第15讲 奇数与偶数
- 格式:doc
- 大小:45.00 KB
- 文档页数:4
第十五讲规律与归纳无论是在奥数的学习中,还是在日常生活中,我们都会发现很多很多规律,它可以帮助我们更好的认识问题.特别是在奥数学习中,一些数列、数阵的排列,图形周长、面积的变化、庞大数字的计算等等都有一定的规律.只有经过观察、思考和试算,发现数与数、图形与图形相互之间的关系,才能得到题目的答案. 同学们,通过学习,希望你在平时多积累,多归纳,善于发现、总结一些规律,因为学会发现往往比学会几道题目重要得多.〖经典例题〗例1、流水线上生产小木球涂色的次序是:先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后又依次是5红、4黄、3绿、2黑、1白……如此继续涂下去,到第1993个小球该涂什么颜色?在前1993个小球中,涂黑色的小球有多少个?分析:根据题意,小木球涂色的次序是:“5红、4黄、3绿、2黑、1白”,也就是每涂过“5红、4黄、3绿、2黑、1白”循环一次.这里,给小木球涂色的周期是:5+4+3+2+1=15.1993÷15=132……13,第1993个小球出现在上面所列一个周期中第13个,所以第1993个小球是涂黑色。
每个周期黑球共有2个,则一共有2×132+1=265(个).例2、右图的图案表示一个花圃的设计方案,汉字表示每盆花的颜色,请问第7行第5盆花的颜色?第20行第5盆花的颜色? (从左往右计数)分析:从上往下,从左至右,排列周期是:红、蓝、白、黄;第7行第5盆花的颜色:1+2+3+4+5+6+5=26(盆),26÷4=6……2,所以是蓝色;第20行第5盆花的颜色:1+2+……+19+5=195,195÷4=48……3,所以是白色的.例3、在下图所示的表中,将每列上、下两个字组成一组,例如第一组为(共社),第二组为(产会).那么,第340组是什么?分析:因为“共产党好”有4个字,“社会主义好”有5个字,4与5的最小的公共倍数是20,所以再连续写完5个“共产党好”与4个“社会主义好”之和,将重头写起,出现周期循环,而且每个周期是20组数.而340÷20=17,所以第340组正好写完第17个周期,第340组是(好,好).〖巩固练习〗练习1:1991年1月1日是星期二,(1)该月的22日是星期几?该月28日是星期几?(2)1994年1月1日是星期几?分析:(1)一个星期是7天,因此,7天为一个循环,这类题在计算天数时,可以采用“算尾不算头”的方法。
《奇数和偶数的运算性质》教学设计【教学内容】数的奇偶性(教材第15页例2,以及第16~17页练习四第4~7题)。
【教学目标】1.经历探索加减法中数的奇偶性变化的过程,在活动中发现加法中的数的奇偶性的变化规律,在活动中体验研究方法,提高推理能力。
2.使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。
【重点难点】1.探索并理解数的奇偶性。
2.能应用数的奇偶性分析和解释生活中一些简单问题。
教学过程:【复习导入】师:在学习2、5的倍数特征时,我们已经知道什么是奇数和偶数,请看大屏。
把下面各数分别填在合适的圈里。
那么谁能回答一下,什么叫做奇数?奇数有什么特征?什么叫做偶数?偶数有什么特征?生说师大屏出示。
那么,奇数和偶数的运算会有那些特征呢?这节课我们就来进一步研究奇数和偶数。
板书课题《奇数和偶数的运算性质》【新课讲授】1.出示例2:奇数与偶数的和是奇数还是偶数?奇数与奇数的和是奇数还是偶数?偶数与偶数的和呢?这道题用算式怎么表示?奇数+偶数=?奇数+奇数=?偶数+偶数=?大屏出示:2、学生独立猜想,小组内汇报交流,然后统一意见进行验证(要求:验证时多选择几组进行证明)。
教师根据学生汇报总结方法如下:方法一:利用奇数和偶数的意义,奇数除以2都余1,而偶数除以2没有余数,奇数加偶数的和除以2还余1。
所以:奇数+偶数=奇数,奇数+奇数=偶数,偶数+偶数=偶数;方法二:利用算式寻找规律(大屏出示)例如:5+8=13, 7+8=15…… 5+7=12,7+9=16…… 8+12=20,12+24=36……通过上面的算式发现:奇数与偶数的和是奇数,奇数与奇数的和是偶数,偶数与偶数的和是偶数。
所以,奇数+偶数=奇数,奇数+奇数=偶数,偶数+偶数=偶数。
师:你能举几个例子说明一下吗?(学生的举例可以引导从正反两个角度进行)3、刚才我们探究出了奇数和偶数的和的奇偶性,那奇数和偶数的差的奇偶性有什么规律呢?你是怎么想的?你能举例说明你得出的结论吗?生说师大屏出示。
第十五讲奇偶分析法奇数和偶数除了自身的一些特性(如奇数不可能等于偶数)以外,还有许多运算特性,如两个偶数的和一定还是偶数,两个奇数的积一定还是奇数等。
利用奇偶数的这些特性,可以解决许多数学问题。
例1某班同学参加学校的数学竞赛,试题共50题。
评分标准是:答对一道题给3分,不答给1分,答错倒扣1分。
请说明:该班同学得分总和一定是偶数。
(“从小爱数学”数学竞赛题)解:在未答题前每人都是0分,0是偶数。
做一道题,无论答对、答错或不答,增加或减少的都奇数分(3和1都是奇数),得分变成奇数,再做一道题,得分又变成偶数,照这样做50道题,得分从偶数开始变50次,最后还是偶数。
