广东省佛山市南海区2020-2021年度第一学期期末考试八年级数学 答案
- 格式:pdf
- 大小:1.73 MB
- 文档页数:4
2020-2021学年第一学期八年级数学上册期末模拟测试题一、选择题(每小题3分,共30分)1.在给出的一组数据0,π,5,3.14,39,227中,无理数的个数有( )A .1B .2C .3D .52.等腰三角形的腰长为10,底边长为12,则其底边上的高为( ) A .13 B .8 C .25 D .643.如图,把“QQ ”笑脸放在直角坐标系中,已知左眼A 的坐标是(-2,3),嘴唇C 点的坐标为(-1,1),则此“QQ ”笑脸右眼B 的坐标是( )A .(0,3)B .(0,1)C .(-1,2)D .(-1,3)4.若方程x -2=0的解也是直线y =(2k -1)x +10与x 轴的交点的横坐标,则k 的值为( )A .2B .0C .-2D .±25.在方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =1中,如果⎩⎪⎨⎪⎧x =12,y =-1是它的一个解,那么a ,b 的值是( )A .a =4,b =0B .a =12,b =0 C .a =1,b =2 D .a ,b 不能确定6.某校九年级(1)班全体学生2020年初中毕业体育考试的成绩统计如表:根据表中的信息判断,下列结论中错误的是( ) A .该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分7.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP =20°,∠ACP=50°,则∠A+∠P的度数是( )A.70°B.80°C.90°D.100°8.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③不等式kx+b<x+a的解集为x<3中,正确的个数是( )A.0 B.1 C.2 D.39.下列说法:①如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a,b,c(a>b=c),那么a2∶b2∶c2=2∶1∶1,其中正确的是( )A.①②B.①③C.①④D.②④10.如图所示中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是( )A.y=4n-4 B.y=4n C.y=4n+4 D.y=n2二、填空题(每小题3分,共18分)11.16的平方根是____;-125的立方根是____.12.已知P 1(a -1,5)和P 2(2,b -1)关于x 轴对称,则(a +b)2 020的值为____.13.已知x ,y 是二元一次方程组⎩⎪⎨⎪⎧x -2y =3,2x +4y =5的解,则代数式x 2-4y 2的值为____.14.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,-2,+1,0,+2,-3,0,+1,则这组数据的方差是____.15.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离到达点B 200 m ,结果他在水中实际游了520 m ,则该河流的宽度为____m .16.对于两个不相等的实数a ,b ,定义一种新的运算如下:a*b =a +ba -b(a +b >0),如:3*2=3+23-2=5,那么7*(6*3)=3.三、解答题(共72分) 17.计算: (1)1212-(313+2); (2)(5-25)2;(3)23(375-12-27); (4)(3+2-1)(3-2+1).18.解下列方程组:(1)⎩⎪⎨⎪⎧y +x =1,5x +2y =8; (2)⎩⎪⎨⎪⎧x 2+y 3=132,4x -3y =18;(3)⎩⎪⎨⎪⎧x -2y =-1,x -y =2-2y ; (4)⎩⎪⎨⎪⎧x +y =-1,2x -y +3z =1,x -2y -z =6.19.已知点P(a -1,-b +2)关于x 轴的对称点为M ,关于y 轴的对称点为N ,若点M 与点N 的坐标相等.(1)求a ,b 的值;20.如图,将长方形ABCD 沿直线BD 折叠,使点C 落在点C′处,BC ′交AD 于点E ,AD =8,AB =4,求△BED 的面积.21.某校八年级有200名学生,为了向市团委推荐本年级一名学生参加团代会,按如下程序进行了民主投票,推荐的程序是:首先由全年级学生对六名候选人进行投票,每名学生只能给一名候选人投票,选出票数多的前三名;然后再对这三名候选人(记为甲、乙、丙)进行笔试和面试,两个程序的结果统计如下:请你根据以上信息解答下列问题:(1)请分别计算甲、乙、丙的得票数;(2)若规定每名候选人得一票记1分,将投票、笔试、面试三项得分按照2∶5∶3的比例计入每名候选人的总成绩,成绩最高的将被推荐,请通过计算说明甲、乙、丙哪名学生将被推荐.22.在△ABC中,∠BAC=∠BCA,CD平分∠ACB,CE⊥AB,交AB的延长线于点E,∠BCE=48°,求∠CDE的度数.23.如图,在数轴上与3,5对应的点分别是A,B,点C也在数轴上,且AB=AC,设点C表示的数为x.(1)求x的值;(2)计算|x-3|+6x+5.24.某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y1与y2的函数表达式;(2)解释图中表示的两种方案是如何付推销费的;(3)如果你是推销员,应如何选择付费方案?25.如图,一次函数y=-34x+3的图象与x轴和y轴分别交于点A和点B,将△AOB沿直线CD对折,使点A和点B重合,直线CD与x轴交于点C,与直线AB交于点D.(1)求A,B两点的坐标;(2)求OC的长;(3)设P是x轴上一动点,若使△PAB是等腰三角形,写出点P的坐标.参考答案一、选择题(每小题3分,共30分)1.在给出的一组数据0,π,5,3.14,39,227中,无理数的个数有( C )A.1 B.2 C.3 D.52.等腰三角形的腰长为10,底边长为12,则其底边上的高为( B )A.13 B.8 C.25 D.643.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(-2,3),嘴唇C点的坐标为(-1,1),则此“QQ”笑脸右眼B的坐标是( A)A.(0,3) B.(0,1) C.(-1,2) D.(-1,3)4.若方程x -2=0的解也是直线y =(2k -1)x +10与x 轴的交点的横坐标,则k 的值为( C )A .2B .0C .-2D .±25.在方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =1中,如果⎩⎪⎨⎪⎧x =12,y =-1是它的一个解,那么a ,b 的值是( A ) A .a =4,b =0 B .a =12,b =0 C .a =1,b =2 D .a ,b 不能确定6.某校九年级(1)班全体学生2020年初中毕业体育考试的成绩统计如表:根据表中的信息判断,下列结论中错误的是( D )A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分7.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP =20°,∠ACP =50°,则∠A +∠P 的度数是( C )A .70°B .80°C .90°D .100°8.一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论:①k <0;②a >0;③不等式kx +b <x +a 的解集为x <3中,正确的个数是( B )A .0B .1C .2D .39.下列说法:①如果a ,b ,c 为一组勾股数,那么4a ,4b ,4c 仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a ,b ,c(a >b =c),那么a 2∶b 2∶c 2=2∶1∶1,其中正确的是( C )A .①②B .①③C .①④D .②④10.如图所示中的圆点是有规律地从里到外逐层排列的.设y 为第n 层(n 为正整数)圆点的个数,则下列函数关系中正确的是( B )A .y =4n -4B .y =4nC .y =4n +4D .y =n 2二、填空题(每小题3分,共18分)11.16的平方根是__±2__;-125的立方根是__-5__.12.已知P 1(a -1,5)和P 2(2,b -1)关于x 轴对称,则(a +b)2 020的值为__-1__.13.已知x ,y 是二元一次方程组⎩⎪⎨⎪⎧x -2y =3,2x +4y =5的解,则代数式x 2-4y 2的值为__152__.14.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,-2,+1,0,+2,-3,0,+1,则这组数据的方差是__2.5__.15.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离到达点B 200 m ,结果他在水中实际游了520 m ,则该河流的宽度为__480__m .17.对于两个不相等的实数a ,b ,定义一种新的运算如下:a*b =a +ba -b(a +b >0),如:3*2=3+23-2=5,那么7*(6*3)=3.三、解答题(共72分) 17.计算: (1)1212-(313+2); (2)(5-25)2; 解:- 2. 解:95.(3)23(375-12-27); (4)(3+2-1)(3-2+1). 解:60. 解:2 2.18.解下列方程组:(1)⎩⎪⎨⎪⎧y +x =1,5x +2y =8; (2)⎩⎪⎨⎪⎧x 2+y 3=132,4x -3y =18;(3)⎩⎪⎨⎪⎧x -2y =-1,x -y =2-2y ; (4)⎩⎪⎨⎪⎧x +y =-1,2x -y +3z =1,x -2y -z =6.解:⎩⎨⎧x =2,y =-1. 解:⎩⎨⎧x =9,y =6. 解:⎩⎨⎧x =1,y =1.解:⎩⎨⎧x =1,y =-2,z =-1.19.已知点P(a -1,-b +2)关于x 轴的对称点为M ,关于y 轴的对称点为N ,若点M 与点N 的坐标相等.(1)求a ,b 的值;解:因为点P (a -1,-b +2)关于x 轴的对称点为M ,所以M (a -1,b -2),因为点P (a -1,-b +2)关于y 轴的对称点为N ,所以N (-a +1,-b +2),因为点M 与点N 的坐标相等,所以a -1=-a +1,b -2=-b +2,解得a =1,b =2.(2)猜想点P 的位置并说明理由.解:点P 的位置是原点.理由:因为a =1,b =2,所以点P (a -1,-b +2)的坐标为(0,0),即P 点为原点.20.如图,将长方形ABCD 沿直线BD 折叠,使点C 落在点C′处,BC ′交AD 于点E ,AD =8,AB =4,求△BED 的面积.解:由题意,易知AD ∥BC ,所以∠2=∠3.因为△BC′D 与△BCD 关于直线BD 对称,所以∠1=∠2.所以∠1=∠3.所以EB =ED.设EB =x ,则ED =x ,AE =AD -ED =8-x.在Rt △ABE 中,AB 2+AE 2=BE 2,所以42+(8-x )2=x 2.所以x =5.所以DE =5.所以S △BED =12DE·AB =12×5×4=10.21.某校八年级有200名学生,为了向市团委推荐本年级一名学生参加团代会,按如下程序进行了民主投票,推荐的程序是:首先由全年级学生对六名候选人进行投票,每名学生只能给一名候选人投票,选出票数多的前三名;然后再对这三名候选人(记为甲、乙、丙)进行笔试和面试,两个程序的结果统计如下:请你根据以上信息解答下列问题: (1)请分别计算甲、乙、丙的得票数;解:甲的票数是200×34%=68(票),乙的票数是200×30%=60(票),丙的票数是200×28%=56(票).(2)若规定每名候选人得一票记1分,将投票、笔试、面试三项得分按照2∶5∶3的比例计入每名候选人的总成绩,成绩最高的将被推荐,请通过计算说明甲、乙、丙哪名学生将被推荐.解:甲的平均成绩:68×2+92×5+85×32+5+3=85.1(分),乙的平均成绩:60×2+90×5+95×32+5+3=85.5(分),丙的平均成绩:56×2+95×5+80×32+5+3=82.7(分),因为乙的平均成绩最高,所以应该推荐乙.22.在△ABC 中,∠BAC =∠BCA ,CD 平分∠ACB ,CE ⊥AB ,交AB 的延长线于点E ,∠BCE =48°,求∠CDE 的度数.解:∵CE ⊥AB ,∴∠E =90°.在△BEC 中,∠CBE =180°-∠E -∠BCE =42°,∵∠BAC =∠BCA ,∠CBE =∠BAC +∠BCA ,∴∠BAC =∠BCA =12∠CBE =21°,又∵CD平分∠ACB ,∴∠ACD =12∠ACB =10.5°,∴∠CDE =∠ACD +∠BAC =10.5°+21°=31.5°.23.如图,在数轴上与3,5对应的点分别是A ,B ,点C 也在数轴上,且AB =AC ,设点C 表示的数为x.(1)求x 的值;解:因为数轴上A ,B 两点表示的数分别为3和5,且AB =AC ,所以3-x =5-3,解得x =23- 5.(2)计算|x -3|+6x +5.解:原式=|23-5-3|+623-5+5=5-3+3= 5.24.某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y 1与y 2的函数表达式;解:设y 1=k 1x (k 1≠0),将点(30,600)代入,可得k 1=20,所以y 1=20x.设y 2=k 2x +b (k 2≠0),将点(0,300),(30,600)代入,即⎩⎨⎧b =300,30k 2+b =600,解得⎩⎨⎧k 2=10,b =300.所以y 2=10x +300.(2)解释图中表示的两种方案是如何付推销费的;解:y 1是不推销产品没有推销费,每推销10件产品得推销费200元;y 2是保底工资300元,每推销10件产品再提成100元.(3)如果你是推销员,应如何选择付费方案?解:若业务能力强,平均每月推销都为30件时,两种方案都可以;平均每月推销大于30件时,就选择y 1的付费方案;平均每月推销小于30件时,选择y 2的付费方案.25.如图,一次函数y =-34x +3的图象与x 轴和y 轴分别交于点A 和点B ,将△AOB沿直线CD 对折,使点A 和点B 重合,直线CD 与x 轴交于点C ,与直线AB 交于点D.(1)求A ,B 两点的坐标;解:令y =0,则x =4;令x =0,则y =3,故点A 的坐标为(4,0),点B 的坐标为(0,3).(2)求OC 的长;解:设OC =x ,则AC =CB =4-x ,∵∠BOA =90°,∴OB 2+OC 2=CB 2,32+x 2=(4-x )2,解得x =78,∴OC =78.(3)设P 是x 轴上一动点,若使△PAB 是等腰三角形,写出点P 的坐标.解:设P 点坐标为(x ,0),当PA =PB 时,(x -4)2=x 2+9,解得x =78;当PA =AB 时,(x -4)2=42+32,解得x =9或x =-1;当PB =AB 时,x 2+32=42+32,解得x =-4(x =4,舍去).∴P 点坐标为(错误!,0),(-1,0)或(9,0),(-4,0).1、三人行,必有我师。
2021—2022学年度第一学期期末教学质量监测八年级数学(沪科版)(考试时间:90分钟 满分120分)一、精心选一选:(本大题共10小题,每小题3分,共30分 在每小题给出的A,B,C,D四个选项中,只有一个选项是符合题目要求的,请在答题卷上将正确答案的字母代号涂黑 )1下列微信表情是轴对称图形的是2 点A(-3,4)到y轴的距离是A 3B 4C 5D 73 下列长度的三条线段不能獉獉组成三角形的是A 3cm,4cm,5cmB 6cm,10cm,8cmC 2cm,3cm,6cmD 2cm,2cm,3cm4 下列命题是真命题的是A 如果a+b=0,那么a=b=0B 如果ab<0,那么a<0,b>0C 如果|a|=|b|,那么a=bD 如果直线a∥b,b∥c,那么直线a∥c 第5题图5 如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(-2,2),黑棋(乙)的坐标为(-1,-2),则白棋(甲)的坐标是A (2,2) B (0,1)C (2,-1) D (2,1)6 已知△ABC(AB<AC<BC),用尺规作图的方法在BC上找一点P,使得PA+PC=BC,下列作法符合要求的是7 对于一次函数y=-x+2,下列说法错误獉獉的是A 函数的图象向下平移2个单位长度得到y=-x的图象B 函数的图象与x轴的交点坐标是(2,0)C 函数的图象不经过第三象限D 若两点A(1,y1),B(3,y2)在该函数图象上,则y1<y28 已知直线l1:y=kx+b与直线l2:y=-2x+4相交于点C(m,2),则方程组y=kx+by=-2x{+4的解是Ax=1y{=2Bx=-1y{=2Cx=2y{=1Dx=2y{=-19 已知:如图,在Rt△ABC中,∠C=90°,BE平分∠ABC,ED垂直平分AB,D为垂足,若AC=12,则AE的长度为A 4B 5C 6D 8第9题图第10题图10 已知:如图,在等边△ABC中,点D是边BC上的一个动点(不与两端点重合),连接AD,作线段AD的垂直平分线EF,分别交AB,AC于点E,F,连接ED,FD,则以下结论正确的是A ∠1=15°B DF⊥ACC CD=2CFD ∠2=2∠1二、耐心填一填:(本大题共5小题,每小题4分,共20分 请将答案直接填在答题卷相应的横线上)11 函数y=xx-1中,自变量x的取值范围是12 在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同 从中随机摸出一个球,若摸到红球的概率为0 25,则口袋中白球的个数是13 已知点P(3,y1),Q(-2,y2)在一次函数y=(2m-1)x+2的图象上,且y1<y2,则m的取值范围是14 如图,在△ABC中,AB=AC=10,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的平分线,DF∥AB交AE的延长线于点F,则DF的长度为第14题图第15题图15 已知:如图,A1,A2,A3是∠MON的ON边上顺次三个不同的点,B1,B2,B3是∠MON的OM边上顺次三个不同的点,且有OA1=A1B1=B1A2=A2B2=B2A3 (1)当∠MB1A2=45°时,∠MON=;(2)若OM边上不存在B3点,使得A3B3=B2A3,则∠MON的最小值是三、用心想一想:(本大题是解答题,共6小题,计70分 解答应写出说明文字、演算式等步骤)16 (本题满分10分)已知:如图,在平面直角坐标系中,已知A(1,4),B(3,1),C(3,5) 第16题图(1)点A先向右平移3个单位,再向下平移2个单位,所得点的坐标为;(2)画出△ABC关于y轴对称的△A1B1C1;(3)已知点D的横纵坐标都是整数,且△BCD和△BCA全等,请直接写出一个满足条件的点D的坐标为(D不与A重合)17 (本题满分10分) 第17题图工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取点M,N,使得OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C的射线OC便是∠AOB的平分线 (1)求证:OC平分∠AOB;(2)已知∠AMC=40°,∠MCN=30°,求∠AOB的度数 18 (本题满分12分) 第18题图已知直线l:y=2x-2与x轴交于点D,直线l2:y=kx+b与x轴交于点A,且经过B(3,1),两直线相交于点C(m,2) (1)求点C的坐标和直线l2的解析式;(2)直接写出不等式kx+b≥2x-2的解集;(3)求△ADC的面积19 (本题满分12分)小亮是个集邮爱好者,他收集了如图所示的四张纪念邮票(除正面内容不同外,其余均相同),现将四张邮票背面朝上,洗匀放好第19题图(1)小亮从中随机抽取一张邮票是“冬奥会吉祥物冰墩墩”的概率是;(2)小亮从中随机抽取一张邮票(不放回),再从余下的邮票中随机抽取一张,求抽到的两张邮票恰好是“冬奥会会徽”和“冬奥会吉祥物冰墩墩”的概率 (这四张邮票从左到右依次分别用字母A,B,C,D表示)20 (本题满分12分)某水果超市欲购进甲,乙两种水果进行销售 甲种水果每千克的价格为a元,如果一次购买超过40千克,超过部分的价格打八折,乙种水果的价格为26元/千克 设水果超市购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示 第20题图(1)a=;(2)求y与x之间的函数关系式;(3)若经销商计划一次性购进甲,乙两种水果共80千克,且甲种水果不少于30千克,但又不超过50千克 如何分配甲,乙两种水果的购进量,才能使经销商付款总金额W(元)最少?21 (本题满分14分)已知△ABC与△ADE均为等腰直角三角形,且∠BAC=∠DAE=90°,点D在直线BC上 (1)如图1,当点D在CB延长线上时,求证:BE⊥CD;(2)如图2,当D点不在直线BC上时,BE,CD相交于M 第21题图①直接写出∠CME的度数;②求证:MA平分∠CME2021—2022学年度第一学期期末教学质量监测八年级数学参考答案及评分标准一、精心选一选:题 号12345678910答 案BACDDBDADD二、耐心填一填:11 x≠1 12 15 13 m<1214 5 15 (1)15° (2)18°三、用心想一想:16 (1)(4,2);3分…………………………………………………………………………………(2)如图所示,7分…………………………………(3)D(1,2)或(5,2)或(5,4),写对一个即可 10分………………………………………17 (1)证明:在△OMC和△ONC中,∵OM=ONOC=OCCM={CN,∴△OMC≌△ONC(SSS),3分……………………………………………………………∴∠MOC=∠NOC,∴OC平分∠AOB;5分……………………………………………………………………(2)∵△OMC≌△ONC,∠MCN=30°,∴∠MCO=∠NCO=15°,7分……………………………………………………………∵∠AMC=∠MCO+∠MOC=40°,∴∠MOC=40°-15°=25°,∴∠AOB=2∠MOC=50° 10分…………………………………………………………18 (1)把C(m,2)代入y=2x-2,解得m=2,∴点C的坐标为(2,2),2分………………………………………………………………把B(3,1),C(2,2)代入y=kx+b得,3k+b=12k+b{=2, 解得k=-1b{=4,∴直线l2的解析式为y=-x+4;5分……………………………………………………(2)x≤2;8分…………………………………………………………………………………(3)∵y=2x-2,令y=0,则2x-2=0,即x=1,∴D(1,0),∵y=-x+4,令y=0,则-x+4=0,即x=4,∴A(4,0),10分……………………………………………………………………………∴AD=OA-OD=4-1=3,∴△ADC的面积为:12AD·yc=12×3×2=3 12分……………………………………19 (1)14;4分……………………………………………………………………………………(2)这四张邮票依次分别用字母A,B,C,D表示,抽取两张邮票的所有可能结果列表如下:第二次第一次ABCDAABACADBBABCBDCCACBCDDDADBDC8分…………………………………………………………………………………………共有12种等可能情况,其中抽到的两张邮票恰好是“冬奥会会徽”和“冬奥会吉祥物冰墩墩”的可能性有2种,∴抽到的两张邮票恰好是“冬奥会会徽”和“冬奥会吉祥物冰墩墩”的概率为212=1612分……………………………………………………………………………………20 (1)30;2分……………………………………………………………………………………(2)当0≤x≤40时,y=30x,4分………………………………………………………………当x>40时,y=30×40+(x-40)×30×80%=24x+240,6分………………………∴y与x之间的函数关系式为y=30x(0≤x≤40)24x+240(x>40{);7分……………………………(3)由题意,得:30≤x≤50,①当30≤x≤40时,W=30x+26(80-x)=4x+2080,∵k=4>0,∴W随x的增大而增大,∴当x=30时,W最小,最小值=4×30+2080=2200(元);9分…………………②当40<x≤50时,W=24x+240+26(80-x)=-2x+2320,∵k=-2<0,∴W随x的增大而减小,∴当x=50时,W最小,最小值=-2×50+2320=2220(元),11分………………∵2200<2220,∴x=30,∴甲水果应购进30克,乙水果购进50克时,才能使经销商付款总金额W最少12分…………………………………………………………………………………21 (1)证明:∵∠BAC=∠DAE=90°,∴∠BAE=∠CAD,在△ABE与△ACD中∵AB=AC,∠BAE=∠CAD,AE=AD{,∴△ABE≌△ACD 3分………………………………∴∠ABE=∠C=45°,∴∠CBE=∠ABE+∠ABC=∠C+∠ABC=90°,∴BE⊥CD 5分……………………………………………………………………………(2)①90°9分…………………………………………………………………………………②作AG⊥BE于G,AH⊥CD于H,∵∠BAC=∠DAE=90°,∴∠BAE=∠CAD,11分………………………………………………………………在△ABE与△ACD中∵AB=AC,∠BAE=∠CAD,AE=AD{,∴△ABE≌△ACD 13分………………………………………………………………∴AG=AH,∴MA平分∠CME14分………………………………………………………………(其他方法请根据以上评分标准酌情赋分)。
2020-2021学年广东省佛山市南海区八年级(下)期末数学试卷一、选择题(共10小题,共30分)1.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列从左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1B.x2﹣2x+1=x(x﹣2)+1C.a(x﹣y)=ax﹣ay D.x2+2x+1=(x+1)23.若分式有意义,则x的取值范围是()A.x≠﹣2B.x≠2C.x>2D.x≠04.下列不等式变形正确的是()A.由4x﹣1≥0得4x>1B.由5x>3得x>15C.由﹣2x<4得x<﹣2D.由>0得y>05.+的运算结果正确的是()A.B.C.D.a+b6.如图,在Rt△ABC中∠C=90°,BD是∠ABC的平分线,若CD=4,AB=14,则S△ABD =()A.56B.28C.14D.127.如图,将边长相等的正方形、正五边形和正六边形摆放在平面上,则∠1为()A.32°B.36°C.40°D.42°8.如图,已知AB=AC,AB=10,BC=6,以A,B两点为圆心,大于AB的长为半径画弧,两弧相交于点M、N,直线MN与AC相交于点D,则△BDC的周长为()A.16B.20C.22D.269.如图是一个装饰连续旋转闪烁所成的四个图形,照此规律闪烁,第2021次闪烁呈现出来的图形是()A.B.C.D.10.如图,在▱ABCD中,已知AD=15cm,点P在AD边上以1cm/s的速度从点A向点D 运动,点Q在BC边上以4cm/s的速度从点C出发在BC上往返运动,两个点同时出发,当点P到达点D时停止运动(同时Q点也停止),设运动时间为t(s)(t>0),若以P、D、Q、B四点为顶点的四边形是平行四边形,则t的值错误的是()A.6B.8C.10D.12二、填空题(本大题共7小题,每小题4分,共28分)11.因式分解:x2﹣4x=.12.点M(2,﹣1)先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是.13.已知实数x、y满足|x﹣6|+(y﹣7)2=0,则以x、y的值为两边长的等腰三角形的周长为.14.分式方程的解是.15.▱ABCD中,∠A+∠C=200°,则∠A=.16.如图,△ABC中,∠ACB=90°,CD⊥AB交AB于点D,∠A=30°,BD=1.5cm,则AD=cm.17.如图,在△ABC和△ECD中,∠ACB=∠ECD=90°,AC=BC,EC=DC,△ABC的顶点A在△ECD的斜边DE上.下列结论:①连接BD,∠BDC=45°;②∠DAB=∠ACE;③AE+AC=AD;④AE2+AD2=2AC2.请写出所有正确结论的序号是.三、解答题(一)(本大题3小题,每小题6分,共18分)18.解不等式组:,并把解集在数轴上表示出来.19.先化简,再求值:(﹣1)÷,其中x=2021.20.如图,△ABC中,∠C=90°,∠A=30°,AB边上的垂直平分线DE,交AC于点D,交AB于点E,连接BD,求证:BD平分∠CBA.四、解答题(二)(本大题3小题,每小题8分,共24分)21.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点分别为A (2,﹣2),B(0,﹣5),C(0,﹣2).(1)画△A1B1C1,使它与△ABC关于点C成中心对称,则A1的坐标为.(2)平移△ABC,使点B的对应点B2的坐标为(2,3),画出平移后对应的△A2B2C2,则A2的坐标为.(3)若将△A1B1C1绕某一点旋转可得到△A2B2C2,则旋转中心的坐标为.22.如图1,在△ABC中,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:四边形DEFC是平行四边形.(2)如图2,当△ABC是等边三角形且边长是8,求四边形DEFC的面积.23.2021年2月1日后,南海区将用1年时间实现“双百目标”,即全区生活垃圾分类示范100%达标创建、生活垃圾八大产生源100%达标创建,我区的生活垃圾分类工作正式进入“提速”模式.某小区准备购买A、B两种分类垃圾桶,通过市场调研得知:A种垃圾桶每组的单价比B种垃圾桶每组的单价少150元,且用8000元购买A种垃圾桶的组数量与用11000元购买B种垃圾桶的组数量相等.(1)求A、B两种垃圾桶每组的单价.(2)该小区物业计划用不超过18000元的资金购买A、B两种垃圾桶共40组.则最多可以购买B种垃圾桶多少组?五、解答题(三)(本大题2小题,每小题10分,共20分)24.在学习一元一次不等式与一次函数中,小明在同一个坐标系中发现直线l1:y1=kx+b(k ≠0)与x轴交于点A且与直线l2:y2=x交于点B,并且有如下信息:①当x>2时,y1<y2;当x<2时,y1>y2.②当y1<0时,x<﹣4.根据信息解答下列问题:(1)求直线l1的表达式.(2)过点A的直线l3:y3=与直线l2交于点C,求△ABC的面积.(3)若点D是x轴上的动点,点E是直线AB上的动点,是否存在以A、C、D、E为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的D点坐标.若不存在,请说明理由.25.如图,两个全等的等边三角形△ABC与△ACD,拼成的四边形ABCD中,AC=6,点E、F分别为AB、AD边上的动点,满足BE=AF,连接EF交AC于点G,连接BD与CE、AC、CF分别交于点M、O、N,且AC⊥BD.(1)求证:△CEF是等边三角形.(2)△AEF的周长最小值是.(3)若BE=3,求证:BM=MN=DN.参考答案一、选择题(本大题共10小题,每小题3分,共30分,在每小题的四个选项中,只有一项正确)1.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.解:A.既是轴对称图形,又是中心对称图形,故此选项符合题意;B.不是轴对称图形,是中心对称图形,故此选项不合题意;C.不是轴对称图形,是中心对称图形,故此选项不合题意;D.是轴对称图形,不是中心对称图形,故此选项不合题意;故选:A.2.下列从左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1B.x2﹣2x+1=x(x﹣2)+1C.a(x﹣y)=ax﹣ay D.x2+2x+1=(x+1)2解:A、(x+1)(x﹣1)=x2﹣1,从左到右是整式的乘法运算,不合题意;B、x2﹣2x+1=(x﹣1)2,不合题意;C、a(x﹣y)=ax﹣ay,不合题意;D、x2+2x+1=(x+1)2,从左到右是因式分解,符合题意.故选:D.3.若分式有意义,则x的取值范围是()A.x≠﹣2B.x≠2C.x>2D.x≠0解:∵分式有意义,∴x﹣2≠0,∴x≠2,故选:B.4.下列不等式变形正确的是()A.由4x﹣1≥0得4x>1B.由5x>3得x>15C.由﹣2x<4得x<﹣2D.由>0得y>0解:A、由4x﹣1≥0得4x≥1,原变形错误,故此选项不符合题意;B、由5x>3得x>,原变形错误,故此选项不符合题意;C、由﹣2x<4得x>﹣2,原变形错误,故此选项不符合题意;D、由>0得y>0,原变形正确,故此选项符合题意;故选:D.5.+的运算结果正确的是()A.B.C.D.a+b解:+=+=故+的运算结果正确的是.故选:C.6.如图,在Rt△ABC中∠C=90°,BD是∠ABC的平分线,若CD=4,AB=14,则S△ABD =()A.56B.28C.14D.12解:如图,过点D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,∴DE=CD=4,∴△ABD的面积=AB•DE=×14×4=28.故选:B.7.如图,将边长相等的正方形、正五边形和正六边形摆放在平面上,则∠1为()A.32°B.36°C.40°D.42°解:正方形的内角为90°,正五边形的内角为=108°,正六边形的内角为=120°,∠1=360°﹣90°﹣108°﹣120°=42°,故选:D.8.如图,已知AB=AC,AB=10,BC=6,以A,B两点为圆心,大于AB的长为半径画弧,两弧相交于点M、N,直线MN与AC相交于点D,则△BDC的周长为()A.16B.20C.22D.26解:∵AB=AC,AB=10,∴AC=10,由作法得MN垂直平分AB,∴DA=DB,∴△BDC的周长=DB+DC+BC=DA+DC+BC=AC+BC=10+6=16.故选:A.9.如图是一个装饰连续旋转闪烁所成的四个图形,照此规律闪烁,第2021次闪烁呈现出来的图形是()A.B.C.D.解:观察图形的变化可知:每旋转一次,旋转角为90°,即每4次旋转一周,∵2021÷4=505...1,即第2021次与第1次的图案相同.故选:A.10.如图,在▱ABCD中,已知AD=15cm,点P在AD边上以1cm/s的速度从点A向点D 运动,点Q在BC边上以4cm/s的速度从点C出发在BC上往返运动,两个点同时出发,当点P到达点D时停止运动(同时Q点也停止),设运动时间为t(s)(t>0),若以P、D、Q、B四点为顶点的四边形是平行四边形,则t的值错误的是()A.6B.8C.10D.12解:设经过t秒,以点P、D、Q、B为顶点组成平行四边形,∵P在AD上运动,∴t≤15÷1=15,即t≤15,∵以点P、D、Q、B为顶点组成平行四边形,∴DP=BQ,分为以下情况:①点Q的运动路线是C﹣B﹣C,由题意得:4t﹣15=15﹣t,解得:t=6;②点Q的运动路线是C﹣B﹣C﹣B,由题意得:15﹣(4t﹣30)=15﹣t,解得:t=10;③点Q的运动路线是C﹣B﹣C﹣B﹣C,由题意得:4t﹣45=15﹣t,解得:t=12;综上所述,t的值为6或10或12,故选:B.二、填空题(本大题共7小题,每小题4分,共28分)11.因式分解:x2﹣4x=x(x﹣4).解:x2﹣4x=x(x﹣4).故答案为:x(x﹣4).12.点M(2,﹣1)先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是(﹣1,1).解:点M(2,﹣1)先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是(2﹣3,﹣1+2),即(﹣1,1),故答案为:(﹣1,1).13.已知实数x、y满足|x﹣6|+(y﹣7)2=0,则以x、y的值为两边长的等腰三角形的周长为19或20.解:根据题意得x﹣6=0,y﹣7=0,解得x=6,y=7,①6是腰长时,三角形的三边分别为6、6、7,能组成三角形,三角形的周长为19.②6是底边时,三角形的三边分别为6、7、7,能组成三角形,三角形的周长为20.故答案为19或20.14.分式方程的解是x=3.解:去分母得:x=3(x﹣2),去括号得:x=3x﹣6,解得:x=3,经检验x=3是分式方程的解.15.▱ABCD中,∠A+∠C=200°,则∠A=100°.解:∵四边形ABCD是平行四边形,∴∠A=∠C,又∵∠A+∠C=200°,∴∠A=100°.故答案是:100°.16.如图,△ABC中,∠ACB=90°,CD⊥AB交AB于点D,∠A=30°,BD=1.5cm,则AD= 4.5cm.解:∵∠ACB=90°,CD⊥AB,∴∠BCD+∠ACD=90°,∠A+∠ACD=90°,∴∠BCD=∠A=30°,∵BD=1.5cm,∴BC=2BD=3cm,AB=2BC=6cm,∴AD=AB﹣BD=4.5cm.故答案是:4.5.17.如图,在△ABC和△ECD中,∠ACB=∠ECD=90°,AC=BC,EC=DC,△ABC的顶点A在△ECD的斜边DE上.下列结论:①连接BD,∠BDC=45°;②∠DAB=∠ACE;③AE+AC=AD;④AE2+AD2=2AC2.请写出所有正确结论的序号是①②④.解:∵△ABC和△ECD都是等腰直角三角形,∴CA=CB,CE=CD,∠ACB=∠ECD=90°,∠E=∠CDE=45°,∠CAB=∠CBA=45°,∵∠DAB+∠CAB=∠ACE+∠E,∴∠DAB=∠ACE,故②正确;∴∠ACE+∠ACD=∠ACD+∠DCB=90°,∴∠ACE=∠DCB,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴∠CDB=∠E=45°,故①正确;∴AE=BD,∠CEA=∠CDB=45°,∴∠ADB=∠CDB+∠EDC=90°,∴△ADB是直角三角形,∴AD2+BD2=AB2,∴AD2+AE2=AB2,∵△ABC是等腰直角三角形,∴AB=AC,∴AE2+AD2=2AC2,故④正确;在AD上截取DF=AE,连接CF,如图所示:在△ACE和△FCD中,,∴△ACE≌△FCD(SAS),∴AC=FC,当∠CAF=60°时,△ACF是等边三角形,则AC=AF,此时AE+AC=DF+AF=AD,故③不正确;故答案为:①②④.三、解答题(一)(本大题3小题,每小题6分,共18分)18.解不等式组:,并把解集在数轴上表示出来.解:解①得:x>2,解②得:x≥﹣1,∴不等式组的解集是x>2,将不等式组的解集表示在数轴上如下:19.先化简,再求值:(﹣1)÷,其中x=2021.解:(﹣1)÷=•==﹣,当x=2021时,原式=﹣=﹣.20.如图,△ABC中,∠C=90°,∠A=30°,AB边上的垂直平分线DE,交AC于点D,交AB于点E,连接BD,求证:BD平分∠CBA.【解答】证明:∵DE是AB边上的中垂线,∠A=30°,∴AD=BD,∴∠ABD=∠A=30°,∵∠C=90°,∴∠ABC=90°﹣∠A=90°﹣30°=60°,∴∠CBD=∠ABC﹣∠ABD=60°﹣30°=30°,∴∠ABD=∠CBD,∴BD平分∠CBA.四、解答题(二)(本大题3小题,每小题8分,共24分)21.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点分别为A (2,﹣2),B(0,﹣5),C(0,﹣2).(1)画△A1B1C1,使它与△ABC关于点C成中心对称,则A1的坐标为(﹣2,﹣2).(2)平移△ABC,使点B的对应点B2的坐标为(2,3),画出平移后对应的△A2B2C2,则A2的坐标为(4,6).(3)若将△A1B1C1绕某一点旋转可得到△A2B2C2,则旋转中心的坐标为(1,2).解:(1)如图,△A1B1C1即为所求,A1的坐标为(﹣2,﹣2).故答案为:(﹣2,﹣2).(2)如图,△A2B2C2即为所求,A2的坐标为(4,6).故答案为:(4,6).(3)旋转中心P的坐标为(1,2),故答案为:(1,2).22.如图1,在△ABC中,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:四边形DEFC是平行四边形.(2)如图2,当△ABC是等边三角形且边长是8,求四边形DEFC的面积.【解答】(1)证明:∵D、E分别为AB、AC的中点,∴DE是△ABC的中位线,∴DE=BC,DE∥BC,∵CF=BC,∴DE=CF,∴四边形DEFC是平行四边形.