重要课程。
该课程旨在通过实际案例的分析和解决,让学生掌握化工原理的基本知识和应用技能。
本文将介绍化工原理课程设计的目的、内容、方法和评价。
2. 目的化工原理课程设计的目的是培养学生的工程实践能力和解决问题的能力。
通过实际案例的分析和设计,使学生能够应用所学的化工原理知识解决实际问题,提高工程实践能力。
3. 内容化工原理课程设计的内容涵盖了化工过程的基本原理和工艺流程的设计。
以下是化工原理课程设计的主要内容:3.1 化工过程的基本原理在化工原理课程设计中,学生将学习化工过程的基本原理,包括物质的平衡、能量的平衡、动量的平衡等。
学生将掌握化工过程中的质量守恒定律、能量守恒定律和动量守恒定律等基本原理。
3.2 工艺流程的设计在化工原理课程设计的过程中,学生将学习如何设计化工工艺流程。
学生将通过分析化工原料的性质和工艺要求,选择适当的反应器类型、控制参数等,设计出满足工艺要求的化工工艺流程。
4. 方法化工原理课程设计采用项目驱动的教学方法。
以下是化工原理课程设计的方法:4.1 实践项目学生将参与实际的化工工程项目,通过实际操作和实验,了解化工工艺的实际应用和操作流程。
学生将在实践中学习化工原理知识,提高解决问题和分析能力。
4.2 课程讲解和案例分析教师将通过课堂讲解和案例分析,介绍化工原理的基本概念和原理。
学生将通过分析和讨论实际案例,掌握化工原理的实际应用方法。
5. 评价化工原理课程设计的评价主要包括学生项目报告的评分和学生的学术表现。
以下是化工原理课程设计的评价指标:5.1 项目报告评分学生将根据课程设计项目的要求,提交相应的设计报告。
教师将对学生的设计报告进行评分,评估学生的设计能力和分析能力。
5.2 学术表现除了项目报告的评分外,教师还将评估学生的学术表现。
学生的学术表现包括参与课堂讨论、提出问题和解答问题的能力等。
6. 总结化工原理课程设计是化学工程专业学生培养工程实践能力和解决问题能力的重要课程。
化工原理课程设计题目院系专业化学工程与工艺姓名学号指导老师日期 2011年7月1 日中文摘要本课题是设计一个列管式换热器,用来完成煤油冷却的操作过程。
列管式换热器是化工生产中主要的传热设备。
化工生产常需进行物质的加热、保温、冷凝,这些要求通常是通过换热器达到的。
本次设计包括设计方案的选取,主要设备的工艺设计计算——物料衡算、热量衡算、工艺参数的选定、设备的结构设计和工艺尺寸的设计计算,辅助设备的选型,工艺流程图,主要设备的工艺条件图等内容。
以保证管热过程的顺利进行并使效率尽可能的提高。
列管式换热器虽然结构简单,但处理能力大塔板效率高,操作弹性大,造价也较低。
本方案极大优化了列管式换热器的设计。
关键词:换热器列管式煤油AbstractThis topic is to design a column tube exchanger, to complete kerosene cooling operation process. With the tube heat exchanger is the main chemical production of heat transfer equipment. Chemical production often need to undertake material heating, heat preservation, condensation, these requirements by heat exchanger is usually attained.This design including the selection of design scheme, design and calculation of main equipment of technology - material calculation, heat calculation, process parameter selection, equipment structure design and process design and calculation of the size, auxiliary equipment selection, process flow diagram, the main equipment content such as the technology conditions of