非线性最优化
- 格式:ppt
- 大小:2.90 MB
- 文档页数:147
数学中的非线性优化与全局最优化非线性优化和全局最优化是数学中重要的分支之一,它们在各个领域都有着广泛的应用。
本文将介绍非线性优化和全局最优化的基本概念、常见方法以及其在实际问题中的应用。
一、非线性优化的基本概念非线性优化是指在目标函数和约束条件均为非线性的情况下,寻找使目标函数达到最优值或最小值的一组变量取值。
与线性优化相比,非线性优化更加复杂,因为非线性函数具有更多的特征和性质。
例如,非线性函数可能存在多个局部最优解,而不一定存在全局最优解。
在非线性优化中,目标函数的最优解可以是最小值或最大值。
常见的非线性优化问题包括函数极值、最优化参数估计以及控制问题等。
为了求解这些问题,人们采用了各种非线性优化算法。
二、非线性优化的常见方法1. 梯度下降法梯度下降法是一种常用的非线性优化方法,它基于目标函数在某一点的梯度信息来确定下一步的搜索方向。
通过迭代更新变量的取值,梯度下降法逐渐接近最优解。
然而,梯度下降法容易陷入局部最优解,并且当目标函数存在平坦区域时,可能收敛速度较慢。
2. 牛顿法牛顿法是一种迭代的非线性优化方法,它通过利用目标函数的Hessian矩阵来近似最优解。
牛顿法具有更快的收敛速度,但要求目标函数具有二阶连续导数,且Hessian矩阵需满足正定条件。
3. 共轭梯度法共轭梯度法是一种基于梯度信息的迭代方法,它通过寻找一组共轭的搜索方向来加快收敛速度。
共轭梯度法通常应用于解线性方程组的求解,扩展到非线性优化时,需要结合其他方法进行求解。
4. 遗传算法遗传算法是一种模仿自然进化过程的优化算法,通过模拟种群的进化、交叉和变异等操作来寻找最优解。
遗传算法具有较好的全局搜索能力,但在问题比较大、复杂时,计算开销较大。
三、全局最优化的意义与挑战全局最优化是在非凸问题中寻找最优解的方法,与传统的局部最优解相比,全局最优解更具有全局视野和更好的性能指标。
在实际问题中,很多目标函数具有多个局部最优解,只有找到全局最优解,才能更好地满足实际应用的需求。
线性和非线性最优化理论、方法、软件及应用最优化在航空航天、生命科学、水利科学、地球科学、工程技术等自然科学领域和经济金融等社会科学领域有着广泛和重要的应用, 它的研究和发展一直得到广泛的关注. 最优化的研究包含理论、方法和应用.最优化理论主要研究问题解的最优性条件、灵敏度分析、解的存在性和一般复杂性等.而最优化方法研究包括构造新算法、证明解的收敛性、算法的比较和复杂性等.最优化的应用研究则包括算法的实现、算法的程序、软件包及商业化、在实际问题的应用. 这里简介一下线性和非线性最优化理论、方法及应用研究的发展状况.1. 线性最优化线性最优化, 又称线性规划, 是运筹学中应用最广泛的一个分支.这是因为自然科学和社会科学中许多问题都可以近似地化成线性规划问题. 线性规划理论和算法的研究及发展共经历了三个高潮, 每个高潮都引起了社会的极大关注. 线性规划研究的第一高潮是著名的单纯形法的研究. 这一方法是Dantzig在1947年提出的,它以成熟的算法理论和完善的算法及软件统治线性规划达三十多年. 随着60年代发展起来的计算复杂性理论的研究, 单纯形法在七十年代末受到了挑战. 1979年前苏联数学家Khachiyan提出了第一个理论上优于单纯形法的所谓多项式时间算法--椭球法, 曾成为轰动一时的新闻, 并掀起了研究线性规划的第二个高潮. 但遗憾的是广泛的数值试验表明, 椭球算法的计算比单纯形方法差.1984年Karmarkar提出了求解线性规划的另一个多项式时间算法. 这个算法从理论和数值上都优于椭球法,因而引起学术界的极大关注, 并由此掀起了研究线性规划的第三个高潮. 从那以后, 许多学者致力于改进和完善这一算法,得到了许多改进算法.这些算法运用不同的思想方法均获得通过可行区域内部的迭代点列,因此统称为解线性规划问题的内点算法. 目前内点算法正以不可抗拒的趋势将超越和替代单纯形法.线性规划的软件, 特别是由单纯形法所形成的软件比较成熟和完善.这些软件不仅可以解一般线性规划问题, 而且可以解整数线性规划问题、进行灵敏度分析, 同时可以解具有稀疏结构的大规模问题.CPLEX是Bi xby基于单纯形法研制的解线性和整数规划的软件, CPLEX的网址是/. 此外,这个软件也可以用来解凸二次规划问题, 且特别适合解大规模问题. PROC LP是SAS软件公司研制的SAS商业软件中OR模块的一个程序.这个程序是根据两阶段单纯形法研制的,可以用来解线性和整数规划问题并可进行灵敏度分析, 是一个比较完善的程序.用户可以根据需要选择不同的参数来满足不同的要求。