(2)解:过点D作DH⊥BC于H,如图2所示:∵△ABC是等边三角形,D为AB的中点∴∠B=60°,BD=AB=4,∵∠DHB=90°,∴∠BDH=30°,∴BH=DB=2,∴DH==,∵CF=CB=4,∴S四边形DEFC=CF•DH=4×2=8.23.2021年2月1日后,南海区将用1年时间实现“双百目标”,即全区生活垃圾分类示范100%达标创建、生活垃圾八大产生源100%达标创建,我区的生活垃圾分类工作正式进入“提速”模式.某小区准备购买A、B两种分类垃圾桶,通过市场调研得知:A种垃圾桶每组的单价比B种垃圾桶每组的单价少150元,且用8000元购买A种垃圾桶的组数量与用11000元购买B种垃圾桶的组数量相等.(1)求A、B两种垃圾桶每组的单价.(2)该小区物业计划用不超过18000元的资金购买A、B两种垃圾桶共40组.则最多可以购买B种垃圾桶多少组?解:(1)设A种垃圾桶每组的单价为x元,则B种垃圾桶每组的单价为(x+150)元,依题意得:,解得:x=400,经检验,x=400是原方程的解,且符合题意,∴x+150=400+150=550(元).答:A种垃圾桶每组的单价为400元,B种垃圾桶每组的单价为550元.(2)设购买B种垃圾桶y组,则购买A种垃圾桶(40﹣y)组,依题意得:400(40﹣y)+550y≤18000,解得:y≤,又∵y为正整数,∴y的最大值为13.答:最多可以购买B种垃圾桶13组.五、解答题(三)(本大题2小题,每小题10分,共20分)24.在学习一元一次不等式与一次函数中,小明在同一个坐标系中发现直线l1:y1=kx+b(k ≠0)与x轴交于点A且与直线l2:y2=x交于点B,并且有如下信息:①当x>2时,y1<y2;当x<2时,y1>y2.②当y1<0时,x<﹣4.根据信息解答下列问题:(1)求直线l1的表达式.(2)过点A的直线l3:y3=与直线l2交于点C,求△ABC的面积.(3)若点D是x轴上的动点,点E是直线AB上的动点,是否存在以A、C、D、E为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的D点坐标.若不存在,请说明理由.解:(1)∵当x>2时,y1<y2;当x<2时,y1>y2,∴点B的横坐标为2,当x=2时,y2=×2=3,∴直线l1,l2的交点坐标为B(2,3),∵当y1<0时,x<﹣4,∴直线l1与x轴的交点坐标为A(﹣4,0),将A(﹣4,0),B(2,3)代入y1=kx+b中,∴,解得:,∴直线l1的表达式为y1=x+2;(2)联立,解得:,∴直线l2,l3的交点坐标为C(﹣1,﹣),∴S△ABC==9;(3)存在,∵点E是直线AB上的动点,点D是x轴上的动点,∴设E点坐标为(x,x+2),D点坐标为(m,0),又∵A(﹣4,0),C(﹣1,﹣),在以A、C、D、E为顶点的四边形是平行四边形中,①当AC,DE为平行四边形的对角线时,,解得,∴此时D点坐标为(2,0),②当AD,CE为平行四边形的对角线时,,解得,此时D点坐标为(2,0),③当AE,CD为平行四边形的对角线时,,解得,此时D点坐标为(﹣10,0),综上,满足条件的点D的坐标为(2,0)或(﹣10,0).25.如图,两个全等的等边三角形△ABC与△ACD,拼成的四边形ABCD中,AC=6,点E、F分别为AB、AD边上的动点,满足BE=AF,连接EF交AC于点G,连接BD与CE、AC、CF分别交于点M、O、N,且AC⊥BD.(1)求证:△CEF是等边三角形.(2)△AEF的周长最小值是6+3.(3)若BE=3,求证:BM=MN=DN.【解答】(1)证明:∵△ABC,△ACD是全等的等边三角形,∴AC=BC,∠ABC=∠DAC=∠BCA=60°,∵AF=BE,在△CBE和△CAF中,,∴△BEC≌△AFC(SAS),∴CE=CF,∠BCE=∠ACF,∴∠BCE+∠ACE=∠ACF+∠ACE,∴∠ECF=∠BCA=60°,∴△CEF是等边三角形.(2)解:∵△AEF的周长=AE+AF+EF=AE+BE+EF=AB+EF=6+EF,∴EF的值最小时,△AEF的周长最小,∵△ECF是等边三角形,∴EF=CE,∴当CE⊥AB时,CE的值最小,此时CE=AC•sin60°=3,∴△AEF的周长的最小值为6+3,故答案为:6+3.(3)证明:∵△ABC,△ACD是全等的等边三角形,AC⊥BD ∴AO=CO,BO=DO,∠ABO=∠ABC=30°∵BE=3,AB=AC=6,∴点E为AB中点,点F为AD中点,∴AO=AB=3,∴BO=,∴BD=6,∵△ABC是等边三角形,BE=AE=3,∴CE⊥AB,∴BM=2EM,∴∴BM=2,同理可得DN=2,∴MN=BD﹣BM﹣DN=2∴BM=MN=DN.。
2021-2022学年度第一学期期末质量检测八年级数学试卷注意事项:1.本试卷考试时间为100分钟,试卷满分120分.考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的学校、班级、姓名、准考证号填写在答题卡上相应位置. 一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题卡相应位置上) 1. 若一个数的平方等于4,则这个数等于 ················································ 【 ▲ 】A .±2B .2C .±16D .162. 若分式15x 有意义,则实数x 的取值范围是 ········································ 【 ▲ 】A .x <5B .x =5C .x >5D .x ≠5 3. 在平面直角坐标系中,点P (-3,2)在 ············································ 【 ▲ 】 A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.·········································································· 【 ▲ 】 A .2和3之间B .3和4之间C .4和5之间D .5和6之间5. 如图,在△ABC 中,AB =AC ,AD 是边BC 上的中线,若AB =5,BC =6,则AD 的长为 ···························································································· 【 ▲ 】 A .3B .7C .4D .116. 如图,已知∠ABC =∠DCB ,添加以下条件,不能判定....△ABC ≌△DCB 的是【 ▲ 】 A .AB =DC B .BE =CE C .AC =DB D .∠A =∠D7. 下列四组线段a ,b ,c ,能组成直角三角形的是 ···································· 【 ▲ 】A .a =1,b =2,c =3B .a =1,b,cC .a =2,b =3,c =4D .a =4,b =5,c =6 8. 某一次函数的图像与x 轴交于正半轴,则这个函数表达式可能是 ·············· 【 ▲ 】 A .y =2xB .y =x +1C .y =-x -1D .y =x -1二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡相应位置上).9. 等腰三角形的一个内角是100°,则它的底角的度数为 ▲ .(第5题图) C D AB (第6题图) A D B CE学校 班级 考号 姓名……………………………………………密………………………………………封……………………………线……………………………………10.如图,△ABC ≌△ADC ,∠BCA =40°,∠B =80°,则∠BAD 的度数为 ▲ .11.“徐宿淮盐”铁路是一条连接徐州与盐城的高速铁路,全长约为316 000米.将数据316 000用四舍五入法精确到万位,并用科学记数法表示为 ▲ .12.如图,在△ABC 中,∠ACB =90°,点D 为AB 中点,若AB =4,则CD = ▲ . 13.在平面直角坐标系中,过点P (5,6)作P A ⊥x 轴,垂足为点A ,则P A 的长为 ▲ . 14.将一次函数y =2x 图像向上平移1个单位所得的直线函数表达式为 ▲ . 15.关于x 的分式方程21x ax =1的解为负数,则a 的取值范围为 ▲ . 16.如图,在△ABC 中,AB =AC ,点P 为边AC 上一动点,过点P 作PD ⊥BC ,垂足为点D ,延长DP 交BA 的延长线于点E ,若AC =10,设CP 长为x ,BE 长为y ,则y 关于x 的函数关系式为 ▲ .(不需写出x 的取值范围)三、解答题(本大题共有10小题,共72分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤) 17.(本题满分6分) (138; (2)求x 的值:(x +2)2-9=0.18.(本题满分4分)解方程:1242x x x =2.19.(本题满分5分)先化简再求值:,11112-÷⎪⎭⎫⎝⎛-+a a a 其中a =2.CDA B(第12题图) (第16题图)CD EABP(第10题图)CDAB20.(本题满分5分)如图是8×8的正方形网格,每个小方格都是边长为1的正方形,在网格中建立平面直角坐标系xOy ,使点A 坐标为(2,-3),点B 坐标为(4,-1). (1)试在图中画出这个直角坐标系;(2)标出点C (1,1),连接AB 、AC ,画出△ABC关于y 轴对称的△A 1B 1C 1.21.(本题满分6分)如图,点D 、B 、C 在一直线上,△ABC 和△ADE 都是等边三角形.试找出图中的一对全等三角形,并证明.22.(本题满分8分)小李经营一家水果店,某日到水果批发市场批发一种水果.经了解,一次性批发这种水果不得少于100 kg ,超过300 kg 时,所有这种水果的批发单价均为3元/kg .图中折线表示批发单价y (元/kg )与质量x (kg )的函数关系. (1)求图中线段AB 所在直线的函数表达式;(2)小李需要一次性批发这种水果280 kg ,需要花费多少元?23.(本题满分8分)甲、乙两车同时从A 地出发前往B 地,其中甲车选择有高架的路线,全程共50 km ,乙车选择没有高架的路线,全程共44 km .甲车行驶的平均速度比乙车行驶的平均速度每小时快20千米,乙车到达B 地花费的时间是甲车的1.2倍.问甲、乙两车行驶的平均速度分别是多少?AB(第20题图)(第22题图)kg )(第21题图)DE AB24.(本题满分7分)如图,Rt △ABC 中,∠ACB =90°.(1)尺规作图(保留作图痕迹,不写作法与证明):① 作∠B 的平分线BD 交边AC 于点D ; ② 过点D 作DE ⊥AB 于点E ;(2)在(1)所画图中,若CD =3,AC =8,则AB 长为 ▲ .25.(本题满分9分)如图,在四边形ABCD 中,∠ABC =90°,过点B 作BE ⊥CD ,垂足为点E ,过点A 作AF ⊥BE ,垂足为点F ,且BE =AF . (1)求证:△ABF ≌△BCE ;(2)连接BD ,且BD 平分∠ABE 交AF 于点G .求证:△BCD 是等腰三角形.26.(本题满分14分)如图,已知一次函数y =x -2的图像与y 轴交于点A ,一次函数y =4x +b 的图像与y 轴交于点B ,且与x 轴以及一次函数y =x -2的图像分别交于点C 、D ,点D 的坐标为(-2,m ).(1)关于x 、y 的方程组⎩⎨⎧=--=-.4,2b x y x y 的解为 ▲ ;(2)关于x 的不等式x -2≥4x +b 的解集为 ▲ ; (3)求四边形OADC 的面积;(4)在x 轴上是否存在点E ,使得以点C ,D ,E 为顶点的三角形是直角三角形?若存在,求出点ECDEFGAB(第25题图)(第24题图)CAB (第26题图)八年级数学参考答案及评分标准(阅卷前请认真校对,以防答案有误!)9.40° 10.120° 11.3.2×105 12.2 13.6 14.y =2x +1 15.a >1且a ≠2 16.y =20-x 三、解答题 17.(本题满分6分,每小题3分)解:(1)原式=4-(-2) ········································································· 2分=6. ················································································ 3分 4给12给1分.(2)x +2=±3. ··················································································· 1分x +2=3或x +2=-3. x =1或-5. ·················································································· 3分 说明:x =1给1分;x =-5给1分. 18.(本题满分4分)解:x -2=4(x -2) ················································································· 1分x =2 ························································································· 2分检验:当x =2时,2(x -2)=0,x =2是增根. ············································ 3分 ∴原方程无解. ···················································································· 4分 19.(本题满分5分)解:原式=1(1)1(1)(1)a aa a a ··························································· 2分=(1)(1)1a a a a a ··································································· 3分=-a +1. ·············································································· 4分当a =2时,原式=-2+1=-1. ···························································· 5分 20.(本题满分5分)解:如图所示. ···················································································· 2分(2)如图所示. ················································································· 5分 说明:1.x 轴给1分;y 轴给1分;点C 给1分;△A 1B 1C 1给2分. 2.字母没有标记不扣分. 21.(本题满分6分)解:△ABE ≌△ACD . ············································································ 2分 证明:∵△ABC 、△ADE 都是等边三角形, ∴AB =AC ,AD =AE ,∠BAC =∠DAE =60°.∴∠BAC +∠BAD =∠DAE +∠BAD ,即∠CAD =∠BAE . ···························· 3分在△ABE 和△CAD ,AB AC BAE CAD AE AD =﹐=﹐=﹐······················································· 4分∴△ABE ≌△ACD . ··············································································· 6分 说明:AB =AC 给1分;AD =AE 给1分. 22.(本题满分8分)解:(1)设线段AB 所在直线的函数表达式为y =kx +b (k ≠0). 把点(100,5),(300,3)分别代入,得 51003300k b k b ﹐﹒== 2分解得0.016k b ﹐﹒==4分∴线段AB 所在直线的函数表达式为y =-0.01x +6. 5分(2)在y =-0.01x +6中,当x =280时,y =3.2. 6分 ∴需要花费的费用为280×3.2=896(元). 8分 23.(本题满分8分)解:设乙车行驶的平均速度为x km/h ,则甲车行驶的平均速度为(x +20) km/h .根据题意,得 1.2×5020x =44x. ·························································· 3分解得x =55. ························································································ 5分 经检验,x =55是所列方程的解. ····························································· 6分 x +20=75. ························································································· 7分 答:甲车行驶的平均速度为75 km/h ,乙车行驶的平均速度为55 km/h . ··········· 8分 24.(本题满分7分)解:(1)①如图,BD 就是所要求作的图形. ·············································· 2分 ②如图,DE 就是所要求作的图形. ·························································· 4分(2)10. ····························································································· 7分 说明:不交待结论不扣分.CDE AB25.(本题满分9分)解:(1)证明:∵BE ⊥CD ,AF ⊥BE , ∴∠AFB =∠BEC =90°. ········································································ 1分 ∴∠ABE +∠BAF =90°. ∵∠ABC =90°,∴∠ABE +∠EBC =90°. ∴∠BAF =∠EBC . ··············································································· 3分 在△ABF 和△BCE 中, AFB BEC AF BE BAF EBC ﹐﹐﹐ ··················································································· 4分 ∴△ABF ≌△BCE . ··············································································· 5分 (2)∵∠ABC =90°, ∴∠ABD +∠DBC =90°. ······································································ 6分 ∵∠BEC =90°,∴∠DBE +∠BDE =90°. ······································································ 7分 ∵BD 平分∠ABE , ∴∠ABD =∠DBE . ∴∠DBC =∠BDE . ············································································· 8分 ∴BC =CD ,即△BCD 是等腰三角形. ·················································· 9分 说明:其它证法类似给分. 