全班无论多少人,总分都是若干个偶数的和,所以得分总和一定是偶数。
例2图中圆圈内依次写出前25个质数。
甲顺序计算相邻两个质数之和填在上行方格中;乙顺序计算相邻两个质数之积填在下行方格中。
问:甲填的数中有多少个与乙填的数相同?为什么?(“华杯赛”试题)解:质数中只有一个偶数,其余都是奇数。
所以甲填的各中除了第一个是奇数5以外,其余的都是不小于8的偶数。
乙填的积数中,除了第一个偶数6以外,其余所填的都是不小于15的奇数。
因此,甲填的数与乙填的数全都不相同。
例3把下图中的圆圈任意涂成红色或蓝色。
问:有无可能使得在同一条直线上的红圈数都是奇数?请说明理由。
(“华杯赛”试题)解:假设每条线上的红圈都是奇数个,那么,5条线上的红圈数相加仍是奇数。
但是,5条线上的红圈数相加时,由于每一个圈都在两条线上,因而都计算了2次,于是相加的总和应当是偶数。
这就出现了矛盾,所以不可能使同一条线上的红圈数都是奇数。
例4六(1)班全班35名同学。
教室的课桌排成5排,每排7人。
每个座位的前、后、左、右位子称为它的邻座。
为了保护视力,打算改变一下座位,能否做到让每个同学都换到他的邻座?解:奇数和偶数是交互相邻的自然数,这种特性可以用“黑”“白”格子来表示。
画一个5行7列的方格图,并且用“黑”“白”格子区分出邻座关系。
高中数学奇偶性教案
主题:奇偶性
教学目标:
1. 了解奇数和偶数的定义;
2. 掌握奇数加奇数、偶数加偶数、奇数加偶数的性质;
3. 能够应用奇偶性解决实际问题。
教学内容:
1. 奇数和偶数的定义;
2. 奇数加奇数、偶数加偶数、奇数加偶数的性质;
3. 奇偶性在数学计算中的应用。
教学步骤:
1. 引入:通过举例介绍奇数和偶数的定义,让学生理解奇偶性的概念;
2. 探究:让学生在小组内讨论奇数加奇数、偶数加偶数、奇数加偶数的性质,并总结规律;
3. 实践:设计一些奇偶性的练习题,让学生熟练运用奇偶性解决问题;
4. 应用:让学生通过实际问题应用奇偶性解决实际问题,加强对奇偶性的理解和应用能力;
5. 总结:对本节课学习的内容进行总结,强调奇偶性在数学计算中的重要性。
评价方式:
1. 学生在探究环节的讨论表现;
2. 学生在实践环节的练习成绩;
3. 学生在应用环节的解决问题能力;
4. 学生对奇偶性的理解和应用能力。
拓展活动:
1. 设计更复杂的奇偶性问题,让学生提升解决问题的能力;
2. 扩展奇偶性在其他数学知识领域的应用,如代数、几何等。
教学反思:
1. 教学内容是否能够引起学生的兴趣?
2. 学生对奇偶性的理解是否透彻?
3. 学生能否灵活运用奇偶性解决应用问题?
以上是一份高中数学奇偶性教案范本,希望对您有帮助。
全国初中数学竞赛辅导(初1)第15讲奇数与偶数教师版第⼗五讲奇数与偶数通常我们所说的“单数”、“双数”,也就是奇数和偶数,即±1,±3,±5,…是奇数,0,±2,±4,±6,…是偶数.⽤整除的术语来说就是:能被2整除的整数是偶数,不能被2整除的整数是奇数.通常奇数可以表⽰为2k+1(或2k-1)的形式,其中k为整数,偶数可以表⽰为2k的形式,其中k 是整数.奇数和偶数有以下基本性质:性质1 奇数≠偶数.性质2 奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数.性质3 奇数×奇数=奇数,偶数×偶数=偶数,奇数×偶数=偶数.性质4 奇数个奇数之和是奇数;偶数个奇数之和是偶数;任意有限个偶数之和为偶数.性质5 若⼲个奇数的乘积是奇数,偶数与整数的乘积是偶数.性质 6 如果若⼲个整数的乘积是奇数,那么其中每⼀个因⼦都是奇数;如果若⼲个整数的乘积是偶数,那么其中⾄少有⼀个因⼦是偶数.性质7 如果两个整数的和(或差)是偶数,那么这两个整数的奇偶性相同;如果两个整数的和(或差)是奇数,那么这两个整数⼀定是⼀奇⼀偶.性质8 两个整数的和与差的奇偶性相同.性质9 奇数的平⽅除以8余1,偶数的平⽅是4的倍数.性质10 整数a和|a|有相同的奇偶性性质11 两个连续的整数中,必有⼀个是奇数,⼀个是偶数,两个相邻整数之和是奇数,之积是偶数.性质12 如果若⼲个整数之和是奇数,那么其中⾄少有⼀个是奇数;如果奇数个整数之和是偶数,那么其中⾄少有⼀个是偶数.下⾯我们给出性质7⾄性质9的证明.性质7的证明设两个整数的和是偶数,如果这两个整数为⼀奇⼀偶,那么由性质2知,它们的和为奇数,因此它们同为奇数或同为偶数.同理两个整数的和(或差)是奇数时,这两个数⼀定是⼀奇⼀偶.性质8的证明设两个整数为X,y.因为(x+y)+(x-y)=2x为偶数,由性质7便知,x+y与x-y同奇偶.性质9的证明若x是奇数,设x=2k+1,其中k为整数,于是x2=(2k+1)2=4k3+4k+1=4k(k+1)+1.因为k与k+1是两个连续的整数,它们必定⼀奇⼀偶,从⽽它们的乘积是偶数.于是,x2除以8余1.若y是偶数,设y=2t,其中t为整数,于是y2=(2t)2=4t2所以,y2是4的倍数.例1 在1,2,3,…,1998中的每⼀个数的前⾯,任意添上⼀个“+”或“-”,那么最后运算的结果是奇数还是偶数?