graph. To ensure the smooth tube process as much as possible and make efficiency enhancement. With the tube heat exchanger although simple structure, but processing ability of high efficiency, great tower board operating flexibility, cost is low. The scheme is great with the tube heat exchanger optimized design.Keywords: heat exchanger with the tube type kerosene目录中文摘要 (I)ABSTRACT (II)目录 .............................................................................................................................. I II 第一章前言 (1)1.1、板式换热器的类型及工作原理 (1)1.2、板式换热器概述 (1)1.2.1、板式换热器的优点 (2)1.3、设计原则: (2)1.3.1、满足工艺和操作的要求 (3)1.3.2、满足经济上的要求 (3)1.3.3、保证安全生产 (3)1.4、设计方案简介: (3)1.4.1、选择换热器的类型 (3)1.4.2、管程安排 (3)1.5、设计任务及基本要求 (4)1.5.1、主要设备的工艺设计计算(含计算机辅助计算) (4)1.5.2、辅助设备的选型 (4)1.5.3、主要设备的工艺条件图 (4)1.5.4、设计说明书的编写 (4)第二章参数的选择及计算 (5)2.1、设计参数 (5)2.1.1、确定物性参数 (5)2.2、计算总传热系数 (5)2.2.1、热流量 (5)2.2.2、冷却水用量 (6)2.2.3、计算平均温差、校正系数 (6)2.2.4、计算传热面积 (6)2.2.5、工艺结构尺寸 (6)2.2.6、阻力损失计算 (7)2.2.6.2、壳程 (8)2.2.7、传热计算 (9)2.3、工艺系数的计算 (10)2.3.1、换热器壳体壁厚的确定 (10)2.3.2、换热器封头选择 (11)2.3.3、容器法兰选择 (12)2.3.4、管板尺寸的确定 (12)2.3.5、流体进、出口接管直径的计算 (12)2.3.6、管子拉脱力计算 (13)2.3.7、计算是否安装膨胀节 (14)2.3.8、开孔补强 (16)2.3.9、支座选用 (17)第三章设计结果汇总 (19)3.1、固定管板式换热器主要设计参数列表 (19)3.2、换热器装配图 (20)3.2.1、技术特性表 (20)3.2.2、接管表 (20)第四章设计小结 (22)第五章换热器装配图 (23)1.技术特性表 (23)2.接管表 (23)主要参考文献 (24)声明 (25)致谢 (26)第一章前言化工原理课程设计是综合应用本门课程所学知识,完成以单元操作为主的一次设计实践。
化工原理课程设计蒸发一、课程目标知识目标:1. 学生能理解并掌握蒸发原理在化工生产中的应用,包括蒸发过程中的传热、流体流动和物料平衡等基本概念。
2. 学生能够运用相关公式和理论,分析并计算蒸发过程中涉及的参数,如蒸发速率、热量需求、溶液的浓缩比等。
3. 学生能够识别并描述常见的蒸发设备及其工作原理,理解不同设备结构的优缺点。
技能目标:1. 学生具备运用化工软件或工具对蒸发系统进行模拟和优化的能力。
2. 学生能够结合实际案例,设计简单的蒸发工艺流程,并对其经济性、效率进行分析。
3. 学生通过小组合作,提高解决实际化工问题的能力,学会在团队中分工协作。
情感态度价值观目标:1. 学生通过本课程的学习,培养对化工行业的兴趣和认识,增强对工程实践的责任感和使命感。
2. 学生在探索蒸发技术的过程中,形成科学、严谨的学习态度,增强环保意识和节能意识。
3. 学生在团队合作中,学会尊重他人意见,培养良好的沟通能力和团队协作精神。
课程性质:本课程为化工原理的实践应用部分,强调理论与实践相结合,注重培养学生的实际操作能力和工程思维。
学生特点:学生为高中年级,具有一定的物理、化学基础知识,思维活跃,好奇心强,但可能缺乏实际工程经验。