26.(本题满分14分)解:(1)24y x =﹐=﹒················································································ 2分(2)x ≤-2. ······················································································· 4分 (3)如图1,过点D 作DH ⊥AB 于H . 由(1)知D (-2,-4). ∴DH =2.在y =x -2中,当x =0时,y =-2. ∴A (0,-2).把D (-2,-4)代入y =4x +b 得-4=4×(-2)+b ,解得b =4. ∴B (0,4),直线BD 的函数表达式为y =4x +4. ∴AB =4-(-2)=6.∴S △ABD =12AB ·DH =12×6×2=6. ······················································· 6分在y =4x +4中,当y =0时,0=4x +4,解得x =-1. ∴C (-1,0). ∴OC =1. ∵B (0,4), ∴OB =4.∴S △OBC =12OB ·OC =12×4×1=2. ······················································· 8分 ∴S 四边形OADC =S △ABD -S △OBC =6-2=4. ····················································· 9分(4)如图2,当点E 为直角顶点时,过点D 作DE 1⊥x 轴于E 1.∵D (-2,-4). ∴E 1(-2,0). ·················································································· 10分 当点C 为直角顶点时,x 轴上不存在点E . ················································ 11分 当点D 为直角顶点时,过点D 作DE 2⊥CD 交x 轴于点E 2.设E 2(t ,0). ∵C (-1,0),E 1(-2,0), ∴CE 2=-1-t ,E 1E 2=-2-t . ∵D (-2,-4),∴DE 1=4,CE 1=-1-(-2)=1.在Rt △DE 1E 2中,由勾股定理得22DE =21DE +2212E E =42+(-2-t )2=t 2+4t +20.在Rt △CDE 1中,由勾股定理得CD 2=12+42=17. 在Rt △CDE 2中,由勾股定理得22CE =22DE +CD 2.∴(-1-t )2= t 2+4t +20+17. 解得t =-18. ∴E 2(-18,0). ················································································ 14分 综合知,点E 坐标为(-2,0)或(-18,0).图1图2。
密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:150分 时间: 120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.若代数式4xx -有意义,则实数x 的取值范围是( ) A .x =0 B .x =4C .x ≠0D .x ≠42.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.0000007平方毫米,将数字0.0000007用科学记数法可以表示为( ) A .6710-⨯ B .60.710-⨯C .7710-⨯D .87010-⨯3.下列式子,成立的是( ) A .a 2·a 3=a 6 B .(a 2)3=a 5C .a –1=–aD .(–a +b )(–a –b )=a 2–b 24.如果把分式xyx y+中的x 和y 都扩大2倍,那么分式的值( )A .扩大4倍B .扩大2倍C .不变D .缩小2倍5.若等腰三角形中有两边长分别为3和7,则这个三角形的周长为( ) A .13 B .13或17C .10D .176.在平面直角坐标系中,将点A (–1,2)向右平移4个单位长度得到点B ,则点B 关于y 轴的对称点B ′的坐标为( ) A .(–3,2) B .(3,–2) C .(3,2)D .(2,–3)7.如图,在△ABC 和△BDE 中,点C在边BD 上,边AC 交边BE 于点F ,若AC =BD ,AB =ED ,BC =BE ,则∠ACB 等于( )A .∠DB .∠EC .∠EBDD .∠ABF8.点O 在ABC △(非等边三角形)内,且OA OB OC ==,则点O为( )A .ABC △的三条角平分线的交点题号一 二 三 总分 得分B .ABC △的三条高线的交点C .ABC △的三条边的垂直平分线的交点D .ABC △的三条边上的中线的交点9.如图,AE ∥DF ,AE =DF ,则添加下列条件还不能使△EAC≌△FDB 的为( )A .AB =CD B .CE ∥BFC .∠E =∠FD .CE =BF10.如图,AD 是△ABC 的角平分线,DE ⊥AB 于E ,△ABC 的面积为10,AB =6,DE =2,则AC 的长是( )A .4B .4.5C .4.8D .5 11.从3-,2-,1-,32-,1,3这六个数中,随机抽取一个数,记为a .关于x 的方程211x ax +=-的解是正数,那么这6个数中所有满足条件的a 的值有( ) A .3个B .2个C .1个D .4个12.如图,在等边三角形ABC 中,BC 边上的中线AD =6,是AD 上的一个动点,F 是边AB 上的一个动点,在点F 运动的过程中,EB +EF 的最小值是A .5B .6C .7D .8第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.若23a b =,则a b b -=__________.14.若3a b +=,1ab =,则22ab +=__________.15.若一个多边形的内角和是900º,则这个多边形是__________边形.16.如图,依据尺规作图的痕迹,计算α∠=__________°.17.已知ABC ∆中,它的三边长a 、b 、c 都是正整数,其中a 是最长边,且满足22106340a b a b +--+=,则符合条件的c密线学校 班级 姓名 学号密 封 线 内 不 得 答 题值为__________.18.如图,∠ABC =∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF .以下结论:①AD∥BC ;②∠ACB =2∠ADB ;③∠ADC =90°−12∠ABC ;④BD 平分∠ADC ;⑤∠BDC =12∠BAC .其中正确的结论有__________(填序号)三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分) (1)解方程:22+11x x x x+=+;(2)解方程:2227361x x x x x -=+--. 20.(本小题满分6分)(1)因式分解22(2)(22)1a ab b a b -++-++;(2)先化简,再求值24512(1)(),11a a a a a a-+-÷----其中1a =-. 21.(本小题满分6分)如图,点B 、C 、D 、E 在同一条直线上,已知AB =FC ,AD =FE ,BC =DE . (1)求证:△ABD ≌△FCE .(2)AB 与FC 的位置关系是_________(请直接写出结论)22.(本小题满分8分)如图,在△ABC 中,AB =AC ,∠A =36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC . (1)求∠ECD 的度数; (2)若CE =5,求BC 的长.23.(本小题满分8分)超市用2500元购进某品牌苹果,以每千克8元的单价试销.销售良好,超市又安排4500元补货.补货进价比上次每千克少0.5元,数量是上次的2倍.(1)求两次进货的单价分别是多少元.(2)当售出大部分后,余下200千克按7.5折售完,求两次销售苹果的毛利.24.(本小题满分10分)如图,△ABC 中,∠BAC =90°,AD⊥BC ,垂足为D .(1)求作∠ABC 的平分线,分别交AD ,AC 于E ,F 两点;(要求:尺规作图,保留作图痕迹,不写作法)(2)证明:AE=AF.25.(本小题满分10分)如图,网格中有格点△ABC与△DEF.(1)△ABC与△DEF是否全等?(不说理由.)(2)△ABC与△DEF是否成轴对称?(不说理由)(3)若△ABC与△DEF成轴对称,请画出它的对称轴l.并在直线l上画出点P,使PA+PC最小.26.(本小题满分12分)探究下面的问题:(1)如图甲,在边长为a的正方形中去掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图乙的一个长方形,通过计算两个图形(阴影部分)的面积,验证了一个等式,这个等式是________(用式子表示),即乘法公式中的___________公式.(2)运用你所得到的公式计算:①10.7×9.3;②(23)(23)x y z x y z+---.27.(本小题满分12分)在△ABC中,∠BAC=100°,∠∠ACB,点D在直线BC上运动(不与点B、C点E在射线AC上运动,且∠ADE=∠AED,设∠DAC=(1)如图①,当点D在边BC上时,且n=36°BAD=__________,∠CDE=__________;(2)如图②,当点D运动到点B变,请猜想∠BAD和∠CDE(3)当点D运动到点C的右侧时,其他条件不变,∠和∠CDE还满足(2)中的数量关系吗?请画出图形,明理由.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题参考答案一1 2 3 4 5 6 7 8 9 10 11 12 DCDBDACCDABB二、13.【答案】3-【解析】∵23a b =,∴设a =2k ,b =3k (k ≠0),则23133a b k k b k --==-, 故答案为:13-.14.【答案】7【解析】∵a +b =3,ab =1,∴22a b +=(a +b )2–2ab =9–2=7;故答案为7. 15.【答案】七【解析】设这个多边形是n 边形,根据题意得,()2180900n -⋅︒=︒,解得7n =.故答案为:7. 16.【答案】56【解析】如图,∵四边形ABCD 是长方形,∴AD ∥BC ,∴∠DAC =∠ACB =68°, ∵由作法可知,AF 是∠DAC 的平分线,∴∠EAF =12∠DAC =34°,∵由作法可知,EF 是线段AC 的垂直平分线,∴∠AEF =90°, ∴∠AFE =90°−34°=56°,∴∠α=56°.故答案为:56.17.【答案】6或7【解析】a 2+b 2–10a –6b +34=0, a 2–10a +25+b 2–6b +9=0,(a –5)2+(b –3)2=0, 则a –5=0,b –3=0,解得,a =5,b =3, 则5–3<c <3+5,即2<c <8,∴△ABC 的最大边c 的值为6或7, 故答案为:6或7. 18.【答案】①②③⑤【解析】∵AD 平分∠EAC ,∴∠EAC =2∠EAD , ∵∠EAC =∠ABC +∠ACB ,∠ABC =∠ACB ,∴∠EAD =∠ABC ,∴AD ∥BC ,∴①正确; ∵AD ∥BC ,∴∠ADB =∠DBC ,∵BD 平分∠ABC ,∠ABC =∠ACB ,∴∠ABC =∠ACB =2∠DBC ,∴∠ACB =2∠ADB ,∴②正确;∵AD平分∠EAC,CD平分∠ACF,∴∠DAC=12∠EAC,∠DCA=12∠ACF,∵∠EAC=∠ABC+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,∴∠ADC=180°−(∠DAC+∠ACD)=180°−12(∠EAC+∠ACF)=180°−12(∠ABC+∠ACB+∠ABC+∠BAC)=180°−12(180°+∠ABC)=90°−12∠ABC,∴③正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∠ADC=90°−12∠ABC,∴∠ADB不一定等于∠CDB,∴④错误;∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,∴∠BAC=2∠BDC,∴∠BDC=12∠BAC,∴⑤正确;故答案为:①②③⑤.三、19.【解析】(1)方程两边都乘x(x+1),得x2+x2+x=2(x+1)2,解得:x=−23,检验:当x=−23时,x(x+1)≠0,∴x=−23是原方程的解.(3分)(2)去分母得:7x−7+3x+3=6x,解得:x=1,经检验x=1是增根,分式方程无解.(6分)20.【解析】(1)原式=(a2–2ab+b2)–(2a–2b)+1=(a–b)2–2(a–b)+1=(a–b–1)2.(3分)(2)原式()()()211452(2)111a a a a aa a a a+--+--=÷=---•()12a aa-=-a(a–2当a=–1时,原式=–1×(–1–2)=3.(6分)21.【解析】(1)∵BC=DE,∴BC+CD=DE+CD,即BD=CE.在△ABD和△FCE中,AB FCAD FEBD CE=⎧⎪=⎨⎪=⎩,∴△ABD≌△FCE(SSS).(4分)(2)AB∥FC.(6分)由(1)可知△ABD≌△FCE,∴∠B=∠FCE(全等三角形的对应角相等),∴AB∥FC(同位角相等,两直线平行).22.【解析】(1)∵DE垂直平分AC,∠A=36°,∴CE=AE,∴∠ECD=∠A=36°;(4分)(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴∠BEC =∠A +∠ECD =72°,∴∠BEC =∠B ,∴BC =EC =5.(8分)23.【解析】(1)设第一次进货的单价是x 元,则第二次进货的单价是(0.5)x -元,根据题意,得2500450020.5x x ⨯=-,解得5x =. 经检验:5x =是原方程的解.第二次进货的单价是:50.5 4.5()-=元.答:第一次进货的单价是5元,第二次进货的单价是4.5元.(4分)(2)两次销售苹果的毛利:25004500200820080.752500450046005 4.5⎛⎫+-⨯+⨯⨯--=⎪⎝⎭(元). 答:两次销售苹果的毛利为4600元.(8分) 24.【解析】(1)如图所示,射线BF 即为所求:(4分)(2)证明:∵AD ⊥BC ,∴∠ADB =90°,∴∠BED +∠EBD =90°,∵∠BAC =90°,∴∠AFE +∠ABF =90°,(7分) ∵∠EBD =∠ABF ,∴∠AFE =∠BED ,∵∠AEF =∠BED ,∴∠AEF =∠AFE ,∴AE =AF .(10分) 25.【解析】(1)全等.(3分)根据坐标系可以看出AB DEBC EFAC DF =⎧⎪=⎨⎪=⎩,∴△ABC ≅△DEF ;(2)成轴对称.(6分)根据坐标系可以看出△ABC 与△DEF 关于直线l 成轴对称; (3)如图所示:点P 即为所求.(10分)26.【解析】(1)a 2–b 2=(a +b )(a −b );平方差.(6分)由图知:大正方形减小正方形剩下的部分面积为a 2–b 2; 拼成的长方形的面积:(a +b )×(a −b ),所以得出:a 2–b 2=(a +b )(a −b );故答案为:a 2–b 2=(a +b )(a −b );平方差. (2)①原式=(10+0.7)×(10–0.7) =102–0.72 =100–0.49 =99.51.(9分)②原式=(x –3z +2y )(x –3z –2y ) =(x –3z )2–(2y )2 =x 2–6xz +9z 2–4y 2.(12分)27.【解析】(1)∠BAD =∠BAC –∠DAC =100°–36°=64°.∵在△ABC 中,∠BAC =100°,∠ABC =∠ACB , ∴∠ABC =∠ACB =40°,∴∠ADC =∠ABC +∠BAD =40°+64°=104°. ∵∠DAC =36°,∠ADE =∠AED , ∴∠ADE =∠AED =72°,∴∠CDE =∠ADC –∠ADE =104°–72°=32°. 故答案为64°,32°;(4分)(2)∠BAD =2∠CDE ,理由如下:(5分) 如图②,在△ABC 中,∠BAC =100°, ∴∠ABC =∠ACB =40°. 在△ADE 中,∠DAC =n ,∴∠ADE =∠AED =1802n︒-.(6分)∵∠ACB =∠CDE +∠AED ,∴∠CDE =∠ACB –∠AED =40°–1802n ︒-=1002n -︒. ∵∠BAC =100°,∠DAC =n , ∴∠BAD =n –100°,∴∠BAD =2∠CDE ;(8分) (3)∠BAD =2∠CDE ,理由如下: 如图③,在△ABC 中,∠BAC =100°,∴∠ABC =∠ACB =40°,∴∠ACD =140°.(9分) 在△ADE 中,∠DAC =n , ∴∠ADE =∠AED =1802n︒-.(10分)∵∠ACD =∠CDE +∠AED , ∴∠CDE =∠ACD –∠AED =140°–1802n ︒-=1002n︒+. ∵∠BAC =100°,∠DAC =n , ∴∠BAD =100°+n , ∴∠BAD =2∠CDE .(12分)密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:150分 时间: 120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.下列图形中,是轴对称图形的是( )A .B .C .D .2.下列分式中,属于最简分式的是( )A .1113xB .221xx +C .211x x +-D .11x x --3.以下列各组线段为边,能组成三角形的是( ) A .2cm ,5cm ,8cm B .3cm ,3cm ,6cm C .3cm ,4cm ,5cmD .1cm ,2cm ,3cm4.如果一个多边形的每一个内角都是108°,那么这个多边形是( ) A .五边形 B .六边形C .七边形D .八边形5.下列运算正确的是( ) A .236a a a ⋅= B .220a a ÷=C .2353()a b a b =D .752a a a ÷=6.下列各式分解因式正确的是( ) A .()()2919191x x x -=+- B .()()422111a a a -=+- C .()()228199a b a b a b --=--+D .()()()32a ab a a b a b -+=-+-7.已知ab ≠0,则坐标平面内四个点A (a ,b ),B (a ,–b ),C (–a ,b ),D (–a ,–b )中关于y 轴对称的是( ) A .A 与B ,C 与DB .A 与D ,B 与C C .A 与C ,B 与DD .A 与B ,B 与C8.如图,△ABC ≌△ADE ,若∠E =70°,∠D =30°,∠CAD =35°,则∠BAD 的度数为( )A .40°B .45°C .50°D .55°9.光明家具厂生产一批学生课椅,计划在30天内完成并交付题号一 二 三 总分 得分不得答题使用.若每天多生产100把,则23天完成且还多生产200把.设原计划每天生产x把,根据题意,可列分式方程为( )A.3020023100xx+=+B.3020023100xx-=+C.3020023100xx+=-D.3020023100xx-=-10.解关于x的方程6155x mx x-+=--(其中m为常数)产生增根,则常数m的值等于( )A.–2 B.2C.–1 D.111.