Windows设备驱动程序设计
- 格式:ppt
- 大小:82.50 KB
- 文档页数:8
课程内容驱动基本概念介绍驱动核心代码分析WDM和WDF介绍Windows 10通用驱动平台驱动程序是一个软件模块,可以使操作系统和硬件设备进行交互驱动程序是操作系统的一个扩展驱动程序一般是由硬件的设计者或厂商进行编写Microsoft已经为符合公共设计规范的硬件设备提供了内置的驱动程序可执行文件,扩展名是.exe入口函数是Main()Main()函数完成大部分工作应用程序完成工作后返回,并释放内存空间在用户态运行可执行文件,扩展名是.sys入口函数是DriverEntry()DriverEntry()不会做很多工作,只是初始化驱动驱动其他部分会注册很多回调函数,会被系统的不同模块调用驱动不会返回,会一直存在直至被显示的释放在内核态或用户态运行Driver StacksPDO位于驱动栈的最底层,和总线驱动相关联当总线驱动被加载时,它会枚举所有挂载在总线上面的设备并请求设备所需要的资源每个设备都有自己对应的PDOPnP管理器会确定每个设备的驱动并在设备的PDO 之上构建适当的设备栈设备栈的核心部分,FDO和设备功能驱动相关联设备功能驱动完成Windows和设备交互的核心功能对上向应用程序和服务提供上层接口对下为设备或其他驱动提供数据交换的接口一个设备栈可以包含多个FiDO,可以在FDO之上或之下每个FiDO和一个过滤驱动相关联,FiDO是可选的通常的目的是修改一些在设备栈中传输的I/O请求,例如可以加密和解密读写请求当一个新设备被插入到系统后,系统总线驱动会向PnP管理器报告这个新设备PnP管理器通过总线驱动查询这个设备的更多信息,比如设备ID和设备所需要的资源PnP管理器利用这个信息去查找是否有有对应的驱动在本地或WU(Windows Update)上面一旦查找到设备对应的驱动,Windows便会安装并加载这个驱动加载驱动到地址空间解析驱动中引入的函数-调用其他模块调用驱动的入口函数(DriverEntry()),因此驱动可以注册回调函数调用AddDevice(),驱动此时可以创建一个“设备对象”,并将这个对象加入到设备栈中所有的事物在驱动框架中都是用对象呈现的(驱动,设备,请求等等)对象拥有属性,方法和事件WDF 对象方法属性事件操作对象的函数被WDF 框架调用用于通知某些事件设置或获取单个属性值的方法Driver (WDFDRIVER)Device (WDFDEVICE)Device (WDFDEVICE)Queue (WDFQUEUE)Queue (WDFQUEUE)……ObjectOperation方法:Status = Wdf Device Create ();属性:Cannot failWdfInterrupt Get Device();WdfInterrupt Set Policy();Can fail:Status = WdfRegistry Assign Value();Status = WdfRegistry Query Value();Status = WdfRequest Retrieve InputBuffer();回调事件:PFN_WDF_INTERRUPT_ENABLE EvtInterruptEnable初始化宏:WDF_XXX_CONFIG_INITWDF_XXX_EVENT_CALLBACKS_INIT当驱动被加载时,DriverEntry是第一个被操作系统调用的函数WdfDriverCreate( RawDriverObject, […] , attributes, &driver )NTSTATUS DriverEntry(_In_PDRIVER_OBJECT DriverObject ,_In_PUNICODE_STRING RegistryPath ) {[…]// Create WDF Driver ObjectWDF_OBJECT_ATTRIBUTES_INIT(&attributes);attributes.EvtDriverUnload = OnDriverUnload;WDF_DRIVER_CONFIG_INIT(&config, OnDeviceAdd);status = WdfDriverCreate(DriverObject ,RegistryPath ,&attributes,&config,&driver );}WDF EventWDF MethodWDF ObjectDeclare vars这是一个过滤驱动程序吗?驱动程序是电源管理策略的所有者吗?为设备对象创建I/O队列创建辅助对象,例如计时器,工作者对象,锁等NTSTATUS OnDeviceAdd( WDFDRIVER Driver,PWDFDEVICE_INIT DeviceInit) {WDFDEVICE device;IWDFIoQueue* pDefaultQueue= NULL;DeviceInit->SetPowerPolicyOwnership(TRUE );status= WdfDeviceCreate(&DeviceInit,&deviceAttributes, &device);context = GetContext(device);context->WdfDevice= device;status = pIWDFDevice->CreateIoQueue(NULL, TRUE, WdfIoQueueDispatchParallel,TRUE, FALSE, &pDefaultQueue);return status;}Static Configuration Device CreateSetting ContextQueue Create进入电源状态管理(D0Entry)使能中断(InterruptEnable)…获取硬件资源,进行一些静态配置,(PrepareHardware)进入电源状态管理(D0Entry)使能中断(InterruptEnable)…获取硬件资源,进行一些静态配置,(PrepareHardware)NTSTATUS OnPrepareHardware(WDFDEVICE Device ,WDFCMRESLIST ResourcesRaw ,WDFCMRESLIST ResourcesTranslated ) {int ResourceCount = WdfCmResourceListGetCount(ResourcesTranslated );for (i=0; i < ResourceCount; i++) {descriptor =WdfCmResourceListGetDescriptor(ResourcesTranslated , i);switch (descriptor->Type) {case CmResourceTypePort : […]case CmResourceTypeMemory : […]case CmResourceTypeInterrupt : […]default : break ;}}return STATUS_SUCCESS ;}进入电源状态管理(D0Entry)使能中断(InterruptEnable)…获取硬件资源,进行一些静态配置,(PrepareHardware)NTSTATUS OnD0Entry(IN WDFDEVICE Device ,IN WDF_POWER_DEVICE_STATE RecentPowerState ){PADXL345AccDevice pAccDevice = nullptr pAccDevice = GetContext(Device);WdfWaitLockAcquire(pAccDevice->m_WaitLock);I2CSensorWriteRegister(pAccDevice->m_I2CIoTarget, MY_REGISTER,MY_VALUE, sizeof (MY_VALUE) );pAccDevice->m_PoweredOn = true ;WdfWaitLockRelease(pAccDevice->m_WaitLock);return STATUS_SUCCESS ;}进入电源状态管理(D0Entry)使能中断(InterruptEnable)…获取硬件资源,进行一些静态配置,(PrepareHardware)NTSTATUS OnInterruptEnable(IN WDFINTERRUPT Interrupt,IN WDFDEVICE Device){PDEVICE_EXTENSION devExt;ULONG regUlong;PULONG intCsr;devContext = GetDeviceContext(WdfInterruptGetDevice(Interrupt) );intRegId = &devContext->IntRegisterId regVal = READ_REGISTER_ULONG( intRegId );regVal = ENABLE_INTERRUPT_BYTE( regVal );WRITE_REGISTER_ULONG( intRegId, regVal );return STATUS_SUCCESS;}进入电源状态管理(D0Entry)使能中断(InterruptEnable)…获取硬件资源,进行一些静态配置,(PrepareHardware)EvtIoResume EvtDMAEnablerFillEvtDeviceSelfManagedIoInitEvtDeviceDisarmWakeFromSxEventChildListScanForChildren EvtDeviceRemoveAddedResourcesStart power-managed queuesEvtIoResume Disarm wake signal, if it was armed. (called onlyduring power up; not called during resource rebalance)EvtDeviceDisarmWakeFromSx EvtDeviceDisarmWakeFromS0Request information about child devicesEvtChildListScanForChildren Enable DMA, if driver supports it EvtDmaEnablerSelfManagedIoStartEvtDmaEnablerEnableEvtDmaEnablerFillConnect interruptsEvtDeviceD0EntryPostInterruptsEnabledEvtInterruptEnable Notify Driver of