非线性静态系统最优化模型及求解方法
- 格式:pdf
- 大小:697.70 KB
- 文档页数:35
非线性优化问题的求解研究一、引言非线性优化问题是数学和工程学中一个十分重要的课题,它们在现实生活中有着广泛的应用。
例如,在工程和物理学中,需要优化设计和控制系统;在金融学中,需要优化投资组合;在医学中,需要优化药物剂量等。
对于这些问题,我们需要建立数学模型,并且寻找最优解。
因此,如何高效地解决非线性优化问题一直是一个热门的研究领域。
二、非线性优化问题非线性优化问题是指在无约束或有约束条件下,目标函数为非线性函数的问题。
通俗的说,就是在一个复杂的系统中,寻找一个能够达到最优状态的方案。
非线性优化问题包括多元函数非线性规划、不等式约束问题、等式约束问题等。
这些问题的特点在于目标函数或约束条件不能表示为简单的线性形式,需要使用非线性方法进行求解。
三、非线性优化问题的求解方法1. 牛顿法牛顿法被广泛用于求解非线性方程组和最优化问题。
在求解非线性优化问题中,其基本思路是将目标函数在当前点进行泰勒展开,然后求解导数为零的点所对应的下降方向,并对这个方向进行步长的控制,进行迭代。
2. 拟牛顿法拟牛顿法是基于牛顿法的一种算法。
它通过逼近目标函数的海森矩阵或该矩阵的逆矩阵来获得下降方向。
由于在牛顿法中,需要求解复杂的海森矩阵的逆矩阵,因此在实际应用中比较困难。
而拟牛顿法则可以通过近似估算来解决这个问题,在保证解精度的基础上,减少计算时间。
3. 共轭梯度法共轭梯度法主要用于解决对称正定线性方程组。
在非线性优化问题中,共轭梯度法通常被用作拟牛顿法的一个变体,用于求解目标函数梯度的方向。
4. 遗传算法遗传算法是一种基于遗传学的算法,其主要思路是模拟自然界中的进化过程来获得最优解,包括基因的突变、遗传操作等。
在非线性优化问题中,遗传算法被广泛用于寻找最优解的搜索和优化。
四、非线性优化问题的应用非线性优化问题有着广泛的应用。
以下是一些应用案例:1. 金融学:非线性优化问题被用于优化投资组合和资产定价等问题。
2. 工程学:非线性优化问题被用于优化设计和控制系统等问题。
非线性优化与约束优化问题的求解方法非线性优化问题是在目标函数和约束条件中包含非线性项的优化问题。
约束优化问题是在目标函数中加入了一些约束条件的优化问题。
解决这些问题在实际应用中具有重要意义,因此研究非线性优化和约束优化问题的求解方法具有重要的理论和实际意义。
一、非线性优化问题的求解方法非线性优化问题的求解方法有很多,下面介绍几种常见的方法:1. 黄金分割法:黄金分割法是一种简单但有效的搜索方法,它通过不断缩小搜索范围来逼近最优解。
该方法适用于目标函数单峰且连续的情况。
2. 牛顿法:牛顿法利用目标函数的一阶和二阶导数信息来逼近最优解。
该方法收敛速度较快,但在计算高阶导数或者初始点选取不当时可能产生不稳定的结果。
3. 拟牛顿法:拟牛顿法是对牛顿法的改进,它通过逼近目标函数的Hessian矩阵来加快收敛速度。
拟牛顿法可以通过不同的更新策略来选择Broyden-Fletcher-Goldfarb-Shanno(BFGS)方法或者DFP方法。
4. 全局优化方法:全局优化方法适用于非凸优化问题,它通过遍历搜索空间来寻找全局最优解。
全局优化方法包括遗传算法、粒子群优化等。
二、约束优化问题的求解方法约束优化问题的求解方法也有很多,下面介绍几种常见的方法:1. 等式约束问题的拉格朗日乘子法:等式约束问题可以通过引入拉格朗日乘子来转化为无约束优化问题。
通过求解无约束优化问题的驻点,求得原始约束优化问题的解。
2. 不等式约束问题的罚函数法:不等式约束问题可以通过引入罚函数来转化为无约束优化问题。
罚函数法通过将违反约束条件的点处添加罚项,将约束优化问题转化为无约束问题。
3. 逐次二次规划法:逐次二次规划法是一种常用的求解约束优化问题的方法。
该方法通过依次处理逐个约束来逼近最优解,每次处理都会得到一个更小的问题,直至满足所有约束条件。
4. 内点法:内点法是一种有效的求解约束优化问题的方法。
该方法通过向可行域内部逼近,在整个迭代过程中都保持在可行域内部,从而避免了外点法需要不断向可行域逼近的过程。
毕业论文题目非线性最优化计算方法与算法学院数学科学学院专业信息与计算科学班级计算1201学生陶红学号20120921104指导教师邢顺来二〇一六年五月二十五日摘要非线性规划问题是一般形式的非线性最优化问题。
本文针对非线性规划的最优化问题进行方法和算法分析。
传统的求解非线性规划的方法有最速下降法、牛顿法、可行方向法、函数逼近法、信赖域法,近来研究发现了更多的求解非线性规划问题的方法如遗传算法、粒子群算法。