解由性质8知,这最后运算所得的奇偶性同1+2+3+…+1998=999×1999的奇偶性是相同的,即为奇数.例2 设1,2,3,…,9的任⼀排列为a1,a2,…,a9.求证:(a1-1)(a2-2)…(a9-9)是⼀个偶数.证法1 因为(a1-1)+(a2-2)+(a3-3)+…+(a9-9)=(a1+a2+…+a9)-(1+2+…+9)=0是偶数,所以,(a1-1),(a2-2),…,(a9-9)这9个数中必定有⼀个是偶数(否则,便得奇数个(9个)奇数的和为偶数,与性质4⽭盾),从⽽由性质5知(a1-1)(a2-2)…(a9-9)是偶数.证法2 由于1,2,…,9中只有4个偶数,所以a1,a3,a5,a7,a9中⾄少有⼀个是奇数,于是,a1-1,a3-3,a5-5,a7-7,a9-9⾄少有⼀个是偶数,从⽽(a1-1)(a2-2)…(a9-9)是偶数.例3 有n个数x1,x2,…,x n,它们中的每⼀个数或者为1,或者为-1.如果x1x2+x2x3+…+x n-1x n+x n x1=0,求证:n是4的倍数.证我们先证明n=2k为偶数,再证k也是偶数.由于x1,x2,…,x n。
合数奇数偶数质数识知识点
嘿,朋友!今天咱来聊聊合数、奇数、偶数和质数这些有趣的数学知识点呀!
先来说说偶数吧。
偶数呢,就是能被 2 整除的数哟,就像 4,哎呀,这多好理解呀,2 个 2 不就是 4 嘛,它就是个偶数哦!咱平常生活里,偶数可常见啦,比如一双鞋,那就是 2 只,这就是偶数的体现呀。
再讲讲奇数呀,奇数与偶数可不一样,它不能被 2 整除呢,像 3 就是奇数呀。
你想想,三根棒棒糖,它可没办法平均分成两份,这就是奇数的特点呢。
生活中奇数也到处都是呀,比如一个人单独行动的时候,那不就是奇数嘛。
然后是质数哟!质数可特别啦,它只有 1 和它本身两个因数,像 5 就是质数呢。
哎呀,质数就像是个独行侠一样,特别独立,没那么多复杂的关系。
就好像你有个特别专注于自己事情的朋友,这就有点像质数啦!
合数可就不一样咯,合数除了 1 和它本身,还有别的因数呢。
比如说 6 呀,它除了 1 和 6,还有 2 和 3 也是它的因数呢。
这不就像那种朋友特别多,人际关系很复杂的人嘛。
咱们来举个例子感受一下呗。
说有一堆苹果 15 个,这 15 是奇数还是
偶数呢?很明显不是 2 的倍数,那就是奇数呗!那它是质数还是合数呢?它除了 1 和 15,还有 3 和 5 也是它的因数呀,所以它就是个合数呀!这不就很清楚啦。
哇塞,数学世界真的好神奇呀!这些知识点是不是很有意思呀?我觉得呀,它们就像我们生活中的各种人和事,有着自己独特的特点和存在的意义。
所以呀,我们可得好好理解和掌握它们,这样才能在数学的海洋里畅游无阻呀!。
(15)整数的分类【知识精读】1.余数的定义:在等式A=mB+r中,如果A、B是整数,m是正整数,r为小于m的非负整数,那么我们称r是A 除以m的余数。
即:在整数集合中被除数=除数×商+余数(0≤余数<除数)例如:13,0,-1,-9除以5的余数分别是3,0,4,1(∵-1=5(-1)+4。
-9=5(-2)+1。
)2.显然,整数除以正整数m ,它的余数只有m种。
例如整数除以2,余数只有0和1两种,除以3则余数有0、1、2三种。
3.整数的一种分类:按整数除以正整数m的余数,分为m类,称为按模m分类。
例如:m=2时,分为偶数、奇数两类,记作{2k},{2k-1}(k为整数)m=3时,分为三类,记作{3k},{3k+1},{3k+2}.或{3k},{3k+1},{3k-1}其中{3k-1}表示除以3余2。
m=5时,分为五类,{5k}.{5k+1},{5k+2},{5k+3},{5k+4}或{5k},{5k±1},{5k±2},其中5k-2表示除以5余3。
4.余数的性质:整数按某个模m分类,它的余数有可加,可乘,可乘方的运算规律。
举例如下:①(3k1+1)+(3k2+1)=3(k1+k2)+2 (余数1+1=2)②(4k1+1)(4k2+3)=4(4k1k2+3k1+k2)+3(余数1×3=3)③(5k±2)2=25k2±20k+4=5(5k2±4k)+4(余数22=4)以上等式可叙述为:①两个整数除以3都余1,则它们的和除以3必余2。
②两个整数除以4,分别余1和3,则它们的积除以4必余3。
③如果整数除以5,余数是2或3,那么它的平方数除以5,余数必是4或9。
余数的乘方,包括一切正整数次幂。
如:∵17除以5余2 ∴176除以5的余数是4 (26=64)5.运用整数分类解题时,它的关鍵是正确选用模m。
【分类解析】例1.今天是星期日,99天后是星期几?分析:一星期是7天,选用模m=7, 求99除以7的余数解:99=(7+2)9,它的余数与29的余数相同,29=(23)3=83=(7+1)3它的余数与13相同,∴99天后是星期一。