如图,△ABC中,AB的垂直平分线交AC于D,如果AC=5cm,BC=4cm,那么△DBC的周长是( )A.6cm B.7cmC.8cm D.9cm12.如图,BP平分ABC∠交CD于点F,DP平分ADC∠交AB于点E,若40A∠=︒,38P∠=︒,则C∠的度数为( )A.36︒B.39︒C.38︒D.40︒第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.一种细菌的半径是0.00003厘米,数据0.00003数法表示为_________.14.计算:2232aa a a---=_________.15.若分式33xx--的值为零,则x=_________.16.如图,ABC∆中,90C∠=︒,30A∠=︒,AB的垂直平分线交于D,交AB于E,2CD=,则AC=_________.17.在等腰ABC∆中,一腰上的高与另一腰的夹角为26︒角的度数为__________.18.如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC线与AB的垂直平分线交于点O,将∠C沿EF(E在上,F在AC上)折叠,点C与点O恰好重合,则∠为________度.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分)计算:(1)()()22x y x y x ---;(2)2344(1)11x x x x x ++-+÷++.20.(本小题满分6分)因式分解:(1)4x 2–16;(2)(x +y )2–10(x +y )+25.21.(本小题满分6分)如图,AD 与BC 交于E ,∠1=∠2=∠3,∠4=∠5.求证:BD =E C .22.(本小题满分8分)如图,五边形ABCDE 的内角都相等,EF 平分∠AED .求证:EF ⊥BC .23.(本小题满分8分)如图,△ABC 的顶点均在格点上.(1)分别写出点A ,点B ,点C 的坐标.(2)若△A 'B 'C '与△ABC 关于y 轴对称,在图中画出△A 'B 'C ',并写出相应顶点的坐标.24.(本小题满分10分)如图,ABC ∆与DCB ∆中,AC 与BD 交于点E ,且A D ∠=∠,AB DC =.(1)求证:ABC DCB ∆≅∆;(2)当50AEB ∠=︒,求EBC ∠的度数.25.(本小题满分10分)嘉嘉同学动手剪了如图①所示的正方形与长方形卡片若干张.(1)他用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是________. (2)如果要拼成一个长为(a +2b ),宽为(a +b )的大长方形,则需要1号卡片________张,2号卡片________张,3号卡片________张.26.(本小题满分12分)市区某中学美化校园招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要30天;若由甲队先做10天,剩下的工程由甲、乙合做12天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元,若该工程计划在35天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱,还是由甲乙两队全程合作完成该工程省钱?27.(本小题满分12分)如图,在ABC ∆中,已知45ABC ∠=,过点C 作CD AB ⊥于点D ,过点B 作BM AC ⊥于点M ,连接MD ,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题故答案为:11a --.15.【答案】–3【解析】依题意,得|x |–3=0且x –3≠0,解得x =–3.故答案是:–3.16.【答案】6【解析】连接BD ,∵在△ABC 中,∠C =90°,∠A =30°,∴∠ABC =60°, ∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴AD =BD ,DE ⊥AB ,∴∠ABD =∠A =30°,∴∠DBC =30°, ∵CD =2,∴BD =2CD =4,∴AD =4,∴AC =6.17.【答案】58°或32°【解析】①如图①,∵AB =AC ,∠ABD =26°,BD ⊥AC ,∴∠A =64°,∴∠ABC =∠C =(180°–64°)÷2=58°;②如图②,∵AB =AC ,∠ABD =26°,BD ⊥AC , ∴∠BAC =26°+90°=116°,∴∠ABC =∠C =(180°–116°)÷2=32°,故答案为:58°或32°.18.【答案】50°【解析】如图,连接OB ,OC ,∵∠BAC =50°,AO 为∠BAC 的平分线,∴∠BAO =12∠BAC =12×50°=25°.又∵AB =AC ,∴∠ABC =∠ACB =65°.∵DO 是AB 的垂直平分线,∴OA =OB ,∴∠ABO =∠BAO =25°,∴∠OBC =∠ABC –∠ABO =65°–25°=40°.∵AO 为∠BAC 的平分线,AB =AC ,∴直线AO 垂直平分BC ,∴OB =OC ,∴∠OCB =∠OBC =40°,∵将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,题∴OE =CE .∴∠COE =∠OCB =40°;在△OCE 中,∠OEC =180°–∠COE –∠OCB =180°–40°–40°=100°,∴∠CEF =12∠CEO =50°.故答案为:50°. 三、19.【解析】(1)原式=22222x xy y xy x -+-+=2233x xy y -+;(3分)(2)原式=231x+11(2)x x x x --+⨯++()(1)=223111(2)x x x x -++⨯++=2(2)(2)11(2)x x x x x -++⨯++=22xx -+.(6分)20.【解析】(1)4x 2–16=4(x 2–4)=4(x +2)(x –2);(3分) (2)(x +y )2–10(x +y )+25 =(x +y –5)2.(6分) 21.【解析】1=2314,43AEC ABD ∠∠=∠∠=∠+∠∠=∠+∠,,∴AEC ABD ∠=∠.(2分)45∠=∠,AB AE =∴.在ABD △和AEC 中1=2AB AE ABD AEC ∠∠⎧⎪=⎨⎪∠=∠⎩,(4分)∴ABD AEC ≅.∴BD =EC .(6分)22.【解析】∵五边形ABCDE 的内角都相等,∴∠C =∠D =∠AED =180°×(5–2)÷5=108°,(2分)又EF 平分∠AED , ∴°1542FED AED ∠=∠=,(4分)∴在四边形DEFC 中360EFC D C FED ︒∠=-∠-∠-∠=90°,∴EF ⊥BC .(8分)23.【解析】(1)点A (3,4),B (1,2),C (5,1(3分)(2)如图所示,△A 'B 'C '即为所求,(5分)点A ′(﹣3,4),B ′(﹣1,2),C ′(﹣5,1).(8密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.【解析】(1)在△ABE 和△DCE中,A D AEB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCE (AAS ),∴BE =EC ,∠ABE =∠DCE ,(4分)∴∠EBC =∠ECB ,∵∠EBC +∠ABE =∠ECB +∠DCE ,∴∠ABC =∠DBC ,(6分)在△ABC 和△DCB中,A DAB DC ABC DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DCB (ASA );(8分) (2)∵∠AEB =50°,∴∠EBC +∠ECB =50°, ∵∠EBC =∠ECB ,∴∠EBC =25°.(10分)25.【解析】(1)这个乘法公式是(a +b )2=a 2+2ab +b 2,故答案为:(a +b )2=a 2+2ab +b 2;(4分)(2)要拼成一个长为(a +2b ),宽为(a +b )的大长方形,根据(a +2b )(a +b )=a 2+3ab +2b 2,则需要1号卡片1张,2号卡片2张,3号卡片3张.故答案为:1;2;3.(10分)26.【解析】(1)设乙队单独完成这项工程需要x 天,依题意,得:101212130x ++=,解得x =45,经检验,x =45是所列分式方程的解,且符合题意. 答:乙队单独完成这项工程需要45天.(6分) (2)甲乙两队全程合作需要1÷(11+3045)=18(天),甲队单独完成该工程所需费用为3.5×30=105(万元); ∵乙队单独完成该工程需要45天,超过35天的工期, ∴不能由乙队单独完成该项工程;甲、乙两队全程合作完成该工程所需费用为(3.5+2)×18=99(万元).∵105>99,∴在不超过计划天数的前提下,由甲、乙两队全程合作完成该工程省钱.(12分) 27.【解析】(1)∵45ABC ∠=,CD AB ⊥,∴45ABC DCB ∠=∠=,∴BD DC =,∵90BDC MDN ∠=∠=,∴BDN CDM ∠=∠,(3分) ∵CD AB ⊥,BM AC ⊥, ∴90ABM A ACD ∠=-∠=∠,在DBN ∆和DCM ∆中,BDN CDM BD DCDBN DCM ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴DBN ∆≌DCM ∆;(6分) (2)结论:NEME CM ,证明:由(1)DBN ∆≌DCM ∆可得DM DN =. 作DF MN ⊥于点F , 又ND MD ⊥,∴DF FN =,在DEF ∆和CEM ∆中,DEF CEM DFE CMEDE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴DEF ∆≌CEM ∆,∴EF EM =,DF CM =,∴CM DF FN NE FE NE ME ===-=-.(12分)。
2021-2022学年八年级第一学期期末数学试题及参考答案一、选择题(本大题共8小题,每小题3分,共24分)1.﹣8的立方根是()A.4B.2C.﹣2D.±2【分析】根据立方根的定义即可求解.解:﹣8的立方根是﹣2.故选:C.2.下列数是无理数的是()A.B.πC.0D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:A.是分数,属于有理数,故本选项不合题意;B.π是无理数,故本选项符合题意;C.0是整数,属于有理数,故本选项不合题意;D.,是整数,属于有理数,故本选项不合题意;故选:B.3.计算(x2)3的结果是()A.x5B.x6C.x8D.3x2【分析】根据幂的乘方和积的乘方的运算法则求解.解:(x2)3=x6.故选:B.4.计算的结果为()A.10B.5C.3D.2【分析】直接利用二次根式的乘法运算法则计算得出答案.解:=5.故选:B.5.运用乘法公式计算(4+x)(x﹣4)的结果是()A.x2﹣16B.x2+16C.16﹣x2D.﹣x2﹣16【分析】用平方差公式直接得出结果.解:(4+x)(x﹣4)=(x+4)(x﹣4)=x2﹣42=x2﹣16,故选:A.6.如图所示,在△ABC中,∠ACB=90°,分别以AB、BC、AC为边向外作正方形,若三个正方形的面积分别为225、400、S,则S的值为()A.25B.175C.600D.625【分析】由勾股定理得:AC2+BC2=AB2,直接代入即可.解:在△ABC中,∠ACB=90°,由勾股定理得:AC2+BC2=AB2,∴225+400=S,∴S=625.故选:D.7.如图所示,已知在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,若∠B=28°,则∠AEC=()A.28°B.59°C.60°D.62°【分析】根据∠C=90°AD=AC,求证△CAE≌△DAE,∠CAE=∠DAE=∠CAB,再由∠C=90°,∠B=28°,求出∠CAB的度数,然后即可求出∠AEC的度数.解:∵在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,∴△CAE≌△DAE,∴∠CAE=∠DAE=∠CAB,∵∠B+∠CAB=90°,∠B=28°,∴∠CAB=90°﹣28°=62°,∵∠AEC=90°﹣∠CAB=90°﹣31°=59°.故选:B.8.在△ABC中,∠BAC=90°,AB>AC,∠B≠30°,用无刻度的直尺和圆规在BC边上找一点D,使AD=BD,下列作法正确的是()A.B.C.D.【分析】根据“要在BC边上找一点D,使AD=BD”知点D应该是线段AB垂直平分线与BC的交点,据此求解即可.解:若要在BC边上找一点D,使AD=BD,则点D应该是线段AB垂直平分线与BC的交点,故选:D.二、填空题(本大题共6小题,每小题3分,共18分)9.二次根式有意义,则x的取值范围是x≤3.【分析】直接利用二次根式有意义的条件,即二次根式中的被开方数是非负数,进而得出答案.解:二次根式有意义,则9﹣3x≥0,故x的取值范围是x≤3.故答案为:x≤3.10.比较大小:﹣3 <0(填“>”、“=”或“<”).【分析】首先求出介于2和3之间,从而得最后答案.解:∵2<<3,∴﹣3<0.故答案为:<.11.计算:2x•(﹣3xy)=﹣6x2y.【分析】根据单项式乘单项式的运算法则计算.解:2x•(﹣3xy)=﹣6x2y,故答案为:﹣6x2y.12.若一个三角形的三边长分别为5、12、13,则此三角形的面积为30.【分析】先根据勾股定理的逆定理判定三角形是直角三角形,再利用面积公式求得面积.解:∵52+122=132,∴三边长分别为5、12、13的三角形构成直角三角形,其中的直角边是5、12,∴此三角形的面积为×5×12=30.13.如图,在△ABC中,∠C=90°,AD平分∠BAC,若CD=2,AB=5,则△ABD的面积为5.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,再利用三角形的面积公式列式计算即可得解.解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=2,∴△ABD的面积=AB•DE=×5×2=5.故答案为:5.14.如图,在△ABC中,AB=AC,D为BC边上一点,且∠BAD=30°,若AD=DE,∠DAE=72°,则∠EDC的度数为33°.【分析】利用等腰三角形两底角相等和三角形内角和定理可得.解:∵∠BAD=30°,∠DAE=72°,AB=AC,∴∠B=∠C==39°,∵AD=DE,∴∠DAE=∠DEA=72°,∵∠AED=∠C+∠EDC,∴∠EDC=∠AED﹣∠C=72°﹣39°=33°,故答案为:33°.三、解答题(本大题共10小题,共78分)15.计算:﹣﹣﹣|﹣6|.【分析】直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简得出答案.解:原式=4﹣+0.5﹣6=﹣2.16.因式分解:(1)4m2﹣36;(2)2a2b﹣8ab2+8b3.【分析】(1)直接提取公因式4,再利用平方差公式分解因式即可;(2)直接提取公因式2b,再利用完全平方公式分解因式即可.解:(1)原式=4(m2﹣9)=4(m+3)(m﹣3);(2)原式=2b(a2﹣4ab+4b2)=2b(a﹣2b)2.17.图①、图②均是4×4的正方形网格,每个小正方形的顶点称为格点,小正方形的边长均为1,点A、点B均在格点上,在给定的网格中按要求画图,所画图形的顶点均在格点上.(1)在图①中,以线段AB为腰画一个等腰三角形.(2)在图②中,以线段AB为底画一个等腰三角形.【分析】(1)根据要求作出图形即可;(2)根据要求作出图形即可.解:(1)如图1中,△ABC即为所求;(2)如图2中,△ABC即为所求.18.先化简,再求值:(x﹣3)2﹣x(2x+1)+x2,其中x=.【分析】直接利用乘法公式、单项式乘多项式化简,合并同类项,再把已知数据代入得出答案.解:原式=x2﹣6x+9﹣2x2﹣x+x2=﹣7x+9,当x=时,原式=﹣7×=﹣1.19.如图,点B、F、C、E四点在同一条直线上,∠B=∠E,AB=DE,BF=CE.求证:AC=DF.【分析】根据题意得出BC=EF,即可利用SAS证明△ABC和△DEF,再利用全等三角形的性质即可得解.【解答】证明:∵BF=CE,∴BF+FC=CE+FC,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴AC=DF.20.如图,甲乙两船从港口A同时出发,甲船以16海里/时速度沿北偏东40°方向航行,乙船沿南偏东50°方向航行,3小时后,甲船到达C岛,乙船到达B岛.若C、B两岛相距60海里,问:乙船的航速是多少?【分析】根据方向角的概念求出∠CAB=90°,根据勾股定理求出AC的长,得到答案.解:∵甲船沿北偏东40°方向航行,乙船沿南偏东50°方向航行,∴∠CAB=90°,∵AB=16×3=48,BC=60,∴AC==36,∴乙船的航速是36÷3=12海里/时,答:乙船的航速是36÷3=12海里/时.21.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形.(1)图2中间空白的部分的面积是(a﹣b)2;(2)观察图2,请你写出代数式(a+b)2、(a﹣b)2、ab之间的等量关系式(a﹣b)2=(a+b)2﹣4ab;(3)根据你得到的关系式解答下列问题:若x+y=﹣4,xy=3,求x﹣y的值.【分析】(1)由图形面积间和差关系可得此题结果为(a﹣b)2;(2)由图形面积间关系可得:(a﹣b)2=(a+b)2﹣4ab;(3)由(2)题关系式可得,(x﹣y)2=(x+y)2﹣4xy,就能求得最后结果.解:(1)由题意得,图2中间空白的部分的面积是(a﹣b)2,故答案为:(a﹣b)2;(2)由图2中间空白的部分的面积的不同表示方法可得:(a﹣b)2=(a+b)2﹣4ab,故答案为:(a﹣b)2=(a+b)2﹣4ab;(3)由(2)题关系式可得,(x﹣y)2=(x+y)2﹣4xy=(﹣4)2﹣4×3=4∴x﹣y=±2,即x﹣y的值是±2.22.2021年央视春晚,数十个节目给千家万户送上了丰富的“年夜大餐”.某校随机对八年级部分学生进行了一次调查,对最喜欢相声《年三十的歌》(记为A)、歌曲《牛起来》(记为B)、武术表演《天地英雄》(记为C)、小品《开往春天的幸福》(记为D)的同学进行了统计(每位同学只选择一个最喜欢的节目),绘制了以下不完整的统计图,请根据图中信息解答问题:(1)求本次接受调查的学生人数.(2)求扇形统计图中D所在扇形的圆心角度数.(3)将条形统计图补充完整.【分析】(1)根据B的人数除以所占的百分比得到接受调查的学生人数;(2)用360°乘以D节目男、女生人数和占被调查人数的比例即可;(3)先求出D所占百分比,再求出C所占百分比,继而可以求出C的人数,进而得出C中男生人数;用总人数乘A占的百分比得出A的人数进而得出A中女生人数,然后补全条形统计图即可;解:(1)本次接受调查的学生人数为(12+8)÷40%=50(名);(2)扇形统计图中D所在扇形的圆心角度数为360°×=36°;(3)D占的百分比为×100%=10%,C占的百分比为1﹣(20%+40%+10%)=30%,∴C的人数为50×30%=15(人),即C中男生为15﹣8=7(人);A的人数为50×20%=10(人),A中女生人数为10﹣6=4(人),补全条形统计图,如图所示:23.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图(1)的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图(3)的位置时,请直接写出DE,AD,BE之间的等量关系.【分析】(1)①根据AD⊥MN,BE⊥MN,∠ACB=90°,得出∠CAD=∠BCE,再根据AAS即可判定△ADC≌△CEB;②根据全等三角形的对应边相等,即可得出CE=AD,CD=BE,进而得到DE=CE+CD=AD+BE;(2)先根据AD⊥MN,BE⊥MN,得到∠ADC=∠CEB=∠ACB=90°,进而得出∠CAD =∠BCE,再根据AAS即可判定△ADC≌△CEB,进而得到CE=AD,CD=BE,最后得出DE=CE﹣CD=AD﹣BE;(3)运用(2)中的方法即可得出DE,AD,BE之间的等量关系是:DE=BE﹣AD.