本文对非线性规划分别从约束规划和无约束规划两个方面进行理论分析。
利用最速下降法和牛顿法两种典型算法求解无约束条件非线性规划问题,通过MATLAB程序求解最优值,探讨其收敛性和稳定性。
另外给出了阻尼牛顿法,探讨其算法的收敛性和稳定性,求解无约束非线性规划比牛顿法的精确度更高,收敛速度更快。
惩罚函数是经典的求解约束非线性的方法,本文采用以惩罚函数法为核心的遗传算法求解有约束条件非线性规划问题,通过MATLAB程序求解最优值,探讨其收敛性和稳定性。
并改进遗传算法,给出适应度函数,通过变换适应度函数,提高算法的收敛性和稳定性。
关键词:非线性规划;最速下降法;牛顿法;遗传算法ABSTRACTNonlinear programming problem is the general form of the nonlinear optimization problem. In this paper, we carry on the analysis of the method and algorithm aiming at the optimization problem of nonlinear programming. The traditional methods of solving nonlinear programming problems include steepest descent method, Newton method, the feasible direction method, function approximation method and trust region method. Recent studies found more method of solving nonlinear programming problems, such as genetic algorithm, particle swarm optimization (pso) algorithm. In this paper, the nonlinear programming is analyzed from two aspects: the constraint programming and the unconstrained programming.We solve unconstrained condition nonlinear programming problem by steepest descent method and Newton's method, and get the optimal value through MATLAB. Then the convergence and stability are discussed. Besides, the damped Newton method is furnished. By discussing the convergence and stability of the algorithm, the damped Newton method has higher accuracy and faster convergent speed than Newton's method in solving unconstrained nonlinear programming problems.Punishment function is a classical method for solving constrained nonlinear. This paper solves nonlinear programming problem with constraints by using genetic algorithm method, the core of which is SUMT. Get the optimal value through MATLAB, then the convergence and stability are discussed. Improve genetic algorithm, give the fitness function, and improve the convergence and stability of the algorithm through transforming the fitness function.Key words:Nonlinear