奇数、偶数与奇偶分析整数按能否被2整除分为两大类:奇数和偶数,奇数与偶数有下列基本性质:1.奇数≠偶数2.两个整数相加(减)或相乘,结果的奇偶性如下表所示3.若干个奇数之积是奇数,偶数与任意整数之积是偶数;偶数个奇数的和为偶数,若干个偶数的和为偶数.4.设m、n是整数,则m土n,nm±的奇偶性相同.5.设m是整数,则m与m,m n的奇偶性相同.奇偶性是整数的固有属性,通过分析整数的奇偶性来解决问题的方法叫奇偶分析法.例题【例1】三个质数之和为86,那么这三个质数是.思路点拨运用奇数、偶数、质数、合数性质,从分析三个加数的奇偶性人手.注:18世纪的哥尼斯堡,有7座桥把这儿的普雷格尔河中两个小岛与河岸联系起来,在这迷人的地方,人们议论着一个有趣的问题.一个游人怎样才能不重复地一次走遍7座桥,而最后又回到出发点.1736年彼得堡院士欧拉巧妙地解决了这个问题.欧拉把一个复杂的实际问题化为一个简单的几何图形,他指出只要我们能从一点出发,不重复地一笔把这样的图形画出来,那么就可说明游人能够不重复地一次走遍这7座桥,这就是著名的“一笔画”问题的来历.利用奇偶分析不难得到一般的结论:凡是能一笔画成的图形,它上面除了起点和终点外的每一个点总是一笔进来,一笔出去.因此,除了起点和终点外的每一个点都有偶数条线和它相连.简单地说,当且仅当图形中的奇结点(每点出发有奇数字线)的个数不大于2时,这个图形才能一笔画.【例2】如果a、b、c是三个任意的整数,那么222accbba+++、、().A.都不是整数B.至少有两个整数C.至少有一个整数D.都是整数思路点拨举例验证或从a、b、c的奇偶性说明.【例3】(1)设1,2,3,…,9的任一排列为a l,a2,a3…,a9.求证:(a l l一1)( a2—2)…(a9—9)是一个偶数.(2)在数11,22,33,44,54,…20022002,20032003,这些数的前面任意放置“+”或“一”号,并顺次完成所指出的运算,求出代数和,证明:这个代数和必定不等于2003.思路点拨(1)转换角度考察问题,化积的奇偶性为和的奇偶性来研究;(2)由于任意添“十”号或“一”号,形式多样,因此不可能一一尝试再作解答,从奇数、偶数的性质人手.【例4】已知n x x x x 、、、、Λ321都是+1或一1,并且011433221=+++++-x x x x x x x x x x n n n Λ,求证:n 是4的倍数.思路点拨 可以分两步,先证n 是偶数2k ,再证明k 是偶数,解题的关键是从已知等式左边各项的特点受到启发,挖掘隐含的一个等式.【例5】 游戏机的“方块”中共有下面?种图形.每种“方块”都由4个l ×l 的小方格组成.现用这7种图形拼成一个7× 4的长方形(可以重复使用某些图形).问:最多可以用这7种图形中的几种图形?思路点拨 为了形象化地说明问题,对7×4的长方形的28个小方格黑白相间染色,除“品字型”必占3个黑格1个白格或3个白格1个黑格,其余6个方格各占2个黑格2个白格.注:对同一个数学对象,从两个方向考虑(n 项和与积),再将这两个方面合在一起整体考虑,得出结论,这叫计算两次原理,通过计算两次可以建立方程,证明恒等式等.在一定的规则下,进行某种操作或变换,问是否(或证明)能够达到一个预期的目的,这就是所谓操作变换问题,此类问题变化多样,解法灵活,解题的关键是在操作变换中,挖掘不变量,不变性.一些非常规数字问题需要恰当地数学化,以便计算或推理.引入字母与赋值法是数学化的两种常用方式方法.所谓赋值法就是在解题时,将问题中的某些元素用适当的数表示,然后利用这些数值的大小,正负性、奇偶性等进行推理论证的一种解题方法.【例6】桌上放着七只杯子;杯口全朝上,每次翻转四个杯子:问能否经过若干次这样的翻动,使全部的杯子口都朝下?思路点拨 这不可能.我们将口向上的杯于记为:“0”,口向下的杯子记为“1”.开始时,由于七个杯子全朝上,所以这七个数的和为0,是个偶数.一个杯子每翻动一次,所记数由0变为1,或由l 变为0,改变了奇偶性.每一次翻动四个杯子,因此,七个之和的奇偶性仍与原来相同.所以,不论翻动多少次,七个数之和仍为偶数.而七个杯子全部朝下,和为7,是奇数,因此,不可能.整数可以分为奇数和偶数两类.【例7】在1,2,3,…,2005前面任意添上一个正号或负号,它们的代数和是奇数还是偶数?思路点拨 两个整数之和与这两个整数之差的奇偶性相同,只要知道1+2+3+…+2005的奇偶性即可.因两个整数的和与差的奇偶性相同,所以,在1,2,3,…,2005中每个数前面添上正号或负号,其代数和应与1+2+3+…+2005的奇偶性相同,而1+2+3+…+2005=21(1+ 2005)×2005=1003 ×2005为奇数;因此,所求代数和为奇数.注:抓住“a+b 与a —b 奇偶性相同”,通过特例1十2十3十…十2005得到答案.【例8】“ 元旦联欢会上,同学们互赠贺卡表示新年的:良好祝愿.“无论人数是什么数,用来交换的贺卡的张数总是偶数.”这句话正确吗?试证明你的结论.思路点拨 用分类讨论的思想方法,从“无论人数是什么数”入手,考虑人数为奇数或偶数的两种情况.这句话是正确的.下面证明之.若联欢会上的人数为偶数,设为2m (m 为整数),则每个人赠送给同学们的贺卡张数为奇数,即(2m —1).那么,贺卡总张数为2m(2m —1)=4m 2-2m ,显然是偶数.若联欢会上的人数为奇数,设为2m+1(m 为整数,则每个人赠送给同学们的贺卡张数应是2m ,为偶数.