state change EvtDeviceD0EntryDevice OperationalRestart from here if device is in low power statePrepare hardware for power EvtDevicePrepareHardwareChange resources requirements EvtDeviceRemoveAddedResourcesEvtDeviceFilterAddResourceRequirementsEvtDeviceFilterRemoveResourcRequirementsRestart from here if rebalancing resourcesCreate Device object EvtDriverDeviceAddDevice arrivedEnable self-managed I/O, if driver supports it.EvtDeviceSelfManagedIoInit (implicit power up),EvtDeviceSelfManagedIoRestart (explicit power up)Stop power-managed queuesEvtIoStop Arm wake signal, if it was not armed. (calledonly during power up; not called duringresource rebalance)EvtDeviceArmWakeFromSx EvtDeviceArmWakeFromS0Disable DMA, if driver supports it EvtDmaEnablerSelfManagedIoStopEvtDmaEnablerDisableEvtDmaEnablerFlushDisconnect interrupts EvtDeviceD0EntryPostInterruptsDisabledEvtInterruptDisableNotify Driver of state changeEvtDeviceD0Exit Device OperationalStop here if transitioning to low power stateRelease hardware EvtDeviceReleaseHardwarePurge power-managed queuesEvtIoStop Stop here if rebalancing resourcesFlush I/O if driver supports self-managedI/OEvtDeviceSelfManagedIoFlush Device removedSuspend self-managed I/O, if driver supports it.EvtDeviceSelfManagedIoSuspend Cleanup I/O buffers if driver supports self-managed i/o EvtDeviceSelfManagedIoCleanupDelete device object s context area.EvtDeviceContextCleanupEvtDeviceContextDestroyWDM和操作系统深度耦合,WDM驱动程序直接调用系统服务例程,直接操作系统数据结构WDM驱动程序全部为内核态程序,操作系统对驱动输入只做有限的检查WDF框架处理与操作系统的交互,驱动本身专注于和设备交互WDF基于对象模型和事件驱动WDF支持内核态程序和用户态程序将操作系统底层的复杂逻辑抽象化使驱动代码有可能<20行对不同的硬件设备使用相同的编程模型例如GPIO,UART,I2C,NFC,传感器驱动框架内置的日志系统为数据分析定制的工具支持上千种不同的硬件设备最初UMDF V1基于C++ COMUMDF V2使用和内核态驱动开发相同的模型和语法支持USB周边设备,传感器,NFC,智能卡,HID(包括触控)等等驱动崩溃只会影响宿主进程,不会影响整个操作系统系统重启策略可以自动恢复崩溃的UMDF驱动Windows 10提供了一系列API和DDI,对于所有的Windows平台都是通用的,被称为Universal Windows Platform(UWP) Windows通用驱动是指一个内核态或用户态的驱动并能运行在所有基于UWP的系统上面Windows通用驱动只能调用属于UWP部分的DDI,这部分DDI会在MSDN文档中标记为Universal确定你的驱动是否支持UWP,把你的驱动标记为通用驱动然后重新编译在Visual Studio中打开驱动项目工程在配置选项中把操作系统选择为Windows 10在工程属性中把目标平台改为“通用”,其他选项还有“桌面”和“手机”重新编译驱动,这时可以会出现一些链接器错误尝试修复这些错误,对于出现错误的API,请参考文档是否有通用平台的API可以替代,如果没有,您可能需要重新设计你的驱动KMDF version Release method Included in this versionof Windows Drivers using it run on1.19Windows 10, version1607 WDK Windows 10, version1607Windows 