四年级奥数第一讲 数的整除问题
- 格式:docx
- 大小:41.05 KB
- 文档页数:6
第一讲数的整除问题一、基本概念和知识:1、整除:定义:一般地,如果a,b,c为整数,且a÷b=c,我们就说,a能被b整除(或者说b 能整除a)。
用符号“b| a”表示。
2、因数和倍数:如果a能被b整除,即a÷b=c由a÷b=c得:a=b×c,我们就说b(c)是a的因数(或约数),a是b(c)的倍数.提醒:一个数的因数个数是有限的,最小因数是1,最大因数是它本身。
练习:写出下面每个数的所有的因数:1的因数:__________________; 7的因数:__________________;2的因数:__________________; 8的因数:__________________;3的因数:__________________; 9的因数:__________________;4的因数:__________________; 10的因数:__________________;5的因数:__________________; 11的因数:__________________;6的因数:__________________; 12的因数:__________________;公因数(公约数):几个自然数公有的因数,叫做这几个自然数的公因数(公约数)。
如:3和4的公因数是:___________,6和8的公因数是:___________,3、质数与合数:在上面的题目中,我们发现,1只有1个因数,有些数只有2个因数,还有些数有很多因数。
根据因数的多少,我们可以把大于1的自然数分为两类:质数与合数。
(1)质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(素数)。
(2)合数:一个数,除了1和它本身还有别的因数,这样的数叫做合数。
(3)0和1既不是质数,也不是合数。
、请写出20以内的所有质数:_____________________________________________________ 注意:最小的质数是____,质数里面除了______是偶数外,其它都是______数。
小学奥数—数的整除之四大判断法综合运用小学奥数是培养学生数学思维能力、观察能力和逻辑推理能力的重要方式之一、在小学奥数中,数的整除是一个重要的概念和技巧。
数的整除是指一个数能够整除另一个数,即一个数可以被另一个数整除,这在小学中学习,通常会讲解四大判断法,即整除的特征判断法、整除的除数判断法、整除的因子判断法和整除的位数判断法。
本文将综合运用这四大判断法,解决一些与数的整除相关的问题。
首先,整除的特征判断法是指整数n能够被整数m整除的充要条件是n的特征之积能够被m的特征之积整除。
这个特征指的是数的各位数字之和。
例如,对于一个数234,它的特征就是2+3+4=9、如果一个数的特征之积能够被另一个数的特征之积整除,那么这个数就能被另一个数整除。
例如,对于一个数36,它的特征之积是3×6=18,而另一个数9的特征之积是9,18能够被9整除,所以36能够被9整除。
其次,整除的除数判断法是指一个整数n是否能够被一个整数m整除的充要条件是n能够被m的约数整除。
这个方法利用了约数的概念。
约数是指一个数能够整除另一个数的整数。
例如,对于一个数15,它的约数有1、3、5、15,这些数都能够整除15,所以15能够被1、3、5、15整除。
如果一个数能够被另一个数的约数整除,那么这个数就能被另一个数整除。
再次,整除的因子判断法是指整数n是否能够被一个整数m整除的充要条件是m是n的因子。
这个方法利用了因子的概念。
因子是指一个数能够整除另一个数的整数。
例如,对于一个数21,它的因子有1、3、7、21,这些数都能够整除21,所以21能够被1、3、7、21整除。
如果一个数是另一个数的因子,那么这个数就能被另一个数整除。
最后,整除的位数判断法是指一个整数n是否能够被一个整数m整除的充要条件是n的位数能够被m的位数整除。