教学要求:结合学生特点,教学过程中应注重案例教学,引导学生从实际问题出发,通过理论学习和实践操作,提高分析问题和解决问题的能力。
同时,注重启发式教学,激发学生的学习兴趣,培养其创新意识。
通过课程目标的具体分解,确保教学设计和评估的针对性和实用性。
二、教学内容1. 蒸发原理及其在化工中的应用:包括蒸发的基本概念、蒸发过程中的能量和物料平衡、影响蒸发速率的因素等,对应教材第二章“蒸发与结晶”相关内容。
2. 蒸发设备的结构与工作原理:介绍不同类型的蒸发设备(如升膜式、降膜式、强制循环式等),分析其结构特点、应用范围及优缺点,对应教材第三章“蒸发设备与操作”相关内容。
3. 蒸发过程的计算与模拟:学习蒸发过程中热量、质量传递的计算方法,运用化工软件进行蒸发系统的模拟和优化,对应教材第四章“化工过程的计算与模拟”相关内容。
化工原理课程设计B题目:KNO3水溶液三效并流加料蒸发装置的设计学生姓名:周文奕学号: 201538090108 班级:生物1501 专业:生物工程指导教师:方芳2017年6月课程设计成绩评定表课程设计评分(按下表要求评定)评分项目设计说明书质量(50分)图纸质量(30分)任务完成情况(10)分学习态度(10分)合计(100分)得分指导教师评语指导教师签名:年月日教研室主任审核意见教研主任签名:年月日化工原理设计B任务书化学与生物工程学院生物工程专业 15-01 班题目:KNO3水溶液三效并流加料蒸发装置的设计任务起止日期:2017年6月26日~2017年6月30日学生姓名张钰义学号201538090120 指导老师方芳教研室主任年月日审查院长年月日批准化工原理课程设计任务1.设计题目: KNO3水溶液三效并流加料蒸发装置的设计2.设计任务及操作条件:(1)处理能力aKNO水溶液.74t/10923(2)设备形式中央循环管式蒸发器(3)操作条件①KNO水溶液的原料液的质量分数为0.15,完成液质量分数为0.45,3原料液温度为80℃,恒压比热容为3.5kJ/(kg·℃)。
②加热蒸汽压力为400kPa(绝压),冷凝器压力为20kPa(绝压)。
③各效蒸发器的总传热系数为:K=2000W/(2m·℃),2K=1000W/(2m·℃),3K=500W/(2m·℃)。
1④各效加热蒸汽的冷凝液均在饱和温度下排出。
假设各效传热面积相等,并忽略溶液的浓缩热和蒸发器的热损失,不考虑液柱静压和流动阻力对沸点的影响。
⑤每年按照300天计,每天24小时连续运行。
⑥厂址:天津地区3.设计内容⑴设计方案简介,对确定的工艺流程及蒸发器形式进行简要论述。
⑵蒸发器的工艺计算确定蒸发器的传热面积。
⑶蒸发器的主要结构尺寸设计⑷主要辅助设备选型,包括气液分离器和蒸汽冷凝器等。
⑸绘制KNO水溶液三效并流加料蒸发装置的流程图及蒸发器设备工艺简3图⑹对本设计进行评述。
KNO3水溶液三效并流加料蒸发装置的设计摘要蒸发器可广泛用于医药、食品、化工、轻工等行业的水溶液或有机溶媒溶液的蒸发,特别适用于热敏性物料(例如中药生产的水、醇提取液等)。
同时,蒸发操作也可对溶剂进行回收。
随着工业蒸发技术的发展,蒸发器的结果和型式也不断的改进。
目前,蒸发器大概分为两类:一类是循环型,包括中央循环管式、悬筐式、外热式、列文式及强制循环式等;另一类是单程型,包括升膜式、降膜式、升—降膜式等。
这些蒸发器型式的选择,要多个方面综合得出。
现在化工生产实践中,为了节约能源、提高经济效益,很多厂家采用的蒸发设备是多效蒸发。
因为这样可以降低蒸气的消耗量,从而提高蒸发装置的各项热损失。
多效蒸发流程可分为:并流流程、逆流流程、平流流程以及错流流程。
在选择型式时应考虑料液的性质、工程技术要求、公用系统的情况等。
关键词:化工设备;三效蒸发装置;KNO溶液;并流3目录一绪论 (1)二设计任务 (2)2.1设计任务 (2)2.2操作条件 (2)三设计条件及设计方案说明 (2)四物性数据及相关计算 (3)4.1估计各效蒸发量和完成液浓度 (3)4.2估计各效蒸发溶液的沸点和有效总温度差 (4)4.3加热蒸汽消耗量和各效蒸发水量的初步计算 (5)4.4蒸发器传热面积的估算 (7)4.5有效温度的再分配 (7)4.6重复上述计算步骤 (8)4.7计算结果列表 (11)五主体设备计算和说明 (11)5.1加热管的选择和管数的初步估计 (11)5.2循环管的选择 (11)5.3加热管的直径以及加热管数目的确定 (12)5.4分离室直径和高度的确定 (13)5.5接管尺寸的确定 (14)六附属设备的选择 (16)6.1气液分离器 (16)6.2蒸汽冷凝器 (16)七三效蒸发器主要结构尺寸和计算结果 (18)7.1蒸发器的主要结构尺寸的确定 (18)7.2气液分离器结构尺寸的确定 (18)7.3 蒸汽冷凝器主要结构的确定 (19)八设计心得 (20)九参考文献 (20)十附录 (21)附录A:并流加料三效蒸发器的物料衡算和热量衡算示意图 (21)附录B:并流加料蒸发流程 (22)一、绪论蒸发是使含有不挥发溶质的溶液沸腾汽化并移出蒸气,从而使溶液中溶质浓度提高的单元操作。
蒸发有它独特的特点:从传热方面看,原料液和加热蒸气均为相变过程,属于恒温传热;从溶液特点分析,有的溶液有晶体析出、易结垢、易生泡沫、高温下易分解或聚合、粘度高,腐蚀性强;从传热温差上看,因溶液蒸气压降低,沸点增高,故传热温度小于蒸发纯水的温度差;从泡沫夹带情况看,二次蒸气夹带泡沫。
需用辅助仪器除去;从能源利用上分析,可以对二次蒸气重复利用……这就要求我们从五个方面考虑蒸发器的设计。
降膜式蒸发器在降膜蒸发器中,液体和蒸汽向下并流流动。
料液经预热器预热至沸腾温度,经顶部的液体分布装置形成均匀的液膜进入加热管,并在管内部分蒸发。
二次蒸汽与浓缩液在管内并流而下.料液在蒸发器中的停留时间短,能适应热敏性溶液的蒸发.另外,降膜蒸发还适用于高粘度溶液,粘度范围在0.05-0.4Pas。
降膜蒸发器极易使管内的泡沫破裂,故亦适用于易发泡物料的蒸发。
由于降膜蒸发器是液膜传热,所以其传热系数高于其他形式的蒸发器;此外,降膜蒸发没有液柱静压力,传热温差显著高于其他形式的蒸发器。
故可取的良好的传热效果,一次性投入最小,是业主优先选择的蒸发器形式。
强制循环蒸发器这种蒸发器利用外加动力(循环泵)将循环管下降的溶液和部分原料液送到加热室。
大大加快了循环速度。
循环速度的大小可通过调节泵的流量来控制。
一般循环速度在2.5m/s 以上。
当循环液体流过热交换器时被加热,然后在分离器中压力降低时部分蒸发,从而将液体冷却至对应该压力下的沸点温度,特别适用于易结晶物料。
自然循环蒸发器在自然循环蒸发器中,料液在加热器中受热蒸发,产生的二次蒸汽经顶部进入分离室,将液体分离后排出。
分离出的液体通过循环管流回蒸发器,并在热虹吸的作用下进入加热器受热蒸发。
这样就形成了一个闭路循环。
加热器和分离器之间的温差愈大,产生的蒸汽气泡愈多。
这样可以强化热虹吸的作用和增加流动速度,从而获得较好的传热效果。
自然循环蒸发器不需要循环泵,运行费用较低。
二、设计任务及操作条件2.1 设计任务(1)处理能力 a t /1092.74 3KNO 水溶液(2)设备形式 中央循环管式蒸发器2.2 操作条件① 3KNO 水溶液的原料液的质量分数为0.15,完成液质量分数为0.45,原料液温度为80℃,恒压比热容为3.5kJ/(kg ·℃)。
②加热蒸汽压力为400kPa (绝压),冷凝器压力为20kPa (绝压)。
③各效蒸发器的总传热系数为:1K =2000W/(2m ·℃),2K =1000W/(2m ·℃),3K =500W/(2m ·℃)。
④各效加热蒸汽的冷凝液均在饱和温度下排出。
假设各效传热面积相等,并忽略溶液的浓缩热和蒸发器的热损失,不考虑液柱静压和流动阻力对沸点的影响。
⑤每年按照300天计,每天24小时连续运行。
⑥厂址:天津地区三、设计条件及设计方案说明本次设计要求采用中央循环管式蒸发器,在工业上被称为标准蒸发器。
其特点是结构紧凑、制造方便、操作可靠等。
它的加热室由一垂直的加热管束构成,在管束中央有一根直径较大的管子,为中央循环管。
在蒸发操作中,为保证传热的正常进行,根据经验,每一效的温差不能小于5~7。
通常,对于沸点升高较大的电解质溶液,应采取2~3效。
由于本次设计任务是处理KNO3溶液。
这种溶液是一种沸点升高较大的电解质,故选用三效蒸发器。
另外,由于KNO3溶液是一种粘度不大的料液,故多效蒸发流程采用并流操作。
多效蒸发器工艺设计的主要依据是物料衡算、热量衡算及传热速率方程。
计算的主要项目有:加热蒸气的消耗量,各效溶剂蒸发量以及各效的传热面积等。
多效蒸发器的计算一般采用迭代计算法。
四、物性数据及相关计算4.1 估计各效蒸发量和完成液浓度年产量:79200吨 ,且每年按照300天计算,每天24小时。