解:(1)①∵AD⊥MN,BE⊥MN,∴∠ADC=∠ACB=90°=∠CEB,∴∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);②∵△ADC≌△CEB,∴CE=AD,CD=BE,∴DE=CE+CD=AD+BE;(2)证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=∠ACB=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);∴CE=AD,CD=BE,∴DE=CE﹣CD=AD﹣BE;(3)当MN旋转到题图(3)的位置时,AD,DE,BE所满足的等量关系是:DE=BE ﹣AD.理由如下:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=∠ACB=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴CE=AD,CD=BE,∴DE=CD﹣CE=BE﹣AD.24.如图,在Rt△ABC中,∠ABC=90°,BC=AB,AC=8,点D是边AC的中点,动点P从点D出发,沿DA以每秒2个单位长度的速度向终点A匀速运动.同时,动点Q从点D出发,沿DC以每秒1个单位长度的速度向终点C匀速运动.当点P到达终点时,点Q也随之停止运动.过点Q作QE⊥AC,使QE=QD,且点E落在直线AC的上方,当点P不与点D重合时,以PQ、QE为邻边作长方形PQEF.设长方形PQEF与△ABC 的重叠部分的面积为S,点P的运动时间为t(秒).(1)用含t的代数式表示线段AP的长度为4﹣2t.(2)当点F落在线段AB上时,求t的值.(3)用含t的代数式表示S.(4)连结AF、DF.当△AFD是等腰三角形时,直接写出t的值.【分析】(1)由AC=8,点D是边AC的中点求出AD的长为4,再由动点P从点D出发,沿DA以每秒2个单位长度的速度向终点A匀速运动,且运动的时间为t得PD=2t,则AP=4﹣2t;(2)当点F落在线段AB上时,可证明△APF是等腰直角三角形,则AP=FP=QE=t,可列方程t=4﹣2t,解方程求出t的值即可;(3)先确定当点P到达终点A时,则点E恰好落在BC边上,再分两种情况进行讨论,一是当0<t≤时,长方形PQEF与△ABC的重叠部分的面积S为长方形PQEF本身,二是当<t≤2时,则长方形PQEF与△ABC的重叠部分的面积S为S长方形PQEF﹣S△FGH,分别求出用含t的代数式表示S的等式即可;(4)△AFD是等腰三角形存在两种情况,一是AF=DF,则PD=PA=AD=2,列方程求出t的值;二是FD=AD=4,在Rt△PDF中根据勾股定理列方程求出t的值即可.解:(1)∵AC=8,点D是边AC的中点,∴AD=AC=4,∵PD=2t,故答案为:4﹣2t.(2)当点F落在线段AB上时,如图1,∵四边形PQEF是长方形,∴∠QPF=90°,FP=QE,∴∠APF=180°﹣∠QPF=90°,∵∠ABC=90°,BC=AB,∴∠A=∠C=45°,∴∠PFA=∠A=45°,∴AP=FP=QE,∵QE=QD=t,∴AP=t,∴t=4﹣2t,解得t=,∴当点F落在线段AB上时,t的值为.(3)当点P与点A重合时,则2t=4,解得t=2,此时QD=QE=QC=2,∴点E恰好落在BC边上,当0<t≤时,如图2,∵PD=2t,QE=QD=t,∴PQ=2t+t=3t,∵S=S长方形PQEF=PQ•QE,∴S=3t•t=3t2;当<t≤2时,如图3,PF交AB于点G,EF交AB于点H,∵∠PGA=∠A=45°,∴∠FGH=∠PGA=45°,∵∠F=90°,∴∠FHG=∠FGH=45°,∵FP=QE=t,GP=AP=4﹣2t,∴FH=FG=t﹣(4﹣2t)=3t﹣4,∵S=S长方形PQEF﹣S△FGH,∴S=3t2﹣(3t﹣4)2=﹣t2+12t﹣8,综上所述,S=.(4)如图4,△AFD是等腰三角形,且AF=DF,∵PF⊥AD,∴PD=PA=AD=2,∴2t=2,解得t=1;如图5,△AFD是等腰三角形,且FD=AD=4,∵∠DPF=90°,∴PD2+FP2=FD2,∵PD=2t,FP=t,∴(2t)2+t2=42,解得t=或t=﹣(不符合题意,舍去),综上所述,t的值为1或.。
南海区2020~2021学年度第二学期期末考试七 年 级 数 学 试 卷试卷说明:本试卷共5页,满分120分,考试时间90分钟.答题前,考生务必将自己的姓名等信息按要求填写在答题..卡.上;答案必须写在答题..卡.各题目指定区域内;考试结束后,只需将答题..卡.交回. 一、选择题(本大题共10小题,每小题3分,共30分,在每小题的四个选项中,只有一项正确) 1.下列各式运算中正确的是( )A .a 3﹣a 2=aB .a 2+a 3=a 5C .a 3•a 3=2a 6D .(a 2)4=a 82.人体内一种细胞的直径约为0.00000156m ,数据0.00000156用科学记数法表示为( ) A .1.56×10﹣5B .1.56×10﹣6C .15.6×10﹣7D .﹣1.56×1063.下列垃圾分类的图标(不含文字与字母部分)中,是轴对称图形的是( )A .B .C .D .4.下列事件中的必然事件是( )A .车辆随机经过一个有交通信号灯的路口,遇到红灯B .购买100张中奖率为1%的彩票一定中奖C .380人中至少有两人的生日在同一天D .掷一枚质地均匀的骰子,掷出的点数是奇数 5.适合条件5:3:2::=∠∠∠C B A 的△ABC 是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形6.肥料的施用量与产量之间有一定的关系.研究表明,当每公顷钾肥和磷肥的施用量一定时,土豆的产量与氮肥的施用量有如下关系: 氮肥施用量/kg 03467 101 135 202 259 336 404 471 土豆产量/t15.18 21.3625.7232.2934.0339.4543.1543.4640.8339.45根据表格可知,下列说法正确的是( ) A .氮肥施用量越大,土豆产量越高 B .氮肥施用量是110kg 时,土豆产量为34tC .氮肥施用量是自变量,土豆产量是因变量D .土豆产量为39.45t 时,氮肥的施用量一定是202kg题8图题9图7.下列每组数表示三根木棒的长度,将它们首尾相接后,能摆成三角形的是( ) A .2,3,6 B .3,4,8 C .7,4,3 D .3,3,4 8.如题8图,直线l 1,l 2,l 3交于一点,直线l 4∥l 1,若∠1=120°,∠2=80°,则∠3的度数为( ) A .20°B .30°C .40°D .50°9.如题9图,测量河两岸相对的两点A 、B 的距离时,先在AB 的垂线BF 上取两点C 、D ,使CD =BC ,再过点D 画出BF 的垂线DE ,当点A 、C 、E 在同一直线上时,可证明△EDC ≌△ABC ,从而得到ED =AB ,则测得ED 的长就是两点A 、B 的距离.判定△EDC ≌△ABC 的依据是( ) A .“角边角”B .“边边边”C .“全等三角形定义”D .“边角边”10.如题10图,在正方形ABMF 中剪去一个小正方形CDEM ,动点P 从点A 出发,沿A →B →C →D →E →F 的路线绕多边形的边匀速运动到点F 时停止,则△APF 的面积S 随着时间t 变化的图象大致是( )二、填空题(本大题共7小题,每小题4分,共28分) 11.计算(x 2)3÷x 4的结果是 .12.一个角的补角等于30°,则这个角等于__________.13.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数 100 400 800 1000 2000 5000 发芽种子粒数 85 298 652 793 1604 4005 发芽频率0.8500.7450.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率约为 (精确到0.1).题15图题16图题17图14.一个等腰三角形的两边长分别是4和9,则周长是 .15. 如题15图,△ABC 中,∠B =90°,AC 边上的垂直平分线DE 交AB 于D ,交AC 于E ,且CD平分∠ACB , 则∠A 的度数等于______ .16.如题16图,把一幅七巧板按如图所示进行①~⑦编号,①~⑦号分别对应着七巧板的七块,如果编号①对应的面积等于2,则由这幅七巧板拼得的“天鹅”的面积等于 . 17. 如题17图,AF 和BE 是△ABC 的中线,则以下结论①AE =CE ;②O 是△ABC 的重心;③△ACF 与△ABE 面积相等;④过点C 、点O 的直线平分线段AB.其中正确的是_______(填序号).三、解答题(一)(本大题共3小题,每小题6分,共18分) 18.计算:20202021)14.3(1-⎪⎭⎫⎝⎛---+-π19.如图,△ABC 中,AB =AC ,利用尺规作图,作出△ABC 的对称轴(不写作法,保留作图痕迹)20.“五•一”期间,某书城为了招徕顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),并规定:读者每购买100元图书,就可获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么读者就可以分别获得40元、35元、30元的购书券,凭购书券可以在书城继续购书.(1)求出任意转动一次转盘获得购书券的概率.(2)直接写出任意转动一次转盘获得40元、35元、30元的概率.题19图四、解答题(二)(本大题共3小题,每小题8分,共24分)21.先化简,再求值:[]y y x y x y x 2))(()2(2÷-+-+,其中1, 2.x y =-=22.如题22图,△ABC 和△DEF 中,AB =DE ,AC =DF ,BE =CF ;(1)试说明△ABC ≌△DEF. (2)若∠ABC =38°,求∠DEF .23.如题23图,AB ∥CD ,定点E 、F 分别在直线AB 、CD 上,(1)如题23图1,若∠PEB=70°,∠PFD =60°,则∠EPF = .(2)如题23图2,若DFP DFQ BEP BEQ ∠=∠∠=∠31,31,探究∠EPF 与∠EQF 的数量关系,请说明理由.题22图 题20图五、解答题(三)(本大题共2小题,每小题10分,共20分)24. 在学习完全平方公式:2222)(b ab a b a +±=±后,我们对公式的运用进一步探讨.(1)若ab =30,a +b =10,则a 2+b 2的值为 .(2)“若y 满足(40﹣y )(y ﹣20)=50,求(40﹣y )2+(y ﹣20)2的值”.阅读以下解法,并解决相应问题. 解:设40﹣y =a ,y ﹣20=b则a +b =(40﹣y )+(y ﹣20)=20 ab =(40﹣y )(y ﹣20)=50这样就可以利用(1)的方法进行求值了.若x 满足10)20)(40-=--x x (,求22)20()40-+-x x (的值. (3)若x 满足10)20)(30=++x x (,求22)20()30x x +++(的值.25. 如题25图,在△ABC 中,BC =4cm ,AE ∥BC ,AE =4cm ,点N 从点C 出发,沿线段CB 以2cm/s 的速度连续做往返运动,点M 从点A 出发沿线段AE 以1cm/s 的速度运动至点E .M 、N 两点同时出发,连结MN ,MN 与AC 交于点D ,当点M 到达点E 时,M 、N 两点同时停止运动,设点M 的运动时间为t (s ).(1)当t=3时,线段AM 的长度= cm, 线段BN 的长度= cm . (2)当BN =AM 时,求t 的值.(3)当△ADM ≌△CDN 时,求出所有满足条件的t 值.题23图1题23图2南海区2020~2021学年第二学期期末考试七年级数学参考答案与评分标准一. 选择题(本大题10小题,每小题3分,共30分)题号 12345678910答案D B B C B C D C A C二. 填空题(本大题共6小题,每小题4分,共24分)11.2x 12. 150 13.0.8 14.22 15. 30 16. 16 17.①②③④ 以下评分细则仅供参考三. 解答题(一)(本大题共3小题,每小题6分,共18分) 18.解:2202021)14.3(1--⎪⎭⎫⎝⎛---+π=-1+1-4…………………3分 =-4…………………6分19.解:如下图所示:作图5分,结论1分(作BC 的中垂线、顶角平分线都可以给分)20.解:(1)∵转盘平均分成12份,共有12种等可能情况,…………………1分其中红占1份,黄2份,绿3份, …………………2分 ∴获得购书券的概率21126=…………………3分 题25图(2)获得40元,35元,30元的概率分别是4161121,,…………6分(每个1分) 四. 解答题(二)(本大题共3小题,每小题8分,共24分) 21.解:原式=[x 2+4xy +4y 2﹣(x 2-y 2)]÷2y …………………2分=(x 2+4xy +4y 2﹣x 2+y 2)÷2y …………………3分 =(5y 2+4xy )÷2y …………………4分 =x y 225+…………………6分 当x =﹣1,y =2时,原式=5﹣2…………………7分=3…………………8分22.解:(1)∵BE =CF ,∴BE +EC =CF +EC ,即BC =EF …………………2分 在△ABC 和△DEF 中,∵,…………………4分∴△ABC ≌△DEF (SSS ).…………………6分 (2)∵△ABC ≌△DEF∴∠ABC =∠DEF=38°…………………8分 23.解:(1)130°…………………2分 (2)∠EPF 与∠EQF 的数量关系为∠EQF=31∠EPF …………………3分 过P 作PM ∥AB ,过Q 作QN ∥AB ,…………………4分 ∵AB ∥CD ,∴AB ∥CD ∥PM ,AB ∥CD ∥QN ,…………………5分∴∠BEP =∠MPE ,∠DFP =∠MPF ,∠BEQ =∠NQE ,∠DFQ =∠FQN ,……6分 ∴∠BEP +∠DFP =∠MPE +∠MPF =∠EPF ,∠BEQ +∠DFQ =∠NQE +∠NQF =∠EQF , ∵DFP DFQ BEP BEQ ∠=∠∠=∠31,31 ∴∠BEQ +∠DFQ =31(∠BEP +∠DFP );…………………7分∴∠EQF=31∠EPF …………………8分 五. 解答题(三)(本大题共2小题,每小题10分,共20分)24.(1) 40 …………………2分 (2)解:设40﹣x =a ,x ﹣20=b ,…………………3分则 (40﹣x )(x ﹣20)=ab =﹣10,…………………4分a +b =(40﹣x )+(x ﹣20)=20,…………………5分(40﹣x )2+(x ﹣20)2=a 2+b 2=(a +b )2﹣2ab =202﹣2×(﹣10)=420…6分 (3)解:设30+x =a ,20+x =b ,…………………7分则 (30+x )(20+x )=ab =10,…………………8分a-b =(30+x )-(20+x )=10,…………………9分(30+x )2+(20+x )2=a 2+b 2=(a-b )2+2ab =102+2×10=120 …………………10分25.解解:(1)3, 2…………………2分 (2)由题意得,AM =t 当0<t ≤2时,BN =4-2t , 4﹣2t =t ,…………………3分 解得t =34;…………………4分 当2<t ≤4时,BN =2t -4; 2t -4=t,…………………5分 解得t =4…………………6分 (3)当0<t ≤2时,△ADM ≌△CDN , 则AM =CN ,即t =2t ,…………………7分t=0,不合题意 …………………8分当2<t ≤4时,△ADM ≌△CDN ,则AM =CN ,即t =4-(2t -4),…………………9分 解得t =38…………………10分。
2020-2021学年八年级(上)第一次月考数学试卷一、选择题(本题共10小题,每小题4分,满分40分)1.下列函数中是一次函数的是()A.y=B.y=C.y=ax+b D.y=x22.下列各点中位于第二象限的是()A.(﹣2,0)B.(8,﹣2)C.(0,3)D.(﹣,4)3.已知过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,则a的值为()A.﹣1 B.1 C.2 D.﹣24.关于函数y=﹣﹣1,下列说法错误的是()A.当x=2时,y=﹣2B.y随x的增大而减小C.若x1>x2,则y1>y2D.图象经过第二、三、四象限5.下面四条直线,其中直线上的每一个点的坐标都是二元一次方程2x﹣3y=6的解的是()A.B.C.D.6.已知y﹣1与x成正比例,当x=3时,y=2.则当x=﹣1时,y的值是()A.﹣1 B.0 C.D.7.实践证明1分钟跳绳测验的最佳状态是前20秒速度匀速增加,后10秒冲刺,中间速度保持不变,则跳绳速度v(个/秒)与时间t(秒)之间的函数图象大致为()A.B.C.D.8.一次函数y=ax+b与y=abx在同一个平面直角坐标系中的图象不可能是()A.B.C.D.9.若点(﹣1,m)和(2,n)在直线y=﹣x+b上,则m、n、b的大小关系是()A.m>n>b B.m<n<b C.m>b>n D.b<m<n10.甲车从A地到B地,乙车从B地到A地,乙车先出发先到达,甲乙两车之间的距离y(千米)与行驶的时间x(小时)的函数关系如图所示,则下列说法中不正确的是()A.甲车的速度是80km/hB.乙车的速度是60km/hC.甲车出发1h与乙车相遇D.乙车到达目的地时甲车离B地10km二、填空题(共4题,每题5分)11.函数中,自变量x的取值范围是.12.已知关于x的方程mx+n=0的解是x=﹣2,则直线y=mx+n与x轴的交点坐标是.13.若点P的坐标是(2a+1,a﹣4),且P点到两坐标轴的距离相等,则P点的坐标是.14.直线y=kx﹣2与直线y=x﹣1(1≤x≤4)有交点,则k的取值范围是.三、解答题(共8题,共90分)15.已知一次函数的图象平行于y=﹣x,且截距为1.(1)求这个函数的解析式;(2)判断点P(﹣2,)是否在这个函数的图象上.16.若函数y=(m+1)x+m2﹣1是正比例函数.(1)求该函数的表达式.(2)将该函数图象沿y轴向上或者向下平移,使其经过(1,﹣2),求平移的方向与距离.17.如图,先将△ABC向上平移2个单位再向左平移5个单位得到△A1B1C1(1)画出△A1B1C1,并写出点A1、B1、C1的坐标.(2)求△A1B1C1的面积.18.画出函数y=﹣x+3的图象,并利用图象解下列问题:(1)求方程﹣x+3=0的解.(2)求不等式﹣x+3>0的解集.(3)若﹣3≤y<6,求x的取值范围.19.如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.人体构造学的研究成果表明,一般情况下人的指距d和身高h成如下所示的关系.指距d(cm)20 21 22 23身高h(cm)160 169 178 187 (1)直接写出身高h与指距d的函数关系式;(2)姚明的身高是226厘米,可预测他的指距约为多少?(精确到0.1厘米)20.如图,直线l1:y=2x﹣2与x轴交于点D,直线l2:y=kx+b与x轴交于点A,且经过点B,直线l1,l2交于点C(m,2).(1)求m的值;(2)求直线l2的解析式;(3)根据图象,直接写出1<kx+b<2x﹣2的解集.(4)求△ACD的面积.21.甲、乙两个工程队完成某项工程,先由甲单独做10天,乙队再加入合作.工进度满足如图所示.(1)求工作量y与工作时间x(天)之间的函数关系式;(2)这项工程全部完成需要多少天?(3)求乙队单独完成这项工程的天数.22.甲、乙两人分别安装同一种零件40个,其中乙在安装两小时后休息了2小时,后继续按原来进度工作,他们每人安装的零件总数y(个)与安装时间x(小时)的函数关系如图1所示,两人安装零件总数之差z(件)与时间x(小时)的函数关系如图2所示.(1)a=;b=.(2)求出甲工作2小时后的安装的零件数y与时间x的函数关系.(3)甲、乙两人在什么时间生产的零件总数相差8个?参考答案与试题解析一.选择题(共10小题)1.下列函数中是一次函数的是()A.y=B.y=C.y=ax+b D.y=x2【分析】根据一次函数的定义解答.【解答】解:A、是正比例函数,特殊的一次函数,故本选项符合题意;B、自变量次数不为1,不是一次函数,故本选项不符合题意;C、单a=0时,它不是一次函数,故本选项不符合题意;D、自变量次数不为1,不是一次函数,故本选项不符合题意.故选:A.2.