这个方法利用了位数的概念。
位数是指一个数的十进制表示中,不含小数点的位数。
例如,对于一个数5678,它的位数是4,而另一个数28的位数是2,4能够被2整除,所以5678能够被28整除。
奥数知识点:数的整除奥数知识点:数的整除如果整除a除以不为零数b,所得的商为整数而余数为0,我们就说a能被b整除,或叫b能整除a。
如果a能被b整除,那么,b叫做a的约数,a叫做b的倍数。
下面小编给大家精心搜集整理的奥数知识点:数的整除,欢迎阅读!奥数知识点:数的整除数的整除的特征:(1)能被2整除的数的特征:如果一个整数的个位数字是2、4、6、8、0,那么这个整数一定能被2整除。
(2)能被3(或9)整除的数的特征:如果一个整数的各个数字之和能被3(或9)整除,那么这个整数一定能被3(或9)整除。
(3)能被4(或25)整除的数的特征:如果一个整数的末两位数能被4(或25)整除,那么这个数就一定能被4(或25)整除。
(4)能被5整除的数的特征:如果一个整数的个位数字是0或5,那么这个整数一定能被5整除。
(5)能被6整除的数的特征:如果一个整数能被2整除,又能被3整除,那么这个数就一定能被6整除。
(6)能被7(或11或13)整除的.数的特征:一个整数分成两个数,末三位为一个数,其余各位为另一个数,如果这两个数之差是0或是7(或11或13)的倍数,这个数就能被7(或11或13)整除。
(7)能被8(或125)整除的数的特征:如果一个整数的末三位数能被8(或125)整除,那么这个数就一定能被8(或125)整除。
(8)能被11整除的数的特征:如果一个整数的奇数位数字之和与偶数位数字之和的差(大减小)能被11整除,那么它必能被11整除。
一、例题与方法指导例1.一个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____.思路导航:一个数如果是88的倍数,这个数必然既是8的倍数,又是11的倍数.根据8的倍数,它的末三位数肯定也是8的倍数,从而可知这个六位数个位上的数是0或8.而11的倍数奇偶位上数字和的差应是0或11的倍数,从已知的四个数看,这个六位数奇偶位上数字的和是相等的,要使奇偶位上数字和差为0,两个方框内填入的数字是相同的,因此这个六位数有两种可能。
第一讲数的整除性(三)知识要点我们已经学习了能被2,3,5整除的数的特征,这一讲我们将讨论整除的性质,并讲解能被4,8,9整除的数的特征。
数的整除性质:性质1 如果甲数能被乙数整除,乙数能被丙数整除,那么甲数一定能被丙数整除。
例如,48能被16整除,16能被8整除,那么48一定能被8整除。
性质2 如果两个数都能被一个自然数整除,那么这两个数的和与差也一定能被这个自然数整除。
例如,21与15都能被3整除,那么21+15及21-15都能被3整除。
性质3 如果一个数能分别被两个互质的自然数整除,那么这个数一定能被这两个互质的自然数的乘积整除。
例如,126能被9整除,又能被7整除,且9与7互质,那么126能被9×7=63整除。
利用上面关于整除的性质,我们可以解决许多与整除有关的问题。
为了进一步学习数的整除性,我们把学过的和将要学习的一些整除的数字特征列出来:(1)一个数的个位数字如果是0,2,4,6,8中的一个,那么这个数就能被2整除。
(2)一个数的个位数字如果是0或5,那么这个数就能被5整除。
(3)一个数各个数位上的数字之和如果能被3整除,那么这个数就能被3整除。
(4)一个数的末两位数如果能被4(或25)整除,那么这个数就能被4(或25)整除。
(5)一个数的末三位数如果能被8(或125)整除,那么这个数就能被8(或125)整除。
(6)一个数各个数位上的数字之和如果能被9整除,那么这个数就能被9整除。
如:837=800+30+7=8×100+3×10+7=8×(99+1)+3×(9+1)+7=8×99+8+3×9+3+7=(8×99+3×9)+(8+3+7)。
因为99和9都能被9整除,所以根据整除的性质1和性质2知,(8x99+3x9)能被9整除。