贺卡总张数为(2m+1)·2m ,仍为偶数.故“用来交换的贺卡张数总是偶数”是对的.注:按奇数和偶数分类考虑问题是常见的解决此类问题的策略之一.【例9】桌面上放有1993枚硬币,第1次翻动1993枚,第2次翻动其中的1992枚,第3次翻动其中的1991枚,…,第1993次翻动其中一枚,试问:能否使桌面上所有的1993枚硬币原先朝下的一面都朝上?并说明理由.思路点拨 若要把一枚硬币原先朝下的一面朝上,应该翻动该硬币奇数次.因此,要把1993枚硬币原先朝下的一面都朝上,应该翻动这1993枚硬币的总次数为奇数.现在1993次翻动的总次数为1+2+3+…+1993=1993×(1+1993)/2=1993×997是个奇数,故猜想可以使桌面上1993枚硬币原先朝下的一面都朝上.理由如下:按规定,1993次翻动的总次数为1+2+3+…+1993=1993×(1+1993)/2=1993×997,所以翻动的次数为奇数,而且可见每个硬币平均翻动了997次.而事实上,只要翻动一枚硬币奇数次,就能使这枚硬币原先朝下的一面朝上.按如下的方法进行翻动: 第1次翻动全部1993枚,第2次翻动其中的1992枚,第1993次翻动第2次未翻动的那1枚,第3次翻动其中的1991枚,第1992次翻动第3次未翻动的2枚,第997次翻动其中的997枚,第998次翻动第997次未翻动的996枚.这样,正好每枚硬币被翻动了997次,就能使每一枚硬币原来朝下的一面都朝上. 注:灵活、巧妙地利用奇俩性分析推理,可以解决许多复杂而有趣的问题,并有意想不到的效果.【例10】在6张纸片的正面分别写上整数:1、2、3、4、5、6,打乱次序后,将纸片翻过来,在它们的反面也随意分别写上1-6这6个整数,然后,计算每张纸片的正面与反面所写数字之差的绝对值,得出6个数.请你证明:所得的6个数中至少有两个是相同的. 思路点拨 从反面人手,即设这6个数两两都不相等,利用bi a i -与i i b a - (i =1,2,3,4,5,6)的奇偶性相同,引入字母进行推理证明.设6张卡片正面写的数是654321a a a a a a 、、、、、,反面写的数对应为654321b b b b b b 、、、、、,则这6张卡片正面写的数与反面写的数的绝对值分别为11b a -,22b a -,33b a -,44b a -,55b a -,66b a -.设这6个数两两都不相等,则它们只能取0,1,2,3,4,5这6个值.于是11b a -+22b a -+33b a -+44b a -+55b a -+66b a -=0+1+2+3+4+5=15是个奇数. 另一方面,bi a i -与i i b a - (i =1,2,3,4,5,6)的奇偶性相同.所以11b a -+22b a -+33b a -+44b a -+55b a -+66b a -与(a 1一b 1)+(a 2一b 2)+(a 3一b 3)+(a 4一b 4)+(a 5一b 5)+(a 6一b 6)= )(654321a a a a a a +++++一)(654321b b b b b b +++++ =(1+2+3+4+5+6)一(1+2+3+4+5+6)=O 的奇偶性相同,而0是个偶数,15是奇数,两者矛盾.所以,11b a -,22b a -,33b a -,44b a -,55b a -,66b a -这6个数中至少有两个是相同的.注:反证法是解决奇、偶数问题中常用的方法.【例11】有一只小渡船往返于一条小河的左右两岸之间,问:(1)若最初小船是在左岸,往返若干次后,它又回到左岸,那么这只小船过河的次数是奇数还是偶数?如果它最后到了右岸,情况又是怎样呢?(2)若小船最初在左岸,它过河99次之后,是停在左岸还是右岸?思路点拨 (1)小船最初在左岸,过一次河就到了右岸,再过一次河就由右岸回到左岸,即每次由左岸出发到右岸后再回到左岸,都过了两次河.因此,小船由左岸开始,往返多次后又回到左岸,则过河的次数必为2的倍数,所以是偶数.同样的道理,不难得出,若小船最后停在右岸,则过河的次数必为奇数.(2)通过(1),我们发现,若小船最初在左岸,过偶数次河后,就回到左岸;过奇数次河后,就停在右岸.现在小船过河99次,是奇数次.因此,最后小船该停在右岸.注 关键是对过河次数的理解:一个单程,即由左岸到右岸(或由右岸到左岸)就过河一次;往返一个来回就过河两次.【例12】黑板上写了三个整数,任意擦去其中一个,把它改写成另两个数的和减去1,这样继续下去,得到1995、1996、1997,问原来的三个数能否是2、2、2?思路点拨 如果原来的三个整数是2、2、2,即三个偶数,操作一次后,三个数变成二偶一奇,这时如果擦去其中的奇数,操作后三个数仍是二偶一奇.如果擦去的是其中的一个偶数,操作后三个数仍是二偶一奇.因此,无论怎样操作,得到的三个数都是二偶一奇,不可能得到1995、1996、1997.所以,原来的三个数不可能是2、2、2.注 解决本题的诀窍在于考查数字变化后的奇偶性.【例13】将正偶数按下表排成五列:第1列 第2列 第3列 第4列 第5列第1行 2 4 6 8第2行 16 14 12 10第3行 18 20 22 24… … 28 26根据上面的排列规律,则2000应位于( )A .