10 version1607 and later,Windows Server 20161.17Windows 10, version1511 WDK Windows 10, version1511Windows 10 version1511 and later,Windows 10 Mobile,Windows 10 IoT Core,Windows Server 20161.15Windows 10 WDK Windows 10Windows 10 for desktop editions, Windows 10 Mobile, IoT Core, Windows Server 2016UMDF version Release method Included in this version ofWindows Drivers using it can run on2.19Windows 10, version 1607WDK Windows 10, version 1607Windows 10, version 1607 (all SKUs), Windows Server 20162.17Windows 10, version 1511WDK Windows 10, version 1511Windows 10 for desktop editions (Home, Pro, Enterprise, and Education), Windows 10 Mobile, Windows 10 IoT Core (IoT Core), Windows Server 20162.15Windows 10 WDK Windows 10Windows 10 for desktop editions, Windows 10 Mobile, IoT Core, Windows Server 2016驱动程序运行在哪个版本的操作系统上驱动程序支持的硬件类型驱动程序使用的驱动模型确定驱动程序是否使用了只有KMDF支持的功能,如果驱动程序没有使用KMDF的功能,并且驱动运行在Windows 8.1或以后的系统上,则可以迁移到UMDF 2https:///en-us/windows/hardware/drivers/wdf/wdf-porting-guide Which Drivers Can Be Ported and WhereDifferences Between WDM and WDFPreparing for PortingSteps in PortingSummary of KMDF and WDM Equivalents。
Windows驱动程序开发笔记一、WDK与DDK环境最新版的WDK 微软已经不提供下载了这里:https:/// 可以下并且这里有好多好东东!不要走进一个误区:下最新版的就好,虽然最新版是Windows Driver Kit (WDK) 7_0_0,支持windows7,vista 2003 xp等但是它的意思是指在windows7操作系统下安装能编写针对windows xp vista的驱动程序,但是不能在xp 2003环境下安装Windows Driver Kit (WDK) 7_0_0这个高版本,否则你在build的时候会有好多好多的问题.上文build指:首先安装好WDK/DDK,然后进入"开始"->"所有程序"->"Windows Driver Kits"->"WDK XXXX.XXXX.X" ->"Windows XP"->"x86 Checked Build Environment"在弹出来的命令行窗口中输入"Build",让它自动生成所需要的库如果你是要给xp下的开发环境还是老老实实的找针对xp的老版DDK吧,并且xp无WDK 版只有DDK版build自己的demo 有个常见问题: 'jvc' 不是内部或外部命令,也不是可运行的程序。
解决办法:去掉build路径中的空格。
二、下载 WDK 开发包的步骤1、访问Microsoft Connect Web site站点2、使用微软 Passport 账户登录站点3、登录进入之后,点击站点目录链接4、在左侧的类别列表中选择开发人员工具,在右侧打开的类别:开发人员工具目录中找到Windows Driver Kit (WDK) and Windows Driver Framework (WDF)并添加到您的控制面板中5、添加该项完毕后,选择您的控制面板,就可以看到新添加进来的项了。
下CAN卡的驱动程序设计2008-01-20摘要:主要讨论在WinCE设计和开发CAN卡通信程序的方法;详细介绍CAN卡底层驱动函数的设计和实现,同时将驱动进行封装,用动态库的方式提供给用户CAN卡通信用的驱动,使用启可以方便地在自己的程序中调用,实现WinCE 下的CAN卡通信。
关键词: CAN 驱动引言近年来电力行业为了快速部署变电站,采用了建造整体变电所的方法:在生产基地将变电站的内部设备安装、调试完成,只留下与外界的`接口,整体运到变电站所在地后进行安装和简单调试即可投入运行。
其内部设备通过CAN总线进行通信,系统原有的监控软件基于DOS系统,维护调试比较困难,因此想要寻求更方便、友好的系统支持。
经过比较,嵌入式操作系统市场上风头正劲的Windows CE .NET成为最终选择。