再根据整除的性质2,由(8+3+7)能被9整除,就能判断837能被9整除。
四年级奥数整除与余数【导言】我们学习的除法算式有两种情况,一种是被除数除以除数以后,余数为0,即数的整除性;另一种是被除数除以除数以后,余数不为0,即有余数的除法。
一个有余数的除法包括四个数:被除数÷除数=商余数。
这个关系也可以表示为:被除数=除数×商+余数。
下面来总结一下整除和有余数除法的特征:1、整除:〔1〕能被2整除的特征:如果一个数的个位数字是偶数,那么这个数能被2整除。
〔2〕能被3整除的特征:如果一个数的各位数字之和能被3整除,那么这个数能被3整除。
〔3〕能被4〔或25〕整除的特征:如果一个数的末两位数能被4〔或25〕整除,那么这个数能被4〔或25〕整除。
〔4〕能被5整除的特征:如果一个数的个位数字是0或5,那么这个数能被5整除。
〔5〕能被8〔或125〕整除的特征:如果一个数的末三位数能被8〔或125〕整除,那么这个数能被8〔或125〕整除。
〔6〕能被9整除的特征:如果一个数的各位数字之和能被9整除,那么这个数能被9整除。
7〕能被11整除的特征:如果一个数奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除。
2、有余数的除法:第1页共 7页1〕一个数除以4的余数,与它的末两位除以4的余数相同。
2〕一个数除以8的余数,与它的末三位除以8的余数相同。
3〕一个数除以9的余数,与它的各位数字之和除以9的余数相同。
4〕一个数除以11的余数,与它的奇数位上的数字之和与偶数位上的数字之和的差除以11的余数相同。
〔如果奇位上的数字之和小于偶数位上的数字之和,可用偶数位数字之和减去奇数位数字之和,再除以11,所得的余数与11的差即为所求〕。
【经典例题1】一个6位数14A52B能被5和9整除,求这个6位数。
【解题步骤】能被5整除的数的末位是0或5,能被9整除的末位是各位上的数字之和能被9整除,即1+4+A+5+2+B能被9整除。
当B=0时,A取6;当B=5时,A取1。
第一讲数的整除(教师版)奥数特训四年级下册教材91、在一条公路上,每隔100千米有一个仓库(如图),共有五个仓库。
一号仓库存有10吨货物,二号仓库存有20吨货物,五号仓库存有50吨货物,其余两个仓库是空的。
现在想将所有的货物集中存放在一个仓库里。
如果每吨货物运输1千米需要0.5元的运费,那么最少要花多少运费才行?2、有89吨货物要甲地运往乙地。
大卡车的载重量是7吨,小卡车的载重量是4吨。
大卡车与小卡车每车次的耗油量分别是14公升和9公升。
问如何选派车辆才能使运输耗油量最少?这时共需用油多少公升?3、某公司运输队每天有5辆汽车为7个工厂作循环运输任务。
每个工厂需配备的装卸工如图所示。
如果每个工厂固定的装卸工太多,会造成浪费,可让一部分装卸工跟车装卸。
这样,有人跟车,有人固定。
怎样合理安排才能使装卸工人数最少?-1-奥数特训四年级下册教材94、某工地A有20辆卡车。
要把60车渣土从A地运往B,把40车砖从C运到D(工地道路图如图所示)。
问如何调运最省油?5、把16拆成几个互不相同的自然数,使这些自然数的乘积最大。
解:拆成的数不能有1,而2+3+4+5+6>16,所以16至多拆成4个互不相同的自然数。
这有两种拆法:16=2+3+5+6=2+3+4+7由于5某6>4某7,所以拆成2+3+5+62某3某5某6=180.6、把长239米的钢筋截成17米和24米长的钢筋,如何截法最省材料?解:239=17某7+24某5所以应截成17米的7根,24米的5根。
7、把1、2、3、4、5、6、7、8、9这九个数字填在九个方框中(每个数字只用一次),使三个三位数相乘的积最大。
□□□某□□□某□□□解:要使乘积最大,这三个三位数也要最大,首位是9、8、7,十位是6、5、4,个位是3、2、1。
又在和一定的情况下,两数差越小则积越大。
所以这三个三位数是941、852、763.8、兄弟俩骑车郊游,弟弟先出发,速度是每分钟行200米,5分钟后,哥哥带一条狗出发,以每分钟250米的速度去追弟弟。