Programming; Pteepest Descent Method; Newton Method; GeneticAlgorithm目录摘要 (I)ABSTRACT .......................................................................................................................... I I 1 前言 .. (4)1.1 引言 (4)1.2 非线性规划的发展背景 (5)1.3 国内外研究现状 (5)1.4 研究主要内容及研究方案 (6)1.4.1 研究的主要内容 (6)1.4.2 研究方案 (6)1.5 研究难点 (7)2 预备知识 (8)2.1 向量和矩阵范数 (8)2.1.1 常见的向量范数 (8)2.1.2 谱范数 (9)2.2符号和定义 (9)2.3 数值误差 (10)2.4 算法的稳定性 (10)2.5 收敛性 (12)3 非线性规划模型 (13)3.1 非线性规划模型 (13)3.2 无约束非线性规划 (14)3.2.1 最速下降法 (16)3.2.2 牛顿法 (18)3.2.2 阻尼牛顿法 (18)3.3 约束非线性规划 (20)3.3.1 惩罚函数法 (21)3.3.2 遗传算法 (21)3.3.3 自适应遗传算法 (22)结论 (26)参考文献 (27)致谢 (28)附录 (29)1 前言1.1 引言我们知道最优化是一门很古老的求极值问题,最优化在求解线性规划,非线性规划,随机规划,多目标规划,非光滑规划,整数规划,几何规划等方面研究得到迅速发展。
非线性规划问题的数学算法设计与优化引言:非线性规划是数学优化领域中的一个重要分支,它研究的是在约束条件下寻找目标函数的最优解。
与线性规划相比,非线性规划问题更加复杂,因为它涉及到非线性函数的优化。
为了解决这类问题,数学家们提出了许多有效的算法,并不断进行改进和优化。
本文将介绍几种常见的非线性规划算法,并探讨它们的优化方法。
一、梯度下降法梯度下降法是一种常用的非线性规划算法,它通过迭代的方式逐步优化目标函数。
该算法的基本思想是沿着目标函数的负梯度方向进行搜索,直到找到最优解为止。
梯度下降法的优化过程可以分为两个步骤:计算目标函数的梯度和更新参数。
在计算梯度时,可以使用数值方法或者解析方法,具体选择取决于问题的复杂程度和计算效率的要求。
在更新参数时,可以采用固定步长或者自适应步长的方式,以控制搜索的速度和精度。
二、牛顿法牛顿法是一种经典的非线性规划算法,它利用目标函数的二阶导数信息进行搜索。
该算法的核心思想是通过构造二次逼近模型来近似目标函数,并求解该模型的最优解。
牛顿法的优化过程可以分为三个步骤:计算目标函数的一阶导数、二阶导数和更新参数。
在计算导数时,可以使用数值方法或者解析方法,具体选择取决于问题的复杂程度和计算效率的要求。
在更新参数时,可以采用精确求解或者近似求解的方式,以控制搜索的速度和精度。
三、拟牛顿法拟牛顿法是一种改进的非线性规划算法,它通过构造目标函数的拟牛顿方程来近似目标函数的二阶导数。
该算法的基本思想是利用历史搜索信息来更新参数,并通过迭代的方式逐步优化目标函数。
拟牛顿法的优化过程可以分为四个步骤:计算目标函数的一阶导数、构造拟牛顿方程、求解拟牛顿方程和更新参数。
在构造拟牛顿方程时,可以使用不同的方法,例如DFP方法、BFGS方法等,以逼近目标函数的二阶导数。
在求解拟牛顿方程时,可以采用精确求解或者近似求解的方式,以控制搜索的速度和精度。
四、全局优化方法除了上述的局部优化方法,全局优化方法也是解决非线性规划问题的一种重要途径。
数值模拟导论-第十讲
改进的牛顿法
雅克比·怀特
感谢Deepak Ramaswamy, Jaime Peraire, MichalRewienski, and Karen Veroy
概要
阻尼牛顿定律
—若雅可比矩阵是非奇异矩阵,则全局收敛—奇异雅可比矩阵收敛非常困难
介绍连续定律
—源/载荷步问题
极限牛顿法阻尼牛顿法
奇异雅可比矩阵问题
阻尼牛顿法“推动”迭代趋向局部极小值
找出雅可比矩阵的奇异点
连续定律基本概念
加载源或载荷步在给出恰当初始值的情况下牛顿法收敛—产生一系列问题
—确保前一问题为后一问题提供初始值
导热棒实例
.初始无热源,T=0 较接近初始值
.缓慢增热,T=0 较接近初始值
连续定律
基本概念常用设置
求解其中()(),0F
x λλ= 易于求解开始时连续()()0,00F
x = 终止时连续()()1,1()F
x F x = 充分光滑
难以确保!