微软的最新产品Windows 提供了端对端的开发、调试手段,可以不拆卸设备的情况下通过Telnet登录到WindowsCE 上进行调试和维护,其系统本身为嵌入式市场进行重新设计,包括创建一个基于WindowsCE的定制设备所需的一切。
这样就需要将原来DOS下的程序移植到下,但是各个硬件厂商目前还没有提供CAN通信卡在Windows 下的驱动,所以开发Windows 下的CAN卡驱动成为项目推行中的关键一环。
本文主要针对研华的双口CAN卡PCM3680进行分析,介绍在WindowsCE.ENT系统下进行底层设备驱动开发的方法并提供CAN通信的实例。
1 CAN总线通信协议及CAN通信卡介绍CAN总线是德国Bosch公司20世纪80年代初为解决现代汽车中众多的控制与测试仪器之间的数据交换而开的一种串行数据通信协议。
它是一种多主总线,废除了传统的站地址编码,而代之以对通信数据块进行编码。
这种方法使网络内节点个数在理论上不受限制,扩展格式中的29位的标识码便可以定义2 29个不同的数据块。
在本项目中使用的是研华的PCM3680,这是一块嵌入式PC104的双口CAN总线通信卡;CAN控制器采用Philips的独立CAN控制器SJA1000芯片;CAN收发器采用Philips的P82C250,可以同时操作两个CAN网络,提供高达1Mb/s的传输速度。
基于WinDriver的CPCI板卡Windows驱动程序设计作者:先登飞来源:《现代电子技术》2013年第18期摘要:为了实现在主控计算机和信号处理板之间快速通信,采用了CPCI并行总线技术。
为简化开发难度,信号处理板采用内嵌PCI模块的DSP6416数字信号处理芯片实现通信和控制功能,软件开发环境基于VC++6.0,利用WinDriver工具开发了Windows下以DLL形式封装的CPCI驱动程序。
通过实际使用验证,该驱动程序运行稳定可靠,实现了主控计算机对信号处理板的实时控制和信号处理板中结果数据向主控计算机实时上报功能。
关键词: WinDriver; Windows驱动程序; CPCI总线; VC++6.0中图分类号: TN964⁃34 文献标识码: A 文章编号: 1004⁃373X(2013)18⁃0051⁃040 引言外围设备互联(PCI)总线是一种先进的高性能局部总线,可同时支持多组外围设备[1]。
CPCI总线应用于工业和嵌入式领域,其规范改进自PCI规范,CPCI规范在电气方面兼容PCI 规范,只是在封装结构上进行了加强,CPCI板的封装结构基于IEC 60297⁃3,IEC 60297⁃4以及IEEE 1101.10定义的欧式板卡外形[2]。
既然电气特性上兼容PCI规范,因此CPCI驱动程序的设计本质就是PCI驱动程序设计。
当前Windows环境下用于PCI设备驱动开发的工具主要是DDK,DriverStudio以及WinDriver。
前两者功能强大,但是开发者需要熟知操作系统的体系结构、汇编语言和设备驱动程序结构体系方法,还需要具备丰富的驱动程序开发经验,否则可能造成软件不稳定甚至系统崩溃,另外前两者开发周期长。
而Jungo公司开发的WinDriver改变了传统的驱动程序开发方法,其整个驱动程序中的所有函数都是工作在用户态下,使开发者不需要掌握前两者所需的预备知识就可以开发出与之相媲美的程序[3]。
文章编号:1009-671X (2001)09-0035-04Win 98下虚拟设备驱动程序的设计与实现王 磊1,朱齐丹1,温 强2(1.哈尔滨工程大学自动化学院,黑龙江哈尔滨150001;2.哈尔滨工程大学机电工程学院,黑龙江哈尔滨 150001)摘 要:介绍了电话网络测试系统的组成和结构,Windows 98的内核管理机制和应用程序权限级别,简述了在Windows98下开发虚拟驱动程序的几种方法,并给出了在电话网络测试系统中应用虚拟设备驱动程序VxD 实例。
①关 键 词:虚拟设备驱动程序;VxD ;硬件中断;电话网络测试系统中图分类号:TP39.6 文献标识码:ADesign and Actu alization of Visu al Device Driver Program in Win 98WAN G Lei 1,ZHU Qi-dan 1,WEN Qiang 2(1.Automation College ,Harbin Engineering University ,Harbin 150001,China ;2.Mechanical and Electrical En gineering Col 2lege ,Harbin Engineering University ,Harbin 150001,China )Abstract :The structure and buildup of the telephone net test system ,the kernel management of Windows 98and the right limit of the applied program were introduced.Several ways of developing visual device driver program in Win 98were depicted.A developing example of using VxD in the telephone net test sys 2tem was given.K ey w ords :visual device driver program ;VxD ;hardware interruption ;telephone net test system0 引 言从Windows 3.1开始,对于硬件设备的访问便采取了一种设备驱动程序的方法,客户通过设备驱动程序来获得硬件的参数或者设置,但是由于16位的操作系统基于原来的DOS ,所以客户程序仍然可以通过一些B IOS 或者DOS 的DPM I 中断调用来实现对硬件的操作。