小学小升初奥数知识:数的整除小学小升初奥数知识集锦:数的整除导语:下面是小编为您收集整理的数的整除相关知识,欢迎阅读!1.整除的概念在小学书中所学的自然数和零,都是整数。
同学们都知道,如果一个整数a除以一个自然数b,商是整数而且没有余数(或者说余数为零),就叫做a能被b整除,或者b整除a,记作a│b。
这时a叫做b 的倍数,b叫做a的约数。
例如,3│15表示15能被3整除,或者3整除15;也可以说15是3的倍数,3是15的约数。
由整数概念可知,整除必须同时满足三个条件:(1)被除数是整数,除数是自然数;(2)商是整数;(3)没有余数。
这三个条件只要有一个不满足,就不能叫整除。
例如,16÷5=3.2,商不是整数,所以不能说5整除16。
又如,10÷2.5=4,除数不是自然数,所以不能说10能被2.5整除。
2.整除的性质(1)如果两个整数都被同一个自然数整除,那么它们的和、差(大减小)也都能被这个自然数整除。
换句话说,同一个自然数的两个倍数之和、差(大减小)仍是这个自然数的倍数。
例如,18与42都能被6整除,那么18与42的和60、差24也都能被6整除;即从6│18及6│42可知6│(18+42)、6│(42-18)。
(2)如果甲数整除乙数,乙数整除丙数,那么甲数整除丙数。
即如果丙数是乙数的倍数,乙又是甲数的倍数,那么丙数是甲数的倍数。
例如,7│28,28│84,那么就有7│84。
(3)如果甲数整除乙数,那么甲数就整除乙数与任一整数的乘积。
也就是说如果乙数是甲数的倍数,那么乙数的任一倍数也是甲数的倍数。
例如,13│39,39×4=156,因此13│156。
(4)如果甲数能被丙数整除,而乙数不能被丙数整除,那么甲数与乙数的和、差都不能被丙数整除。
即如果甲数是丙数的倍数,乙数不是丙数的倍数,那么甲数与乙数的和、差(大减小)都不是丙数的倍数。
例如,6整除48,6不整除35,所以6不整除83(48+35=83),也不整除13(48-35=13)。
四年级奥数整除与余数【导言】我们学习的除法算式有两种情况,一种是被除数除以除数以后,余数为0,即数的整除性;另一种是被除数除以除数以后,余数不为0,即有余数的除法。
一个有余数的除法包括四个数:被除数÷除数=商……余数。
这个关系也可以表示为:被除数=除数×商+余数。
下面来总结一下整除和有余数除法的特征:1、整除:(1)能被2整除的特征:如果一个数的个位数字是偶数,那么这个数能被2整除。
(2)能被3整除的特征:如果一个数的各位数字之和能被3整除,那么这个数能被3整除。
(3)能被4(或25)整除的特征:如果一个数的末两位数能被4(或25)整除,那么这个数能被4(或25)整除。
(4)能被5整除的特征:如果一个数的个位数字是0或5,那么这个数能被5整除。
(5)能被8(或125)整除的特征:如果一个数的末三位数能被8(或125)整除,那么这个数能被8(或125)整除。
(6)能被9整除的特征:如果一个数的各位数字之和能被9整除,那么这个数能被9整除。
(7)能被11整除的特征:如果一个数奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除。
2、有余数的除法:(1)一个数除以4的余数,与它的末两位除以4的余数相同。
(2)一个数除以8的余数,与它的末三位除以8的余数相同。
(3)一个数除以9的余数,与它的各位数字之和除以9的余数相同。
(4)一个数除以11的余数,与它的奇数位上的数字之和与偶数位上的数字之和的差除以11的余数相同。
(如果奇位上的数字之和小于偶数位上的数字之和,可用偶数位数字之和减去奇数位数字之和,再除以11,所得的余数与11的差即为所求)。
【经典例题1】已知一个6位数14A52B能被5和9整除,求这个6位数。
【解题步骤】能被5整除的数的末位是0或5,能被9整除的末位是各位上的数字之和能被9整除,即1+4+A+5+2+B能被9整除。