第125行,第1列B .第125行,第2列C .第250行,第1列D .第250行,第2列思路点拨 观察表格,第1行最右边的数为8,第2行最左边的数为16,第3行最右边的数为24,于是可猜测:当行数为奇数时,该行最右边的数为8×行数;当行数为偶数时,该行最左边的数为8×行数.通过验证第4行、第5行、第6行知,上述猜想是正确的,因为2000=8×250,所以2000应在第250行,又因为250为偶数,故2000应在第250行最左边,即第250行第1列,故应选C .注:观察、寻找规律是解决这类问题的妙招.【例14】如图18—1,两个标有数字的轮子可以分别绕轮子的中心旋转,旋转停止时,每个轮子上方的箭头各指着轮子上的一个数字.若左轮子上方的箭头指着的数字为a ,右轮子上方的箭头指着的数字为b ,数对(a ,b)所有可能的个数为n ,其中a+b 恰为偶数的不同数对的个数为m ,则nm 等于( ) A .21 B .61 C .125 D .43 思路点拨 依题意可知所有的数对n=4×3=12,其中a+b 恰为偶数的数对m=3×1+1×2=5.因此,n m =125,故选C . 【例15】已知a 、b 、c 中有两个奇数、一个偶数,n 是整数,如果S=(a+2n+1)(b+2n 十2)(c+2n 十3),那么( )A .S 是偶数B .S 是奇数C .S 的奇偶性与n 的奇偶性相同D . S 的奇偶性不能确定思路点拨 弄清a+2n+1,b+2n+2,c+2n+3的奇偶性即可.依题得:(a+2n+1)+(b+2n+2)+(c+2n+3)=a+b+c+6(n+1).∵a+b+c 为偶数,6(n+1)为偶数,∴a+b+c+6(n+1)为偶数∴a+2n+1,b+2n+2,c+2n+3中至少有一个为偶数,∴S 是偶数.故选A .注:三个数的和为偶数,则至少有一个为偶数;三个数中有一个为偶数,则三数之和为偶数.学力训练 1.若按奇偶性分类,则12+22+32+…+20022002是 数.2.能不能在下式, 的各个方 框中分别填人“+”号或“一”号,使等式成立?答: .3.已知三个质数a 、b 、c 满足a+b+c+abc =99,那么a c c b b a -+-+-的值等于 .4.已知n 为整数,现有两个代数式:(1)2n+3,(2)4n 一1,其中,能表示“任意奇数”的( )A .只有(1)B .只有(2)C .有(1)和(2)D .一个也没有5.如果a ,b ,c 都是正整数,且a ,b 是奇数,则3a +(b 一1)2c 是( ).A .只当c 为奇数时,其值为奇数B .只当c 为偶数时,其值为奇数C .只当c 为3的倍数,其值为奇数D .无论c 为任何正楚数,其值均为奇数6.已知a ,b ,c 三个数中有两个奇数、一个偶数,n 是整数,如果S=(a+n+1)(b+ 2n+2)(c+3n+3),那么( ).A . S 是偶数B .S 是奇数C .S 的奇偶性与n 的奇偶性相同D .S 的奇偶性不能确定7.(1)是否有满足方程x 2-y 2=1998的整数解x 和y?如果有,求出方程的解;如果没有,说明理由.(2)一个立方体的顶点标上+1或一1,面上标上一个数,它等于这个面的4个顶点处的数的乘积,这样所标的14个数的和能否为0?8.甲、乙两人玩纸牌游戏,甲持有全部的红桃牌(A 作1,J ,Q ,K 分别作11,12,13,不同),乙持有全部的黑桃牌,两人轮流出牌,每次出一张,得到一对牌,出完为止,共得到13对牌,每对牌彼此相减,问这13个差的乘积的奇偶性能否确定?9.在1,2,3,…,1998之前任意添上“十”或“一”号,然后相加,这些和中最小的正整数是 .10.1,2,3,…,98共98个自然数,能够表示成两整数平方差的数的个数是 .11.在一次象棋比赛中,每两个选手恰好比赛一局,每局赢者记2分,输者记0分,平局每个选手各记1分,今有4个人统计百这次比赛中全部得分总数,由于有的人粗心,其数据各不相同,分别为1979,1980,1984,1985,经核实,其中有一人统计无误,则这次比赛共有 名选手参加.12.已知p 、q 、pq+1都是质数,且p 一q>40,那么满足上述条件的最小质数p = ; q = .13.设a ,b 为整数,给出下列4个结论(1)若a+5b 是偶数,则a 一3b 是偶数;(2)若a 十5b 是偶数,则a 一3b 是奇数;(3)若a+5b 是奇数,则a 一3b 是偶数;(4)若a+5b 是奇数,则a 一3b 是奇数,其中结论正确的个数是( ).A .0个B .2个C .4个D . 1个或3个14.下面的图形,共有( )个可以一笔画(不重复也不遗漏;下笔后笔不能离开纸) .A .0B .1C .2D .315.π的前24位数值为3.14159265358979323846264…,在这24个数字中,随意地逐个抽取1个数字,并依次记作a1,a2,…a24,则(a1一a2)( a3一a4)…(a23一a24)为( ).A.奇数B.偶数C.奇数或偶数D.质数16.