目录一、驱动开发环境的搭建 (1)1.1 关于DDK (1)1.2 关于驱动程序的编译 (1)1.3关于驱动程序的运行 (2)二、驱动程序的结构 (3)2.1 驱动程序的头文件 (3)2.2 驱动程序的入口点 (3)2.3 创建设备例程 (4)2.4 卸载驱动例程 (5)2.5 派遣例程 (6)三、编写驱动程序的基础知识 (6)3.1 内核模式下的字符串操作 (6)3.2 内核模式下各种开头函数的区别 (8)3.3 一个示例程序 (10)3.4 补充说明 (10)四、在驱动中使用链表 (10)4.1 内存的分配与释放 (10)4.2 使用LIST_ENTRY (12)4.3 使用自旋锁 (12)五、在驱动中读写文件 (15)5.1 使用OBJECT_ATTRIBUTES (15)5.2 创建、打开文件 (16)5.3 读写文件操作 (16)5.4 文件的其它相关操作 (18)六、在驱动中操作注册表 (18)6.1 创建、打开注册表 (19)6.2 读写注册表 (20)6.3 枚举注册表 (21)七、在驱动中获取系统时间 (21)7.1 获取启动毫秒数 (21)7.2 获取系统时间 (22)八、在驱动中创建内核线程 (23)8.1 创建内核线程 (23)8.2 关于线程同步 (24)九、初探IRP (25)9.1 IRP的概念 (25)9.2 IRP的处理 (26)9.3 IRP派遣例程示例 (27)十、驱动程序与应用层的通信 (29)10.1 使用WriteFile通信 (29)10.2 使用DeviceIoControl进行通信 (32)十二、驱动程序开发实例 (33)12.1 NT驱动程序 (33)12.2 WDM驱动程序 (35)十三、参考资料 (41)一、驱动开发环境的搭建1.1 关于DDK开发驱动程序必备的一个东西就是DDK(Device Development Kit,设备驱动开发包),它跟我们在ring3常听到的SDK差不多,只不过它们分别支持开发不同的程序而已。
接触windows驱动开发有一个月了,感觉Windows驱动编程并不像传说中的那么神秘。
为了更好地为以后的学习打下基础,记录下来这些学习心得,也为像跟我一样致力于驱动开发却苦于没有门路的菜鸟朋友们抛个砖,引个玉。
我的开发环境:Windows xp 主机+ VMW ARE虚拟机(windows 2003 server系统)。
编译环境:WinDDK6001.18002。
代码编辑工具:SourceInsight。
IDE:VS2005/VC6.0。
调试工具:WinDBG,DbgView.exe, SRVINSTW.EXE上面所有工具均来自互联网。
对于初学者,DbgView.exe和SRVINSTW.EXE是非常简单有用的两个工具,一定要装上。
前者用于查看日志信息,后者用于加载驱动。
下面从最简单的helloworld说起吧。
Follow me。
驱动程序的入口函数叫做DriverEntry(PDRIVER_OBJECT pDriverObj,PUNICODE_STRING pRegisgryString)。
两个参数,一个是驱动对象,代表该驱动程序;另一个跟注册表相关,是驱动程序在注册表中的服务名,暂时不用管它。
DriverEntry 类似于C语言中的main函数。
它跟main的差别就是,main完全按照顺序调用的方法执行,所有东西都按照程序员预先设定的顺序依次发生;而DriverEntry则有它自己的规则,程序员只需要填写各个子例程,至于何时调用,谁先调,由操作系统决定。
我想这主要是因为驱动偏底层,而底层与硬件打交道,硬件很多都是通过中断来与操作系统通信,中断的话就比较随机了。
但到了上层应用程序,我们是看不到中断的影子的。
说到中断,驱动程序中可以人为添加软中断,__asm int 3或者Int_3();前者是32位操作系统用的,后者是64位用的。
64位驱动不允许内嵌汇编。
下面是我的一个helloworld的源码:注意第16行的宏。
基于Windows2000开发WDM设备驱动程序的方法摘要:本文介绍了Windows 2000 WDM驱动程序结构及其原理,给出一个驱动程序的例子关键词: WDM 驱动程序1.概述引入了全新的WDM (Win32 Driver Model)的驱动程序架构,说是新技术,其实早在1997年Microsoft就提出了该项技术并在Windows 98中得到了充分的应用,换句话说,Windows 98也支持WDM。
这样WDM就成为了一个跨平台的驱动程序模型不仅如此WDM驱动程序还可以在不修改源代码的情况下经过重新编译后在非Intel平台上运行。
2.WDM设备驱动程序的特点和原理2.1通用驱动程序对基本上一样的硬件,因为他们共享一个总线或完成类似的任务,设备驱动程序可以使用这些标准的驱动程序功能,使公共总线的共享容易,且更容易写出新的驱动程序,总线驱动程序,如USB、1394,和类驱动程序。