当B=0时,A取6;当B=5时,A取1。
四年级奥数:4,8,9整除的数的特征我们在三年级已经学习了能被2,3,5整除的数的特征,这一讲我们将讨论整除的性质,并讲解能被4,8,9整除的数的特征。
数的整除具有如下性质:性质1 如果甲数能被乙数整除,乙数能被丙数整除,那么甲数一定能被丙数整除。
例如,48能被16整除,16能被8整除,那么48一定能被8整除。
性质2 如果两个数都能被一个自然数整除,那么这两个数的和与差也一定能被这个自然数整除。
例如,21与15都能被3整除,那么21+15及21-15都能被3整除。
性质3 如果一个数能分别被两个互质的自然数整除,那么这个数一定能被这两个互质的自然数的乘积整除。
例如,126能被9整除,又能被7整除,且9与7互质,那么126能被9×7=63整除。
利用上面关于整除的性质,我们可以解决许多与整除有关的问题。
为了进一步学习数的整除性,我们把学过的和将要学习的一些整除的数字特征列出来:(1)一个数的个位数字如果是0,2,4,6,8中的一个,那么这个数就能被2整除。
(2)一个数的个位数字如果是0或5,那么这个数就能被5整除。
(3)一个数各个数位上的数字之和如果能被3整除,那么这个数就能被3整除。
(4)一个数的末两位数如果能被4(或25)整除,那么这个数就能被4(或25)整除。
(5)一个数的末三位数如果能被8(或125)整除,那么这个数就能被8(或125)整除。
(6)一个数各个数位上的数字之和如果能被9整除,那么这个数就能被9整除。
其中(1)(2)(3)是三年级学过的内容,(4)(5)(6)是本讲要学习的内容。
因为100能被4(或25)整除,所以由整除的性质1知,整百的数都能被4(或25)整除。
因为任何自然数都能分成一个整百的数与这个数的后两位数之和,所以由整除的性质2知,只要这个数的后两位数能被4(或25)整除,这个数就能被4(或25)整除。
这就证明了(4)。
类似地可以证明(5)。
(6)的正确性,我们用一个具体的数来说明一般性的证明方法。
欢迎阅读
第一讲数的整除问题
一、基本概念和知识:
1、整除:
定义:一般地,如果a,b,c为整数,且a÷b=c,我们就说,a能被b整除(或者说b能整除a)。
用符号“b| a”表示。
2、因数和倍数:
如果a能被b整除,即a÷b=c
(1)质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(素数)。
(2)合数:一个数,除了1和它本身还有别的因数,这样的数叫做合数。
(3)0和1既不是质数,也不是合数。
、
请写出20以内的所有质数:
_____________________________________________________
注意:最小的质数是____,质数里面除了______是偶数外,其它都是______数。
4、互质数:公因数只有1的两个自然数,叫做互质数。
这里所说的“两个数”是指除0外的所有自然数。
“公因数只有1”,不能误说成“没有公因数。
”
例如,2与7、13与19、3与10、5与 26等等
4、质因数
每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,它们叫做这个合数的质因数
练习:
13×4=52,13和4都是52的因数吗?13和4都是52的质因数吗?
奇数:不能被2整除的整数称为奇数。
如:1,3,5,7,9,11,13,15,…
偶数和奇数有如下运算性质:
偶数±偶数=偶数,奇数±奇数=偶数,偶数±奇数=奇数,
偶数×偶数=偶数,偶数×奇数=偶数,奇数×奇数=奇数。
提醒:
(1)如果两个整数的和(或者差)是偶数,那么这两个整数的奇偶性相同;
(2)如果两个整数的和(或者差)是奇数数,那么这两个整数的奇偶性相反;
2、能被5整除的数的特征是:个位是0或5
3、能被3整除的数的特征是:各个数位数字之和能被3整除
如:27, 215等等
4、能被9整除的数的特征是:各个数位数字之和能被9整除
例题1、已知六位数能被3整除,数字a=?