非线性最优化及其应用在数学中,最优化是一种求解最大值或最小值的方法。
而非线性最优化则是指在目标函数或约束条件中存在非线性部分的最优化问题,它在很多实际应用中发挥了重要作用。
作为一个基础的优化问题,线性规划一直是最优化领域的重点研究对象。
但是,对于许多情况而言,现实世界中的问题并不是线性的,例如在工程、经济和物理学等领域,很多问题都具有非线性特征。
因此,非线性最优化问题逐渐成为现代优化领域的主要研究领域。
非线性规划可以被看作是求解如下形式的问题:$$\min_{x\in\mathbb{R}^n} f(x), \quad\text {subject to}\quadh_i(x)=0,\quad i\in \mathcal{E},$$和$$g_i(x)\le 0,\quad i\in \mathcal{I},$$其中$f$,$h_i$和 $g_i$均是非线性函数,$\mathcal{E}$和$\mathcal{I}$分别表示等式和不等式约束条件的索引集。
非线性规划是一个相当复杂的问题,因为函数 $f$ 可以是任意复杂的非线性结构,而且约束条件可能非常复杂,可能存在多个局部极小值,需要进行全局最优化求解。
由于不能对所有非线性规划问题得到普遍可行、有效的算法,因此解决特定问题需要根据数据的特征和指定的模型选择合适的方法。
一般来说,非线性最优化问题的解决方法分为两大类:一类是基于局部方法的,另一类是基于全局方法的。
基于局部方法的算法主要基于牛顿/拟牛顿方法,信赖域算法,共轭梯度方法等等,这些方法对于小型问题是相当有效的。
在一些特定情况下,它们能够在现实时间内得到最优解。
但是,在复杂大型问题中,这些方法通常会被卡住在一个局部最小值处,而无法得到全局最优解。
基于全局方法的算法通常使用一些元启发式搜索技术,如遗传算法,模拟退火算法等等。
这些算法可以探索大部分搜索空间,从而获得全局最优解。
但是,相比于基于局部方法的高效性和准确性,全局算法要慢得多,而且结果可能不太精确。
大规模非线性最优化问题求解算法研究随着人工智能、大数据等计算机技术的日益发展,非线性最优化问题在实际生活中的应用越来越广泛。
而大规模非线性最优化问题求解算法是非线性最优化问题中的一个重要分支,研究其求解方法具有重要的意义。
一、大规模非线性最优化问题的定义和特征大规模非线性最优化问题是指在凸或非凸、连续或非连续、有限或无限维空间上,求解具有目标函数和约束条件的非线性优化问题。
这种问题在实际生活中广泛存在,比如经济学、金融学、管理学、工程技术、物理学等领域。
在求解过程中,大规模非线性最优化问题具有以下特征:首先,问题的目标函数和约束条件是非线性的,因此不能简单地应用线性规划或整数规划等方法来求解。
其次,随着问题规模的增加,求解过程的困难程度也随之增加。
与小型问题不同,大型问题的求解需要考虑计算速度和存储空间等问题,求解效率是衡量算法性能的重要指标。
最后,求解过程中需要考虑问题的全局最优解和局部最优解,即需要找到最优解的同时避免陷入局部最优解。
二、大规模非线性最优化问题求解算法的分类和研究进展大规模非线性最优化问题求解算法的主要分类包括:1. 传统的数学规划方法,包括线性规划、二次规划、非线性规划等,这些方法虽然已经有相当成熟的理论基础,但在求解大规模问题时容易受到维数灾难以及数值精度下降等问题的限制。
2. 优化算法和元启发式算法,包括梯度法、共轭梯度法、牛顿法、遗传算法、粒子群算法、蚁群算法等。