下列各点中位于第二象限的是()A.(﹣2,0)B.(8,﹣2)C.(0,3)D.(﹣,4)【分析】依据位于第二象限的点的横坐标为负,纵坐标为正,即可得到结论.【解答】解:∵位于第二象限的点的横坐标为负,纵坐标为正,∴位于第二象限的是(﹣,4)故选:D.3.已知过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,则a的值为()A.﹣1 B.1 C.2 D.﹣2【分析】根据两点所在直线平行于x轴,那么这两点的纵坐标相等解答即可.【解答】解:∵过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,∴a=﹣2,故选:D.4.关于函数y=﹣﹣1,下列说法错误的是()A.当x=2时,y=﹣2B.y随x的增大而减小C.若x1>x2,则y1>y2D.图象经过第二、三、四象限【分析】根据一次函数的性质判定即可.【解答】解:关于函数y=﹣﹣1,A、当x=2时,y=﹣﹣1=﹣2,说法正确,不合题意;B、∵k=﹣,∴y随x的增大而减小,说法正确,不合题意;C、∵k=﹣,∴y随x的增大而减小,∴若x1>x2,则y1<y2,说法错误,符合题意;D、图象经过第二、三、四象限,说法正确,不合题意;故选:C.5.下面四条直线,其中直线上的每一个点的坐标都是二元一次方程2x﹣3y=6的解的是()A.B.C.D.【分析】根据两点确定一条直线,当x=0,求出y的值,再利用y=0,求出x的值,即可得出一次函数图象与坐标轴交点,即可得出图象.【解答】解:∵2x﹣3y=6,∴y=x﹣2,∴当x=0,y=﹣2;当y=0,x=3,∴一次函数y=x﹣2,与y轴交于点(0,﹣2),与x轴交于点(3,0),即可得出选项D符合要求,故选:D.6.已知y﹣1与x成正比例,当x=3时,y=2.则当x=﹣1时,y的值是()A.﹣1 B.0 C.D.【分析】设y﹣1=kx(k≠0),把x=3,y=2代入求出k的值,把x=﹣1代入函数关系式即可得到相应的y的值;【解答】解:设y﹣1=kx(k≠0),则由x=3时,y=2,得到:2﹣1=3k,解得k=.则该函数关系式为:y=x+1;把x=﹣1代入y=x+1得到:y=﹣+1=;故选:D.7.实践证明1分钟跳绳测验的最佳状态是前20秒速度匀速增加,后10秒冲刺,中间速度保持不变,则跳绳速度v(个/秒)与时间t(秒)之间的函数图象大致为()A.B.C.D.【分析】根据前20秒匀加速进行,20秒至50秒保持跳绳速度不变,后10秒继续匀加速进行,得出速度y随时间x的增加的变化情况,即可求出答案.【解答】解:随着时间的变化,前20秒匀加速进行,所以此时跳绳速度y随时间x的增加而增加,再根据20秒至50秒保持跳绳速度不变,所以此时跳绳速度y随时间x的增加而不变,再根据后10秒继续匀加速进行,所以此时跳绳速度y随时间x的增加而增加,故选:C.8.一次函数y=ax+b与y=abx在同一个平面直角坐标系中的图象不可能是()A.B.C.D.【分析】根据a、b的取值,分别判断出两个函数图象所过的象限,要注意分类讨论.【解答】解:当ab>0,a,b同号,y=abx经过一、三象限,同正时,y=ax+b过一、三、二象限;同负时过二、四、三象限,当ab<0时,a,b异号,y=abx经过二、四象限a<0,b>0时,y=ax+b过一、三、四象限;a>0,b<0时,y=ax+b过一、二、四象限.故选:D.9.若点(﹣1,m)和(2,n)在直线y=﹣x+b上,则m、n、b的大小关系是()A.m>n>b B.m<n<b C.m>b>n D.b<m<n【分析】根据一次函数的解析式判断出其增减性,再根据点的横坐标的特点即可得出结论.【解答】解:∵直线y=﹣x+b中,k=﹣1<0,∴y随x的增大而减小.∵﹣1<0<2,∴m>b>n.故选:C.10.甲车从A地到B地,乙车从B地到A地,乙车先出发先到达,甲乙两车之间的距离y(千米)与行驶的时间x(小时)的函数关系如图所示,则下列说法中不正确的是()A.甲车的速度是80km/hB.乙车的速度是60km/hC.甲车出发1h与乙车相遇D.乙车到达目的地时甲车离B地10km【分析】根据已知图象分别分析甲、乙两车的速度,进而分析得出答案.【解答】解:根据图象可知甲用了(3.5﹣1)小时走了200千米,所以甲的速度为:200÷2.5=80km/h,故选项A不合题意;由图象横坐标可得,乙先出发的时间为1小时,两车相距(200﹣140)=60km,故乙车的速度是60km/h,故选项B不符合题意;140÷(80+60)=1(小时),即甲车出发1h与乙车相遇,故选项C不合题意;200﹣(200÷60﹣1)×80=km,即乙车到达目的地时甲车离B地km,故选项D符合题意.故选:D.二.填空题(共4小题)11.函数中,自变量x的取值范围是x>﹣2 .【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.【解答】解:根据题意得:被开方数x+2≥0,解得x≥﹣2,根据分式有意义的条件,x+2≠0,解得x≠﹣2,故x>﹣2.故答案为x>﹣2.12.已知关于x的方程mx+n=0的解是x=﹣2,则直线y=mx+n与x轴的交点坐标是(﹣2,0).【分析】求直线与x轴的交点坐标,需使直线y=mx+n的y值为0,则mx+n=0;已知此方程的解为x=﹣2.因此可得答案.【解答】解:∵方程的解为x=﹣2,∴当x=﹣2时mx+n=0;又∵直线y=mx+n与x轴的交点的纵坐标是0,∴当y=0时,则有mx+n=0,∴x=﹣2时,y=0.∴直线y=mx+n与x轴的交点坐标是(﹣2,0).13.若点P的坐标是(2a+1,a﹣4),且P点到两坐标轴的距离相等,则P点的坐标是(﹣9,﹣9)或(3,﹣3).【分析】根据点到两坐标轴的距离相等列出绝对值方程求出a的值,然后求解即可.【解答】解:∵点P(2a+1,a﹣4)到两坐标轴的距离相等,∴|2a+1|=|a﹣4|,∴2a+1=a﹣4或2a+1=﹣(a﹣4),解得a=﹣5或a=1,当a=﹣5时,点P的坐标为(﹣9,﹣9),当a=1时,点P的坐标为(3,﹣3),综上所述,点P的坐标为(﹣9,﹣9)或(3,﹣3),故答案为:(﹣9,﹣9)或(3,﹣3).14.直线y=kx﹣2与直线y=x﹣1(1≤x≤4)有交点,则k的取值范围是≤k≤2 .【分析】根据已知条件得到直线y=kx﹣2与y轴的交点坐标为C(0,﹣2),求得直线y=x﹣1过A(1,0),B(4,3),设直线AC的解析式为y=mx+n,得到直线AC的解析式为y=2x﹣2,设直线BC的解析式为y=ex+f,得到直线BC的解析式为y=x﹣2,于是得到结论.【解答】解:令x=0,则y=0•k﹣2=﹣2,所以直线y=kx﹣2与y轴的交点坐标为C(0,﹣2),∵当x=1时,y=x﹣1=0,当x=4时,y=x﹣1=3,∴直线y=x﹣1过A(1,0),B(4,3),设直线AC的解析式为y=mx+n,则,解得.所以直线AC的解析式为y=2x﹣2,设直线BC的解析式为y=ex+f,则,解得.所以直线BC的解析式为y=x﹣2,若直线y=kx﹣2与直线y=x﹣1(1≤x≤4)有交点,则k的取值范围是≤k≤2,故答案为≤k≤2:三.解答题(共8小题)15.已知一次函数的图象平行于y=﹣x,且截距为1.(1)求这个函数的解析式;(2)判断点P(﹣2,)是否在这个函数的图象上.【分析】(1)根据两平行直线的解析式的k值相等求出k,然后根据截距为1求出b值,即可得解;(2)把点P(﹣2,)代入解析式,检验即可.【解答】解:(1)设这个函数的解析式为y=kx+b,∵一次函数的图象平行于y=﹣x,且截距为1,∴k=﹣,b=1,∴这个函数的解析式为y=﹣x+1;(2)当x=﹣2时,y=+1=,故点P(﹣2,)不在这个函数的图象上.16.若函数y=(m+1)x+m2﹣1是正比例函数.(1)求该函数的表达式.(2)将该函数图象沿y轴向上或者向下平移,使其经过(1,﹣2),求平移的方向与距离.【分析】(1)根据正比例函数的定义列式计算即可得解;(2)设平移后的函数的解析式为y=2x+b,把(1,﹣2)代入求得b的值,即可求得结论.【解答】解:(1)根据题意得,m2﹣1=0且m+1≠0,解得m=±1且m≠﹣1,所以m=1.所以该函数的表达式为y=2x;(2)设平移后的函数的解析式为y=2x+b,∵经过(1,﹣2),∴﹣2=2+b,∴b=﹣4,∴函数图象沿y轴向下平移4个单位,使其经过(1,﹣2).17.如图,先将△ABC向上平移2个单位再向左平移5个单位得到△A1B1C1(1)画出△A1B1C1,并写出点A1、B1、C1的坐标.(2)求△A1B1C1的面积.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用△A1B1C1所在矩形面积减去周围三角形面积得出答案.【解答】解:(1)如图所示:△A1B1C1,点A1(﹣1,5),B1(﹣2,3),C1(﹣4,4);(2)△A1B1C1的面积为:2×3﹣×1×3﹣×2×1﹣×1×2=2.5;18.画出函数y=﹣x+3的图象,并利用图象解下列问题:(1)求方程﹣x+3=0的解.(2)求不等式﹣x+3>0的解集.(3)若﹣3≤y<6,求x的取值范围.【分析】(1)先利用描点法画出一次函数图象,然后利用直线与x轴的交点坐标确定方程﹣x+3=0的解;(2)利用x轴上方所对应的自变量的范围确定不等式的解集;(3)利用图象确定y=﹣3和y=6对应的自变量的值,从而得到对应的x的取值范围.【解答】解:(1)如图,∵直线与x轴的交点坐标为(2,0),∴方程﹣x+3=0的解为x=2,(2)如图,∵x<2时,y>0,∴不等式﹣x+3>0的解集为x<2;(3)如图,﹣2<x≤4时,﹣3≤y<6.19.如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.人体构造学的研究成果表明,一般情况下人的指距d和身高h成如下所示的关系.指距d(cm)20 21 22 23身高h(cm)160 169 178 187 (1)直接写出身高h与指距d的函数关系式;(2)姚明的身高是226厘米,可预测他的指距约为多少?(精确到0.1厘米)【分析】(1)运用待定系数法求解即可;(2)把h=226代入(1)中的结论即可.【解答】解:根据表格中数据,d每增加1,身高增加9cm,故d与h是一次函数关系,设这个一次函数的解析式是:h=kd+b,,解得,故一次函数的解析式是:h=9d﹣20;(2)当h=226时,9d﹣20=226,解得d=27.3.即姚明的身高是226厘米,可预测他的指距约为27.3厘米.20.如图,直线l1:y=2x﹣2与x轴交于点D,直线l2:y=kx+b与x轴交于点A,且经过点B,直线l1,l2交于点C(m,2).(1)求m的值;(2)求直线l2的解析式;(3)根据图象,直接写出1<kx+b<2x﹣2的解集.(4)求△ACD的面积.【分析】(1)把C(m,2)代入y=2x﹣2中可求出m的值;(2)利用待定系数法求直线l2的解析式;(3)结合图象写出y=kx+b的函数值大于2且直线l1在直线l2上方对应的自变量的范围;(4)根据两直线解析式确定A、D点的坐标,然后利用三角形面积公式计算.【解答】解:(1)把C(m,2)代入y=2x﹣2得2m﹣2=2,解得m=4;(2)把C(2,2),B(3,1)代入y=kx+b得,解得,∴直线l2的解析式为y=﹣x+4;(3)2<x<3;(3)当y=0时,2x﹣2=0,解得x=1,则C(1,0),当y=0时,﹣x+4=0,解得x=4,则A(4,0),∴S△ACD=×(4﹣1)×2=3.21.甲、乙两个工程队完成某项工程,先由甲单独做10天,乙队再加入合作.工进度满足如图所示.(1)求工作量y与工作时间x(天)之间的函数关系式;(2)这项工程全部完成需要多少天?(3)求乙队单独完成这项工程的天数.【分析】(1)分段函数,运用待定系数法解答即可;(2)根据(1)的结论解答即可;(3)根据(1)可得乙队的工作效率,从而计算出乙队单独完成这项工程要60天.【解答】解:(1)当x≤10时,设y=kx,根据题意得,解得k=,∴y=;当x>10时,设y=k1x+b,根据题意得:,解得,∴y=.(天)∴10<x≤28,∴;(2)由(1)得,当y=1时,,解得x=28.答:这项工程全部完成需要28天;(3)(1﹣)÷(28﹣10)=(天),(天),答:乙队单独完成这项工程需要60天.22.甲、乙两人分别安装同一种零件40个,其中乙在安装两小时后休息了2小时,后继续按原来进度工作,他们每人安装的零件总数y(个)与安装时间x(小时)的函数关系如图1所示,两人安装零件总数之差z(件)与时间x(小时)的函数关系如图2所示.(1)a= 4 ;b=10 .(2)求出甲工作2小时后的安装的零件数y与时间x的函数关系.(3)甲、乙两人在什么时间生产的零件总数相差8个?【分析】(1)根据题意和图象中的数据可以求得a、b的值;(2)根据函数图象中的数据可以求得甲工作2小时后的安装的零件数y与时间x的函数关系;(3)根据函数图象,利用分类讨论的方法可以求得甲、乙两人在什么时间生产的零件总数相差8个.【解答】解:(1)由图可得,a=10﹣6=4,b=4+(40﹣10)÷(10÷2)=4+30÷5=4+6=10,故答案为:4,10;(2)甲后来的速度为:=6件/小时,甲做完40个需要的时间为:2+(40﹣4)÷6=2+36÷6=2+6=8,设甲工作2小时后的安装的零件数y与时间x的函数关系是y=kx+b,∵甲工作2小时后的安装的零件数y与时间x的函数图象过点(2,4),(8,40),∴,得,即甲工作2小时后的安装的零件数y与时间x的函数关系是y=6x﹣8(2<x≤8);(3)设t小时时,甲、乙两人生产的零件总数相差8个,乙的速度为:10÷2=5件/小时,当4<t≤8时,6+(t﹣4)×(6﹣5)=8,解得,t=6,当8<t<10时,5(10﹣t)=8,解得,t=8.4,答:甲、乙两人在6小时或8.4小时时生产的零件总数相差8个.2020-2021学年度第一学期第一次月考八年级数学试题卷考试方式:闭卷考试时间:100 分钟满分:120 分一.选择题(共10小题,每题3分,共30分,请把正确答案写在答案卷上.)1.下列四个图案是我国几家银行的标志,其中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个2.下列各条件不能作出唯一直角三角形的是()A.已知两直角边 B.已知两锐角C.已知一直角边和它们所对的锐角 D.已知斜边和一直角边3.下列语句中正确的有几个()①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③两个轴对称图形的对应点一定在对称轴的两侧;④一个圆有无数条对称轴.A.1 B.2 C.3 D.44.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的()A.CB=CD B.BAC=∠DAC C.BCA=DCA D.∠B=∠D=9005.如图,请仔细观察用直尺和圆规作一个角等于已知角AOB ∠的示意图,请你根据所学的图形的全等这一章的知识,说明画出'''A O B AOB ∠=∠的依据是( )A.SASB.ASAC.AASD.SSS6.如图,将三角形纸片ABC 折叠,使点C 与点A 重合,折痕为DE . 若∠B =80°,∠BAE =26°,则∠EAD 的度数为( )A.36°B. 37°C.38°D.45°7.如图,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是( )8.如图,工人师傅做了一个长方形窗框ABCD,E,F,G,H 分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在( )A. A,C 两点之间B. E,G 两点之间C. B,F 两点之间D. G,H 两点之间9.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 的面积是28cm 2,AB =20cm ,AC =8cm ,则DE 的长是( )A .4cmB .3cmC .2cmD .1cm10.如图,在△ABC 中,∠A=∠B ,∠ACB=90°,点D 、E 在AB 上,将△ACD 、△B CE 分别沿CD 、CE 翻折,点A 、B 分别落在点A′、B′的位置,再将△A′CD 、△B′CE 分别沿A′C 、B′C 翻折,点D 与点E 恰好重合于点O ,则∠A′OB′的度数是( ) A .90°B .120°C .135°D .150°二.填空题(共8小题,每题2分,共16分,请把结果直接填在答案卷上.)11.下列图形:①角;②直角三角形;③等边三角形;④线段;⑤等腰三角形;⑥平行四边形.其中一定是轴对称图形的有 个.AC OB DA'C O'B'DBAE DC第3题B CDA(第4题图) (第5题图)(第6题图)(第8题图) (第9题图) (第10题图)12.小明从平面镜子中看到镜中电子钟示数的像如图所示,这时的时刻应是 .13.如图,AC=BD ,要使△ABC ≌△DCB (SAS ),只要添加一个条件 .14.如图,△ABC 的周长为32,且BD=DC ,AD ⊥BC 于D ,△ACD 的周长为24,那么AD 的长为 . 15.如图,已知AB ∥CF ,E 为DF 的中点,若AB =8 cm ,BD =3 cm ,则CF = cm .16.如图,点D 在边BC 上,DE ⊥AB ,DF ⊥BC ,垂足分别为点E ,D ,BD =CF ,BE =CD .若∠AFD =155°,则∠EDF = .17.如图,方格纸中△ABC 的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形,图中与△ABC 全等的格点三角形共有 个(不含△ABC ).18.已知在△ABC 中,AB=5,BC=7,BM 是AC 边上的中线,则BM 的取值范围为 .三.解答题(共8小题,共74分. 解答需写出必要的文字说明或演算步骤.)19.(本题满分12分)如图,在3×3的正方形网格中,有一个以格点为顶点的三角形.(1)请你在图①,图②,图③中,分别画出一个与该三角形成轴对称且以格点为顶点的三角形,并将所画三角形涂上阴影.(注:所画的三幅图不能重复).(2)格纸中所有与该三角形成轴对称且以格点为顶点的三角形共有 个.20.(本题满分8分)如图,在所给正方形网格图中完成下列各题:①画出格点△ABC (顶点均在格点上)关于直线DE 对称的△A 1B 1C 1;FEDCB A(第15题图) (第16题图)(第17题图)(第12题图)(第13题图) (第14题图)②在DE上画出点Q,使QA+QC最小.(用直尺画图,保留痕迹)21.(本题满分8分)已知△ABC,按下列要求作图:(尺规作图,保留痕迹不写作法。
滨州市小学数学名师工作室绝密★启用前2020-2021 学年度第一学期小学数学期末模拟测试考试范围:二年级考试时间:60 分钟一、填空题1. 明明今年 7 岁,妈妈的年龄是他的 5 倍,妈妈今年()岁.2. 小刚夜晚在野外迷路了,他用北极星来辨认方向,当他面对北极星时,他的左面是(),他的右面是( ),他的前面是( ),他的后面是(). 3.王雷将自己的 24 本作业本捐给幼儿园的小朋友,每个小朋友分 4 本,可以分给()个小朋友;如果分给 8 个小朋友,平均每个小朋友分( )本.4.( )里最大能填几?()×4<19 8×( )<20 6×( )<3248>( )×7 7×( )<3265>8×()5. 看图写出两个乘法算式和两个除法算式.()×( )=( ) ( )÷( )=( )()×()=()()÷()=()6. 为了丰富校园生活,班级举行“新年联欢”。
王老师买来气球,每 6 个扎一捆,一共扎了 7 捆,还剩下 3个,一共买了( )个气球.7.这个图形中有( )个锐角,( )个直角,( )个钝角.二、选择题.(将正确答案的序号填在括号里.) 8.与算式 3×6-5 的结果不相等的算式是(). A .2×6+1 B .3×5-2 C .4×6-69.□×5=().13.数一数,包含的平行四边形有( )个.A .3B .4C . 514. 小霞的爸爸每周上 5 天班,4 周休息的天数是()天.A .8B .9C . 20三、计算题15. 看谁算的又对又快!3×6= 36÷6= 5×2= 6+6= 7×9= 6×0= 40÷8= 5×4= 42÷7=4×7= 0÷9 = 18-2= 5×7+7= 7×8-8= 42÷7÷2= 2×3×4=3×8÷6=64÷8-2=24÷4×7=5×9+10=16.在圆圈里填上“>”“<”或“=”.5×66+6 3×7 2×8 5×4-5 30÷549÷7×664÷8×77×8-86×88×4÷84×6÷8四、思考题17. 画一画,你对“2×4”的理解 .18. “8÷2”可以画图表示为 请你画一画对“12÷3”的理解.A .□+5B .□+□+□+□+□C .□×□×□×□×□10. 王老师带领 20 位同学去野外露营,5 个帐篷能住下吗?()A .能B .不能最多住 4 人11. 钝角一定大于锐角,这种说法对吗?()A .对B .不对12. 小丽为山区学生捐献爱心彩笔,买一盒彩笔付给售货员 5 张 5 元,找回的钱不到 5 元,这盒彩笔的价格可能是多少元?( )A .20B .23C . 25学校班级姓名考场座号滨州市小学数学名师工作室19.丽丽回奶奶家过年,丽丽发现奶奶家鸡的只数是鸭只数的3 倍,请你画图表示一下鸡和鸭只数的关系.(鸡:用 表示鸭:用△表示)鸡的只数:鸭的只数:滨州市小学数学名师工作室我 把 我 把 23. 蛋糕包装问题:天天小朋友要回家了,奶奶给他准备了好多面包让他带回家吃。