没标有A、B、C、D、C、F、G记号的7盏灯顺次排成一行,每盏灯安装一个开关,现在A、C、E、G 4盏灯开着,其余3盏灯是关的,小刚从灯A开始,顺次拉动开关,即从A 到G,再从A始顺次拉动开关,即又从A到G…,他这样拉动了1999次开关后,问哪几盏是开的?17.有1997枚硬币,其中1000枚国徽朝上,997枚国徽朝下.现要求每一次翻转其中任意6枚,使它们的国徽朝向相反,问能否经过有限次翻转之后,使所有硬币的国徽都朝上?给出你的结论,并给予证明.18.对一个正整数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行直到1时操作停止,求经过9次操作变为l的数有多少个?19.高为50cm,底面周长为50cm的圆柱,在此圆柱的侧面上划分(如图所示)边长为lcm的正方形,用四个边长为lcm的小正方形构成“T”字形,用此图形是否能拼成圆柱侧面?试说明理由.参考答案。
数的奇偶性说课稿一、教学目标1. 知识目标:掌握数的奇偶性的概念和判断方法。
2. 能力目标:培养学生观察、发现和分析问题的能力,提高逻辑思维和数学推理能力。
3. 情感目标:培养学生善于合作、积极思考和解决问题的态度。
二、教学内容本课主要内容为数的奇偶性的概念和判断方法。
三、教学重点1. 理解奇数和偶数的概念。
2. 学会使用奇偶性判断数的方法。
四、教学难点如何灵活运用奇偶性判断数的方法。
五、教学过程1. 导入(5分钟)通过提问引入数的奇偶性的概念和日常生活中的应用情况,让学生从实际中体会奇偶数的存在和应用。
2. 概念讲解(15分钟)通过具体的例子和图示,向学生介绍奇数和偶数的概念。
奇数指不被2整除的正整数,如1、3、5等;偶数指被2整除的正整数,如2、4、6等。
3. 奇偶性判断方法(25分钟)(1)整数的奇偶性判断方法:一个整数是奇数,当且仅当它与2的余数为1;一个整数是偶数,当且仅当它与2的余数为0。
(2)分析实际问题:通过一些实际问题让学生运用奇偶性判断方法,如判断一堆苹果个数为奇数还是偶数,判断一个数是否能被2整除等。
(3)练习:组织学生进行奇偶性判断练习,检验他们对奇偶性判断方法的掌握程度。
4. 拓展应用(20分钟)(1)奇偶数的性质:通过讨论展示奇偶数的一些性质,如偶数加偶数等于偶数,奇数加奇数等于偶数等。
(2)扩展应用题:设置一些扩展应用题,让学生灵活运用奇偶性判断方法解决问题。
5. 总结归纳(10分钟)总结奇偶性的定义和判断方法,强调奇偶性在日常生活和数学中的应用,提醒学生加强巩固。
六、教学资源1. 板书:奇数、偶数的概念和判断方法。
七、教学评价1. 观察学生在课堂上对奇偶性的理解和运用情况,及时给予指导和纠正。
2. 收集学生完成的练习和扩展应用题,进行评价。
八、教后反思通过本节课的教学,学生对奇偶性的概念和判断方法有了更深入的理解,能够较好地应用到实际问题中。
但在教学实施中,发现有些学生对奇偶性的概念理解较为困难,需要加强引导和训练。
五年级下册数学教案《7数的奇、偶性》人教新课标一、教学目标知识与技能:1.熟练掌握奇数和偶数的定义,能够正确判断一个数是奇数还是偶数。
2.能够利用奇偶性质解决数学问题,例如奇数加偶数、奇数减奇数等。
3.能够通过练习掌握奇偶性质的应用。
过程与方法:1.通过多种教学方法,激发学生的兴趣,培养他们对数学的热爱。
2.引导学生自主思考,合作探究,提高他们的数学思维能力。
3.培养学生观察问题、分析问题、解决问题的能力。
情感态度价值观:1.培养学生的耐心和细心,培养他们对解决数学问题的毅力和信心。
2.培养合作精神,在合作中学会倾听他人的意见,尊重他人,团结集体。
3.培养学生的自信心,让他们认识到自己在数学学习中的潜力。
二、教学重难点教学重点:1.熟练掌握奇数和偶数的定义。
2.通过实例练习,巩固奇偶性质的应用。
教学难点:1.让学生理解奇偶性质在解决实际问题中的重要性。
2.引导学生在解决问题过程中灵活运用奇偶性质。
三、教学准备1.教师:准备PPT课件、教学实例、练习题等。
2.学生:准备课前作业、课内互动参与。
3.教学环境:保持课堂安静整洁,保证学生的学习效果。
四、教学过程一、导入通过一个生动的故事或引入一个有趣的问题,引起学生对奇偶性质的兴趣,激发他们思考的欲望。
二、学习1.教师讲解奇数和偶数的定义,并通过实例帮助学生理解。
2.学生互动讨论,共同分析并判断给定数字的奇偶性质。
3.带领学生解决一些简单的奇偶性质的问题,巩固学习成果。
三、拓展让学生通过组合数字,求解奇数、偶数相加、相减的问题,培养他们的逻辑思维和应用能力。
四、运用通过实际生活中的例子,让学生理解奇偶性质在解决实际问题中的重要性,引导他们尝试用奇偶性质解决问题。
五、归纳总结本节课的内容,强调奇偶性质在数学问题中的应用价值。
五、课堂作业1.完成课后练习题,巩固奇偶性质的应用。
2.思考奇偶性质在实际生活中的应用,并写下自己的体会。
六、板书设计奇数:被2整除余数为1的数,偶数:被2整除余数为0的数七、教学反思本节课主要围绕奇偶性质展开,通过引导学生分析实例和解决问题,让他们理解奇偶性质的重要性。
第十五讲奇数与偶数
通常我们所说的“单数”、“双数”,也就是奇数和偶数,即±1,±3,±5,…是奇数,0,±2,±4,±6,…是偶数.