(1)Win32程序接口:可以使用Win32函数像访问文件那样访问设备CreateFile() 、Closehandle()、ReadFile()、WriteFile()、DeviceIoControl ()用于发出特殊请求,可发送数据给驱动和从驱动得到数据,IOCTL代码可以是预先定义的也可是自己定义的。
(2)创建设备大多数WDM设备对象都是在PnP管理器中调用AddDevice入口时创建,这个PnP 例程在插入新设备和安装Inf文件时被调用,此后一系列的PnP IRP 被发送到驱动程序,指示设备应如何启动和查询它的功能2.2WDM-的工作原理WDM是在NT 4.0驱动程序结构上发展起来的,所以它与NT 4.0驱动程序极为相似,但是它却有了本质上的提高,比如它支持USB、IEEE 1394、ACPI等全新的硬件标准。
虽然Windows 98与Windows 2000都支持WDM,可是并不意味着Windows 98下的VxD可以在 Windows 2000下运行,而NT下的WDM却可以在Windows 98下运行。
中断工作方式下的WDM驱动程序设计聂镭;韩建涛;许人灿;陈曾平【摘要】在设备驱动程序编写中,实时性问题是难点之一.详细讨论了中断工作方式下驱动程序的设计和编写的机制与方法,提出了一整套解决方案,即通过在操作系统中申请中断服务例程,在接口库程序中开辟中断服务线程并进入阻塞式等待,两者用事件句柄进行挂钩;当硬件中断产生时,驱动程序和接口库程序中分别做出响应,接口库发送的中断消息进入应用程序的消息循环,并最终驱动系统界面显示和数据保存等中断操作,从而完成从底层驱动到顶层应用程序的一次完整的中断响应.实验表明,所提供的设计方法具有好的效果和实用价值,实现最小化响应时间和最小化资源开销的统一,尤其是在平均速度能够满足处理需求,但在某段时间内突发的中断消息的产生速度超出处理能力的情况下,圆满地解决了传统设计模式的响应速度不足和数据丢失问题.【期刊名称】《现代电子技术》【年(卷),期】2007(030)008【总页数】5页(P134-138)【关键词】中断;驱动程序;WDM;实时【作者】聂镭;韩建涛;许人灿;陈曾平【作者单位】国防科技大学,电子科学与工程学院,湖南,长沙,410073;国防科技大学,电子科学与工程学院,湖南,长沙,410073;国防科技大学,电子科学与工程学院,湖南,长沙,410073;国防科技大学,电子科学与工程学院,湖南,长沙,410073【正文语种】中文【中图分类】TP311现有设备驱动程序编写最突出的问题之一是实时性问题,即驱动程序能否对硬件产生的各种信号在尽可能短的时间内做出响应。
解决实时性问题的方法通常分为两种:一种是轮询方式,这种方式最为经典而且容易实现,但是其负面影响是大量浪费系统资源进而对其他服务或应用程序造成影响,而且这种影响是相互的,导致其响应时间在一定程度上不可控制;另一种行之有效的方式就是中断工作方式,通过在操作系统中申请中断服务例程(interrupt service routine)并等待系统调用实现,可以实现最小化响应时间和最小化资源开销的统一。
河南理工大学测绘学院《Windows程序设计》实验报告班级_地信10-1_姓名_薛山_学号311005030124__实验态度:1、认真2、良好3、一般4、不认真实验成果:1、优秀2、可信3、一般4、不真实实验报告:1、清晰完整2、比较完整3、不清晰成绩_________________教师签字_________________交报告日期: 2012 年月日实验项目一:w i n d o w s A P I编程一、实验目的:1、了解windows32 API编程的基本程序框架与编程方法。
2、掌握几个主要API函数的功能。
3、利用VC++6.0的编译环境编写C语言下的windows程序的步骤和利用其资源管理和编译器建立windows资源的方法。
4、API编程对windows消息的处理有利于MFC下的windows编程的理解。
二、练习和总结:1、谈谈你对windows程序事件驱动机制的理解并对windows API编程的主要步骤作简单说明。
一、在VC++6.0环境中建立工程。
1、选择文件菜单中的new,然后在projects选项下选择win32application项目,设定好文件路径和工程名称,选择生成一个空工程,点击完成。
2、在工程中新建一个.c或.cpp源码文件,主要就是建立一个简单的windows API编程的界面。
注意:该步操作中只要将老师给的代码按照老师给的实验步骤粘贴在.c或.cpp源码文件下就可以了,然后编译运行该程序,可看到程序界面:请注意分析WinMain()函数的代码各部分的主要工作。
窗口没有加载菜单和图标资源,背景为灰色,这都可通过窗口类的下面几项设置中选择资源并加以设置:wndclass.hIcon = LoadIcon(NULL, "IDI_APPICON"); wndclass.hCursor = LoadCursor(NULL, "IDC_ARROW");wndclass.hbrBackground = (HBRUSH)GetStockObject(GRAY_BRUSH); wndclass.lpszMenuName = NULL;另外,窗口的风格设置也可通过设置函数CreateWindow(…)的第三个参数来加以设置。