解:2+5+7+a+3+8=25+a,要使25+a能被3整除,数字a只能是2,5或8。
即符合题意的a
六个数的和是 ? 。
练习:
1、(第六届小学“希望杯”全国数学邀请赛)若9位数2008□2008能够被3整除,则□里的数是
2、(第十一届中环杯初赛)已知a24b8是一个五位数,且是8的倍数,则a24b8 最大是__________,最小是________
3、四位数8A1B能同时被2,3,5整除,则这个四位数是______________.
4、(第十一届2013年“希望杯”全国数学邀请赛)在2013的质因数中,最大的质因数与最小的质因数的乘积是()。
5、(第十一届2013年“希望杯”全国数学邀请赛)喜羊羊打开一本书,发现左右两页的页码数的乘积是420,则这两页的页码数的和是()。
个数是多少?(山东省小学生数学竞赛初赛试题)
解:因为15=3×5,且3和5互质。
所以,只需分别考察能被3和5整除的情形。
由能被5整除的数的特征知,组成的四位数的个位上是5或0。
再据能被3整除的数的特征试算,若个位上是5,则有3+2+5=10。
可推知,百位上最大可填入8。
即组成的四位数是3825;若个位上是0,则有3+2+0=5。
可推知,百位上最大可填入7。
即组成的四位数是3720。
故知,这个数是3825。
例题5、(第十一届2013年“希望杯”全国数学邀请赛)一个数除以3余2,除以4余3,除以5余4,则这样的数中最小的是()。
?
例题6、(2012年第十届希望杯试题)有一筐桃子,4个4个地数,多2个;6个6个地数,多4个;8个8个地数,少2个。
已知这筐桃子的个数不少于120,也不多于150,则这筐桃子共有个。
练习:
a2016能被12整除,则这样的六位数1、(2016年第十四届希望杯)若六位数b
分析:根据能被8整除的数的特征,后三位应该能被8整除,29B 除以8,列竖式,可以推算出B=6。
然后根据能被9整除的数的特征,各位数字之和能被9整除,所以A=5.
7.五位数能被12整除,这个五位数是____________。
8、一位采购员买了72个微波炉,在记账本上记下这笔账。
由于他不小心,火星落在账本上把这笔账的总数烧掉了两个数字。
账本是这样写的:72个微波炉,共用去□679□元(□为被烧掉的数字),请你帮忙把这笔账补上。
应是__________元。
(注:微波炉单价为整数元)。
解:72只桶共用去a67.9b元,把它改写成a679b分后,应能被72整除。
72=8×9,8和9互质,若8能整除它,9能整除它,72就一定能整除它。
由能被8整除的数的特征(末三位数能被8整除)知,79b能被8整除,则b=2;由能被9整除的数的特征知,a+6+7+9+2=a+24能被9整除,则a=3。
故这笔账应是36792元。
9、要使六位数能被36整除,而且所得的商最小,问A,B,C各代表什么数字?
分析与解:因为36=4×9,且4与9互质,所以这个六位数应既能被4整除又能被9整除。
六位数能被4整除,就要能被4整除,因此C可取1,3,5,7,9。
要使所得的商最小,就要使这个六位数尽可能小。
因此首先是A尽量小,其次是B尽量小,最后是C尽量小。
先试取A=0。
六位数的各位数字之和为12+B+C。
它应能被9整除,因此B+C=6或B+C=15。
因为B,C 应尽量小,所以B+C=6,而C只能取1,3,5,7,9,所以要使尽可能小,应取B=1,C=5。
当A=0,B=1,C=5时,六位数能被36整除,而且所得商最小,为150156。