进料流量:F=79200t/a=79200×1000/(300×24)=11000kg/h(4-1) 总蒸发量:W =F (1-30x x )=11000(1-45.015.0)=7333.33kg/h(4-2)因并流加料,蒸发中无额外蒸汽引出,可设 W1:W2:W3=1:1.1:1.2W=W1+W2+W3=3.3W(4-3) W1=3.333.7333= 2222.22 kg/h W2=1.1 W1 = 2444.44 kg/h W3=1.2W1= 2666.66kg/h X1=10W F Fx -=22.2222-1100015.011000⨯=0.188 X2=210W W F Fx --=44.244422.22221100015.011000--⨯=0.261X3==0.454.2 估计各效蒸发溶液的沸点和有效总温度差设各效间压力降相等,则总压力差为∑=-='-=kPa 38020400P P ΔP K1 (4-4) 各效间的平均压力差为 kPa 126.673ΔP ΔP i ==∑由各效的压力差可求得各效蒸发室的压力,即kPa 20P P 146.66kPa 126.672400Pi 2P P 273.33kPa126.67400ΔP P P K 312i 11='='=⨯-=∆-='=-=-='由各效的二次蒸气压力,从手册中可查得相应的二次蒸气的温度和气化潜热列于下表中。
表4.1 二次蒸气的温度和气化潜热 效数Ⅰ Ⅱ Ⅲ 二次蒸气压力273.33146.6620二次蒸气温度(即下一效加热蒸汽的温度)131.20111.3260.1二次蒸气的气化潜热(即下一效加热蒸汽的气化潜热)217722292355蒸发操作常常在加压或减压下进行,从手册中很难直接查到非常压下的溶液沸点。
所以用以下方法估算:a f ∆'=∆'(4-5)—常压下(101.3kPa )由于溶质引起的沸点升高,即溶液的沸点-水的沸点 常压下水的沸点为100℃表4-1 常压下不同质量分数的KNO 沸点如下表质量分数kg/l 18.8% 26.1% 45% 沸点℃101.5102.3104.2经查表400 kPa 下饱和蒸汽温度为143.4℃,气化潜热为2138.582.12177)27320.131(0162.021=∆'+=∆'=∆'a a f ℃47.22229)27332.111(0162.022=∆'+=∆'=∆'a a f ℃21.32355)2731.60(0162.023=∆'+=∆'=∆'a a f ℃ 由于不考虑液柱静压和流动阻力对沸点的影响,所以总温差为5.7=∆∑℃ 各效料液温度为02.13382.120.131111=+=∆+'=T t ℃ 79.11347.232.111222=+=∆+'=T t ℃ 31.6321.31.60333=+=∆+'=T t ℃由手册可查得400KPa 的饱和蒸汽的温度为143.4℃、汽化潜热为2138.5kJ/kg ,所以8.755.71.604.143)('=--=∆--=∆∑∑k s T T t ℃4.3 加热蒸汽消耗量和各效蒸发水量的初步计算由于忽略溶液的浓缩热,所以⎥⎦⎤⎢⎣⎡'----+'=--i i i pw i pw p i i i i i r t t c W c W Fc r r D W 1110)...(η⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡'=1111121775.2138D r r D W ①34658625.0222979.11302.133)18.45.311000(22292177)(111'2211'2212+=⎥⎦⎤⎢⎣⎡-⨯-⨯+=⎥⎦⎤⎢⎣⎡--+=W W W r t t c W Fc r r W W PW PO②770084.08625.09.285448.50)18.418.45.311000(23552229)(12212'33221'3323+-=⎥⎦⎤⎢⎣⎡-⨯-⨯+=⎥⎦⎤⎢⎣⎡---+=W W W W W r t t c W c W Fc r r W W pw PW PO③又W1+W2+W3=7333.33 ④ 联立 ①②③④ 计算得W1=2217.7kg/h W2=2460.1kg/h W3=2733.7kg/h D1=2263kg/h 与第一次计算结果比较,其相对误差为计算相对误差均在0.05以下,故各效蒸发量的计算结果合理。