()x λ
连续定律雅克比迭代定律为每一载荷步估计初始载荷值
连续定律雅克比迭代定律
迭代仍存在问题
小结
阻尼牛顿定律
—若雅可比矩阵非奇异则全局收敛
—奇异雅可比矩阵收敛困难
介绍连续定律
—载荷源/载荷步问题。
非线性优化问题的理论与算法一、引言优化问题是数学中的一个重要研究领域,其目标是找到使某个目标函数取得最优值的变量取值。
在实际应用中,很多问题都可以被抽象为优化问题,例如机器学习、经济学、工程设计等领域。
非线性优化问题是其中一类具有广泛应用的问题,本文将介绍非线性优化问题的理论与算法。
二、非线性优化问题的定义非线性优化问题是指目标函数或约束条件中至少存在一个非线性项的优化问题。
与线性优化问题相比,非线性优化问题更加复杂,因为非线性函数的性质往往难以直接求解。
因此,研究非线性优化问题的理论与算法具有重要意义。
三、非线性优化问题的数学建模在解决非线性优化问题之前,首先需要将实际问题转化为数学模型。
通常,非线性优化问题可以通过以下方式进行数学建模:1. 目标函数的建模:将实际问题中的目标转化为一个数学函数,该函数的取值与问题的最优解相关。
2. 约束条件的建模:将实际问题中的约束条件转化为一组等式或不等式约束,以限制变量的取值范围。
3. 变量的定义:将实际问题中的变量进行定义,并确定其取值范围。
通过以上步骤,可以将实际问题转化为一个数学模型,从而为后续的优化算法提供基础。
四、非线性优化问题的求解方法针对非线性优化问题,有多种求解方法可供选择。
以下介绍两种常用的非线性优化算法:1. 梯度下降法:梯度下降法是一种基于迭代的优化算法,其思想是通过迭代地沿着目标函数的负梯度方向进行搜索,以逐步逼近最优解。
梯度下降法的优点是简单易实现,但在处理复杂的非线性问题时,可能会陷入局部最优解。
2. 牛顿法:牛顿法是一种基于二阶导数信息的优化算法,其思想是通过多次迭代来逼近最优解。
相比于梯度下降法,牛顿法具有更快的收敛速度,但也存在计算复杂度高和可能陷入局部最优解的问题。
除了以上两种算法,还有其他一些常用的非线性优化算法,例如拟牛顿法、共轭梯度法等。
选择合适的优化算法需要根据具体问题的特点和求解需求进行权衡。
五、非线性优化问题的理论研究除了算法的研究,非线性优化问题的理论研究也具有重要意义。
非线性优化问题的高效求解方法研究非线性优化问题是在约束条件下寻求最大或最小化目标函数的问题。
与线性优化问题相比,非线性优化问题的解决方案更加复杂和困难。
为了有效地解决这些问题,研究人员一直在探索各种高效的求解方法。
一种常用的非线性优化求解方法是基于梯度的方法。
这些方法利用目标函数的梯度信息来逐步更新解,并在每次迭代中取得更好的解。
其中,最常见的方法是梯度下降法和牛顿法。
梯度下降法是一种迭代优化算法,通过沿着目标函数梯度的反方向移动来最小化目标函数。
它的核心思想是通过不断调整解的参数来寻找函数的最小值。
梯度下降法具有简单易懂的原理和实现方式,但在处理大规模问题时,它可能会陷入局部最小值,导致得到的解并不是全局最优解。
牛顿法是一种基于二阶导数信息的迭代优化算法。
它通过利用目标函数的海森矩阵来更新解的参数,从而更快地收敛到最优解。
牛顿法在解决非线性优化问题时往往具有更快的收敛速度和更好的解的质量。
然而,牛顿法的计算复杂度较高,尤其是当待优化的问题维度非常大时,计算海森矩阵的存储和计算量都会很大。
除了基于梯度的方法,还有一些其他的高效求解方法被应用于非线性优化问题的研究中。
其中,一种值得关注的方法是遗传算法。
遗传算法是一种通过模拟生物进化过程来搜索最优解的方法,它通过不断地迭代和交叉变异,利用进化中的“适者生存”原则来逐步找到最优解。
遗传算法具有较好的全局搜索能力和对多峰函数的适应性,但在处理大规模问题时,其计算代价较高。
此外,还有一些先进的优化方法,如粒子群优化算法(PSO)、模拟退火算法、人工蜂群算法等,也被应用于非线性优化问题的求解中。
这些方法通过模拟自然界的某种行为或者优化过程,对解空间进行搜索,以找到最优解。
这些算法各有优缺点,适用于不同类型的非线性优化问题。
对于复杂的非线性优化问题,通常也可以采用多策略混合求解方法。
这种方法将多种求解方法结合起来,充分发挥每种方法的优势,以更好地找到最优解。