用整除的术语来说就是:能被2整除的整数是偶数,不能被2整除的整数是奇数.通常奇数可以表示为2k+1(或2k-1)的形式,其中k为整数,偶数可以表示为2k的形式,其中k 是整数.
奇数和偶数有以下基本性质:
性质1 奇数≠偶数.
性质2 奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数.
性质3 奇数×奇数=奇数,偶数×偶数=偶数,奇数×偶数=偶数.
性质4 奇数个奇数之和是奇数;偶数个奇数之和是偶数;任意有限个偶数之和为偶数.
性质5 若干个奇数的乘积是奇数,偶数与整数的乘积是偶数.
性质6 如果若干个整数的乘积是奇数,那么其中每一个因子都是奇数;如果若干个整数的乘积是偶数,那么其中至少有一个因子是偶数.
性质7 如果两个整数的和(或差)是偶数,那么这两个整数的奇偶性相同;如果两个整数的和(或差)是奇数,那么这两个整数一定是一奇一偶.
性质8 两个整数的和与差的奇偶性相同.
性质9 奇数的平方除以8余1,偶数的平方是4的倍数.
性质1至性质6的证明是很容易的,下面我们给出性质7至性质9的证明.
性质7的证明设两个整数的和是偶数,如果这两个整数为一奇一偶,那么由性质2知,它们的和为奇数,因此它们同为奇数或同为偶数.
同理两个整数的和(或差)是奇数时,这两个数一定是一奇一偶.
性质8的证明设两个整数为X,y.因为
(x+y)+(x-y)=2x
为偶数,由性质7便知,x+y与x-y同奇偶.
性质9的证明若x是奇数,设x=2k+1,其中k为整数,于是
x2=(2k+1)2=4k3+4k+1=4k(k+1)+1.
因为k与k+1是两个连续的整数,它们必定一奇一偶,从而它们的乘积是偶数.于是,x2除以8余1.
若y是偶数,设y=2t,其中t为整数,于是
y2=(2t)2=4t2
所以,y2是4的倍数.
例1 在1,2,3,…,1998中的每一个数的前面,任意添上一个“+”或“-”,那么最后运算的结果是奇数还是偶数?
解由性质8知,这最后运算所得的奇偶性同
1+2+3+…+1998=999×1999
的奇偶性是相同的,即为奇数.
例2 设1,2,3,…,9的任一排列为a1,a2,…,a9.求证:(a1-1)(a2-2)…(a9-9)是一个偶数.
证法1 因为
(a1-1)+(a2-2)+(a3-3)+…+(a9-9)
=(a1+a2+...+a9)-(1+2+ (9)
=0
是偶数,所以,(a1-1),(a2-2),…,(a9-9)这9个数中必定有一个是偶数(否则,便得奇数个(9个)奇数的和为偶数,与性质4矛盾),从而由性质5知
(a1-1)(a2-2)…(a9-9)
是偶数.
证法2 由于1,2,…,9中只有4个偶数,所以a1,a3,a5,a7,a9中至少有一个是奇数,于是,a1-1,a3-3,a5-5,a7-7,a9-9至少有一个是偶数,从而(a1-1)(a2-2)…(a9-9)是偶数.
例3 有n个数x1,x2,…,x n,它们中的每一个数或者为1,或者为-1.如果
x1x2+x2x3+…+x n-1x n+x n x1=0,
求证:n是4的倍数.
证我们先证明n=2k为偶数,再证k也是偶数.
由于x1,x2,…,x n。
的绝对值都是1,所以,x1x2,x2x3,…,x n x1的绝对值也都是1,即它们或者为+1,或者为-1.设其中有k个-1,由于总和为0,故+1也有k个,从而n=2k.
下面我们来考虑(x1x2)·(x2x3)…(x n x1).一方面,有(x1x2)·(x2x3)…(x n x1)=(-1)k,
另一方面,有
(x1x2)·(x2x3)…(x n x1)=(x1x2…x n)2=1.
所以(-1)k=1,故k是偶数,从而n是4的倍数.
例4 设a,b是自然数,且满足关系式
(11111+a)(11111-b)=123456789.
求证:a-b是4的倍数.
证由已知条件可得11111+a与11111-b均为奇数,所以a,b均为偶数.又由已知条件
11111(a-b)=ab+2468,①
ab是4的倍数,2468=4×617也是4的倍数,所以11111×(a-b)是4的倍数,故a-b是4的倍数.
例5 某次数学竞赛,共有40道选择题,规定答对一题得5分,不答得1分,答错倒扣1分.证明:不论有多少人参赛,全体学生的得分总和一定是偶数.
证我们证明每一个学生的得分都是偶数.
设某个学生答对了a道题,答错了b道题,那么还有40-a-b道题没有答.于是此人的得分是
5a+(40-a-b)-b=4a-2b+40,
这是一个偶数.
所以,不论有多少人参赛,全体学生的得分总和一定是偶数.
例6 证明15块4×1的矩形骨牌和1块2×2的正方形骨牌不能盖住8×8的正方形.
证将8×8正方形的小方格用黑、白色涂色(如图1-62).每一块4×1骨牌不论怎么铺设都恰好盖住两个白格,因此15块4×1的骨牌能盖住偶数个白格.一块2×2的骨牌只能盖住一个白格或三个白格,总之能盖住奇数个白格.于是15块4×1骨牌和一块2×2骨牌在图上盖住的白格是奇数个.事实上图上的白格数恰为偶数个,故不能盖住8×8的正方形.。