2020-2021学年广东省佛山市南海外国语学校八年级(上)第一次月考数学试卷1.下列实数中,是无理数的为()D. √2A. 0B. 3.14C. −132.下列计算正确的是())−1=−6 C. √8÷√2=2 D. √(−3)2=−3A. √3+√2=√5B. (163.估计√35的值应在()A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间4.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件中,不能判断△ABC是直角三角形的是()A. a=3,b=4,c=5B. a=b,∠C=45°C. ∠A:∠B:∠C=1:2:3D. a=√3,b=√7,c=25.如图,已知BC是圆柱底面的直径,AB是圆柱的高,在圆柱的侧面上,过点A,C嵌有一圈路径最短的金属丝,现将圆柱侧面沿AB剪开,所得的圆柱侧面展开图是()A.B.C.D.6.按如图所示的程序计算,若开始输入的x的值是64,则输出的y的值是()A. √2B. √3C. 2D. 37.如图有一个水池,水面BE的宽为16尺,在水池的中央有一根芦苇,它高出水面2尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,则这个芦苇的高度是()A. 26尺B. 24尺C. 17尺D. 15尺8.如图,数轴上A,B两点表示的数分别为−1,√5,且AC=AB,则点C所表示的数为()A. −1+√5B. −1−√5C. −2−√5D. 1+√59.已知3a+1和5是正数b的两个平方根,则a+b的值是()A. 23B. 25C. 27D. 3010.如图所示的网格是正方形网格,点A,B,C,D,E是网格线交点,则∠BAC−∠DAE的度数为()A. 45°B. 40°C. 30°D. 25°11.49的算术平方根是______.12.通过估算,比较大小:√5−12______12.13.已知x是√7的小数部分,则x的值______.14.如图,网格中每个小正方形的边长均为1,以A为圆心,AB为半径画弧,交网格线于点D,则ED的长为______.15. 如果一个三角形的三边分别为1、√2、√3,则其面积为______. 16. 如果y =√5−x +√x −5+5,那么xy 的值是______.17. 如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图2的图案,记阴影部分的面积为S 1,空白部分的面积为S 2,大正方形的边长为m ,小正方形的边长为n ,若S 1S 2=32,则nm 的值为______.18. 计算:√8−(π−3)0+|2√2−4|−(13)−1.19. 一个长方形的长与宽的比是5:3,它的对角线长为√68cm ,求这个长方形的长与宽(结果保留一位小数).20. 如图,在一条东西走向河流的一侧有一村庄C ,河边原有两个取水点A ,B ,其中AB =AC ,由于某种原因,由C 到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H(A、H、B在同一条直线上),并新建一条路CH,测得CB=1.5千米,CH=1.2千米,HB=0.9千米.问CH是否为从村庄C到河边的最近路?请通过计算加以说明.21.观察图,每个小正方形的边均为1,可以得到每个小正方形的面积为1.(1)图中阴影部分的面积是______ ;阴影部分正方形的边长是______ .(2)估计边长的值在整数______ 和______ 之间.(3)在数轴上作出阴影部分正方形边长的对应点(要求保留作图痕迹).22.一辆卡车装满货物后,高4米,宽2.8米.(1)这辆卡车能通过横截面如图所示(上方是一个半圆)的隧道吗?请说明你的理由;(2)若将此隧道的上部(从边AB、CD的中点起)装上彩灯,请计算彩灯线的总长度L.(结果保留整数)23.如图,A,B两点相距14km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=8km,CB=6km,现在要在AB上建一个供水站E,使得C、D两村到供水站E站的距离相等,则:(1)E站应建在距A站多少千米处?(2)DE和EC垂直吗?说明理由.24.观察下列各式:√1+112+122=1+11×2…………①√1+122+132=1+12×3…………②√1+132+142=1+13×4…………③…………请利用你所发现的规律,解决下列问题:(1)第4个算式为:______;(2)求√1+112+122+√1+122+132+√1+132+142+⋯+√1+162+172的值;(3)诸直接写出√1+112+122+√1+122+132+⋯√1+1n2+1(n+1)2的结果.25.【背景介绍】勾股定理是几何学中的明珠,充满着魅力.千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者.向常春在1994年构造发现了一个新的证法.【小试牛刀】把两个全等的直角三角形如图1放置,其三边长分别为a,b,c.显然,∠DAB=∠B=90°,AC⊥DE.请用a,b,c分别表示出梯形ABCD,四边形AECD,△EBC的面积,再探究这三个图形面积之间的关系,可得到勾股定理:S梯形ABCD =______,S△EBC=______,S四边形AECD=______,则它们满足的关系式为______,经化简,可得到勾股定理.【知识运用】如图2,河道上A,B两点(看作直线上的两点)相距160米,C,D为两个菜园(看作两个点),AD⊥AB,BC⊥AB,垂足分别为A,B,AD=70米,BC=50米,现在菜农要在AB上确定一个抽水点P,使得抽水点P到两个菜园C,D的距离和最短,则该最短距离为______米.【知识迁移】借助上面的思考过程,求代数式√x2+9+√(12−x)2+36的最小值(0<x<12).答案和解析1.【答案】D【解析】解:A.0是整数,属于有理数,故本选项不合题意;B.3.14是有限小数,属于有理数,故本选项不合题意;C.−1是分数,属于有理数,故本选项不合题意;3D.√2是无理数,故本选项符合题意.故选:D.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.【答案】C【解析】解:A、√3与√2不是同类二次根式,不能合并计算,故此选项不符合题意;)−1=6,故此选项不符合题意;B、(16C、√8÷√2=√8÷2=√4=2,正确,故此选项符合题意;D、√(−3)2=3,故此选项不符合题意;故选:C.根据二次根式加法运算法则进行计算判断A,根据负整数指数幂的运算法则进行计算判断B,根据二次根式除法运算法则进行计算判断C,根据二次根式的性质进行化简判断D.(a≠0)是解题关键.本题考查二次根式的运算,理解二次根式的性质,a−p=1a p3.【答案】B【解析】解:∵√25<√35<√36,∴5<√35<6,故选:B.根据算术平方根的意义,估算√35的大小即可.本题考查估算无理数的大小,理解算术平方根的意义是解决问题的前提.4.【答案】B【解析】解:A、由题意知,a2+c2=b2=25,则△ABC是直角三角形,故本选项不符合题意;B、由题意知,∠A=∠B=(180°−45°)÷2=62.5°,则△ABC不是直角三角形,故本选项符合题意;C、由题意知∠A=45°,∠B=60°,∠C=90°,△ABC是直角三角形,故本选项不符合题意;D、由题意知,a2+c2=b2=7,则△ABC是直角三角形,故本选项不符合题意.故选:B.根据所给的数据和三角形内角和定理,勾股定理的逆定理分别对每一项进行分析,即可得出答案.本题主要考查了直角三角形的判定方法.①如果三角形中有一个角是直角,那么这个三角形是直角三角形;②如果一个三角形的三边a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.5.【答案】B【解析】解:因圆柱的展开面为长方形,AC展开应该是两直线,且有公共点C.故选:B.由平面图形的折叠及立体图形的表面展开图的特点解题.此题主要考查圆柱的展开图,以及学生的立体思维能力.6.【答案】A【解析】解:由所给的程序可知,当输入64时,√64=8,∵8是有理数,3=2,∴取其立方根可得到,√8∵8是有理数,∴取其算术平方根可得到√2,∵√2是无理数,∴y=√2.故选:A.根据所给出的程序列出代数式,由实数混合运算的法则进行计算即可.本题考查的是实数的运算,熟知有理数与无理数的概念是解答此题的关键.7.【答案】C【解析】解:设水池的深度为x尺,由题意得:x2+82=(x+2)2,解得:x=15,所以x+2=17.即:这个芦苇的高度是17尺.故选:C.先设水池的深度为x尺,则这根芦苇的长度为(x+2)尺,根据勾股定理可得方程x2+ 82=(x+2)2,再解即可.此题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.8.【答案】C【解析】解:设点C表示的数x,根据AC=AB得:√5−(−1)=−1−x,即√5+1=−1−x,解得:x=−2−√5,则点C表示的数为−2−√5.故选:C.设点C表示的数为x,根据题意列出方程,求出方程的解得到x的值,即可确定出点C的数即可.此题考查了实数与数轴,利用了方程的思想,弄清题意是解本题的关键.9.【答案】A【解析】解:∵3a+1和5是正数b的两个平方根,∴b=52=25,3a+1+5=0.∴b=25,a=−2.∴a+b=−2+25=23.故选:A.由平方根的定义,可得b=25,3a+1+5=0,故a=−2,进而求得a+b.本题主要考查平方根的定义以及性质,熟练掌握平方根的定义以及性质是解决本题的关键.10.【答案】A【解析】解:如图,连接CG、AG,由勾股定理得:AC2=AG2=12+22=5,CG2=12+32=10,∴AC2+AG2=CG2,∴∠CAG=90°,∴△CAG是等腰直角三角形,∴∠ACG=45°,∵CF//AB,∴∠ACF=∠BAC,在△CFG和△ADE中,{CF=AD∠CFG=∠ADE=90°FG=DE,∴△CFG≌△ADE(SAS),∴∠FCG=∠DAE,∴∠BAC−∠DAE=∠ACF−∠FCG=∠ACG=45°,故选:A.如图,连接CG、AG,根据勾股定理的逆定理可得∠CAG=90°,从而知△CAG是等腰直角三角形,根据平行线的性质和三角形全等,可知:∠BAC−∠DAE=∠ACG,即可得解.本题考查了勾股定理的逆定理,勾股定理,三角形的全等的性质,等腰直角三角形的判定和性质,正确地作出辅助线是解题的关键.11.【答案】7【解析】【分析】根据算术平方根的意义可求.本题主要考查了平方根、算术平方根概念的运用.如果x2=a(a≥0),则x是a的平方根.若a>0,则它有两个平方根,我们把正的平方根叫a的算术平方根;若a=0,则它有一个平方根,即0的平方根是0.0的算术平方根也是0;负数没有平方根.【解答】解:∵72=49,∴49的算术平方根是7.故答案为:7.12.【答案】>【解析】解:∵4<5<9,∴√4<√5<√9,即2<√5<3.∴2−1<√5−1<3−1,即1<√5−1<2.∴√5−12>12.故答案为:>.由4<5<9,得2<√5<3,故1<√5−1<2,那么√5−12>12.本题主要考查算术平方根的性质以及不等式的性质,熟练掌握算术平方根的性质以及不等式性质是解题关键.13.【答案】√7−2【解析】解:∵√7的整数部分是2,∴x=√7−2.故答案为:√7−2.根据2<√7<3可得√7的整数部分是2,进而可得结果.本题考查估算无理数大小,熟练掌握估算无理数的大小的方法是解题的关键.14.【答案】√5【解析】解:如图,连接AD,则AD=AB=3,在Rt△ADE中,由勾股定理得:ED=√AD2−AE2=√32−22=√5.故答案为:√5.连接AD,在Rt△ADE中,由勾股定理计算即可得出ED的长.本题考查了勾股定理在几何图形问题中的应用,数形结合、熟练掌握勾股定理是解题的关键.15.【答案】√22【解析】解:∵12+(√2)2=(√3)2,∴此三角形是直角三角形,∴三角形的面积=12×1×√2=√22,故答案为:√22.根据勾股定理的逆定理得出三角形为直角三角形,进而解答即可.此题考查勾股定理的逆定理,关键是根据勾股定理的逆定理得出三角形为直角三角形解答.16.【答案】25【解析】解:由题意得:5−x≥0,x−5≥0,则x=5,∴y=5,∴xy =5×5=25, 故答案为:25.根据二次根式有意义的条件列出不等式,求出x ,进而求出y ,计算即可.本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.17.【答案】√55【解析】解:∵S 1S 2=32,大正方形面积为m 2,∴S 2=25m 2.设图2中AB =x ,依题意则有: 4⋅S △ADC =25m 2,即4×12×x 2=25m 2,解得:x 1=√55m, x 2=−√55m(负值舍去). 在Rt △ABC 中, AB 2+CB 2=AC 2, ∴(√55m)2+(√55m +n)2=m 2,解得:n 1=m√5, n 2=−3m√5(负值舍去). ∴nm =√5m=√5=√55. 故答案为:√55.由S 1S 2=32,可得S 2为大正方形面积的25.设AB 为x ,表示出空白部分的面积S 2,即12 x 2×4=25m 2,则x =√55 m ,再在Rt △ABC 中使用勾股定理得到关于m ,n 的方程,可求得 nm 的值.本题考查了勾股定理:如果直角三角形两直角边分别为a 、b ,斜边为c ,那么a 2+b 2=c 2,使用可建立方程求解相应线段长.18.【答案】解:√8−(π−3)0+|2√2−4|−(13)−1=2√2−1+4−2√2−3=0.【解析】首先计算零指数幂、负整数指数幂、开方和绝对值,然后从左向右依次计算,求出算式的值即可.此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.19.【答案】解:设长方形的长为5x,则宽为3x,由勾股定理可得:(5x)2+(3x)2=(√68)2解得:x=√2∴5x=5√2≈7.1(cm) 3x=3√2≈4.2(cm)答:这个长方形的长约为7.1cm,宽约为4.2cm.【解析】长方形的长为5xcm,则宽为3xcm,由勾股定理得出方程,解方程即可.本题考查了矩形的性质、勾股定理;由勾股定理得出方程是解决问题的关键.20.【答案】解:CH是从村庄C到河边的最近路.理由如下:∵CB=1.5千米,CH=1.2千米,HB=0.9千米,∴CB2=CH2+HB2,∴△BCH为直角三角形,∠BHC=90°,∴CH⊥AB,∴CH为C点到AB的最短路线.【解析】利用勾股定理的逆定理证明△BCH为直角三角形,∠BHC=90°,则CH⊥AB,根据垂线段最短可判断CH是从村庄C到河边的最近路.本题考查了勾股定理的应用,证明△BCH为直角三角形是解题的关键.21.【答案】10√1034×1×3=16−6=10,【解析】解:(1)阴影部分面积为:4×4−4×12阴影部分正方形的边长为√10,故答案为:10;√10;(2)∵9<10<16,∴3<√10<4,即边长的值在整数3和4之间;(3)如图,点P表示数√10的点.(1)根据阴影部分的面积等于正方形的面积减去四周四个小直角三角形的面积列式计算即可得解;再利用算术平方根的定义求出边长;(2)根据无理数的大小估算方法解答;(3)利用勾股定理作出边长表示的无理数即可本题考查了算术平方根,实数与数轴,三角形的面积以及无理数大小的比较,此种阴影部分的面积的求法是常用方法,需熟练掌握并灵活运用.22.【答案】解:(1)如图,设半圆O的半径为R,则R=2,(1分)作弦EF//AD,且EF=2.8,OH⊥EF于H,连接OF,(2分)由OH⊥EF,得HF=1.4,(3分)又OH=√22−1.42=√2.04>√1.96=1.4,(4分)∴此时隧道的高AB+OH>2.6+1.4=4(米),(5分)∴这辆卡车能通过此隧道;(6分)(AB+CD)+AD=2.6+2π=8.88≈9(米).(8分)(2)L=12【解析】(1)作弦EF//AD,OH⊥EF于H,连接OF,在直角△OFH中,根据三角函数就可以求出OH,求出隧道的高.就可以判断;(2)彩灯线的总长度L就是线段AB,CD与半圆的和.把本题转化为直角三角形的问题是解决本题的关键.23.【答案】解:(1)设AE=x km,∵C、D两村到E站的距离相等,∴DE=CE,即DE2=CE2,由勾股定理,得82+x2=62+(14−x)2,解得:x=6.故E点应建在距A站6千米处;(2)DE⊥CD,理由如下:在Rt△DAE和Rt△CBE中,{DE=CEAD=BE,∴Rt△DAE≌Rt△CBE(HL),∴∠D=∠BEC,∵∠D+∠AED=90°,∴∠BEC+∠AED=90°,∴∠DEC=90°,∴DE⊥CD.【解析】(1)在Rt△DAE和Rt△CBE中,设出AE的长,可将DE和CE的长表示出来,列出等式进行求解即可;(2)根据全等三角形的性质解答即可.本题主要考查了勾股定理的应用,运用勾股定理将两个直角三角形的斜边表示出来是解题关键.24.【答案】(1)√1+142+152=1+14×5;(2)原式=1+11×2+1+12×3+1+13×4+⋯+1+16×7=1×6+11−12+12−13+13−14+⋯+15−16+16−17=6+1−1=48 7(3)原式=1+11×2+1+12×3+⋯+1+1n(n+1)=n×1+11−12+12−13+⋯+1n−1−1n+1n−1n+1=n+1−1 n+1=(n+1)2−1n+1.【解析】解:(1)依题意:接下来的第4个算式为:√1+14+15=1+14×5.故答案为√1+142+152=1+14×5.(2)见答案.(3)见答案.【分析】根据题目的规律进行计算即可.不难发现由根号形式转化为积的形式.因此(1)可以猜想到接下来的第4个算式为:√1+14+15=1+14×5,(2)题中可以根据题目进行每一项的转化.从而计算出结果;(3)第(2)题进一步扩展到n项即可.详见解答过程.此题考查的是二次根式的化简,要观察到1n(n+1)=1n−1n+1的转化.此类题即可解决25.【答案】解:【小试牛刀】:12a(a+b),12b(a−b),12c2,12a(a+b)=12b(a−b)+12c2,【知识迁移】:200【知识迁移】:先作出点C关于AB的对称点F,连接DF,使AB=12,AD=6,BC=BF=3,DF就是代数式√x2+9+√(12−x)2+36的最小值,∵DF=√122+92=15,∴代数式√x2+9+√(12−x)2+36的最小值为15.【解析】解:【小试牛刀】:S梯形ABCD =12a(a+b),S△EBC=12b(a−b),S四边形AECD=12c2,则它们满足的关系式为12a(a+b)=12b(a−b)+12c2,故答案为:12a(a+b),12b(a−b),12c2,12a(a+b)=12b(a−b)+12c2.【知识运用】:作点C关于AB的对称点F,连接DF交AB于点P,连接PC,点P即为所求.作DE⊥BC交BC的延长线于E.在Rt△DEF中,∵DE=AB=160米,EF=AD+BC=120米,∴DF=√DE2+DF2=200(米).故答案为200【知识迁移】:见答案.【小试牛刀】:根据梯形的面积公式,三角形面积公式计算即可解决问题.【知识运用】:作点C关于AB的对称点F,连接DF交AB于点P,连接PC,点P即为所求.【知识迁移】:先作出点C关于AB的对称点F,连接DF,使AB=12,AD=6,BC=BF=3,DF就是代数式√x2+9+√(12−x)2+36的最小值,本题考查轴对称−最短路线问题,勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.。