相对于传统方法,这些算法的优势在于可以在保证一定解质量的同时快速求解大规模问题。
当前,大规模非线性最优化问题求解算法的研究重点包括以下两个方面。
首先,针对大规模非线性最优化问题的求解效率问题,研究者们提出了一系列高效的求解算法,比如成簇区域法、粒子群算法、差分进化算法、人工蜂群算法等。
这些算法的主要特征在于基于不同的搜索策略和优化思想,利用自适应策略和启发式规则来提高求解效率,同时避免局部最优解。
其次,目前研究者们正在尝试把大规模非线性最优化问题求解算法与深度学习方法相结合,来解决在高维空间中进行优化问题求解的难点。
几类非线性优化的最优性和对偶性研究非线性优化是一种应用广泛的数学方法,用于解决实际问题中的最优化问题。
在非线性优化中,最优性和对偶性是两个重要的研究方向。
本文将讨论几个主要的非线性优化问题,包括最优性和对偶性的研究。
最优性是指给定一个非线性优化问题,找到一个解使得目标函数达到最小(或最大)值。
最优性的研究涉及理论推导和数值计算两个方面。
理论推导通常涉及建立约束条件和目标函数的数学模型,并加入一些假设条件,以证明最优解的存在性和唯一性。
数值计算则是利用各种数值算法和计算工具,对给定的非线性优化问题进行求解。
对偶性是非线性优化中的另一个重要研究方向。
对偶性研究涉及到建立原始问题和对偶问题的关系,并利用对偶问题来推导和求解原始问题。
对偶问题通常是通过将原始问题进行变换得到的,并具有一些特定的性质。
通过研究原始问题和对偶问题之间的关系,可以得到原始问题的最优解的一些重要性质。
对偶性研究的另一个重要应用是用于验证和评估给定算法的收敛性和有效性。
非线性规划是非线性优化中最常见的问题之一,其涉及到寻找一个优化变量的向量,使得目标函数达到最小(或最大)值,同时满足一组约束条件。
非线性规划的最优性和对偶性研究是非常活跃的领域。
最优性的研究通常涉及到建立非线性规划问题的数学模型,并利用一些数学理论和方法来证明最优解的存在性和算法的收敛性。
对偶性的研究通常涉及到建立原始问题和对偶问题之间的关系,并利用对偶问题来推导和求解原始问题。
近年来,非线性规划的最优性和对偶性研究已经在大规模优化和不可行分析等方面取得了一些重要进展。
非凸优化是另一个重要的非线性优化问题。
非凸优化的最优性和对偶性研究是相对复杂的,需要利用一些高级的数学理论和方法。
最优性的研究通常涉及到建立非凸优化问题的凸化模型,并利用一些凸优化理论和方法来证明最优解的存在性和算法的收敛性。
对偶性的研究通常涉及到建立原始问题和对偶问题之间的关系,并利用对偶问题来推导和求解原始问题。
毕业论文题目非线性最优化计算方法与算法学院数学科学学院专业信息与计算科学班级计算1201学生陶红学号20120921104指导教师邢顺来二〇一六年五月二十五日摘要非线性规划问题是一般形式的非线性最优化问题。
本文针对非线性规划的最优化问题进行方法和算法分析。
传统的求解非线性规划的方法有最速下降法、牛顿法、可行方向法、函数逼近法、信赖域法,近来研究发现了更多的求解非线性规划问题的方法如遗传算法、粒子群算法。
本文对非线性规划分别从约束规划和无约束规划两个方面进行理论分析。
利用最速下降法和牛顿法两种典型算法求解无约束条件非线性规划问题,通过MATLAB程序求解最优值,探讨其收敛性和稳定性。
另外给出了阻尼牛顿法,探讨其算法的收敛性和稳定性,求解无约束非线性规划比牛顿法的精确度更高,收敛速度更快。
惩罚函数是经典的求解约束非线性的方法,本文采用以惩罚函数法为核心的遗传算法求解有约束条件非线性规划问题,通过MATLAB程序求解最优值,探讨其收敛性和稳定性。
并改进遗传算法,给出适应度函数,通过变换适应度函数,提高算法的收敛性和稳定性。
关键词:非线性规划;最速下降法;牛顿法;遗传算法ABSTRACTNonlinear programming problem is the general form of the nonlinear optimization problem. In this paper, we carry on the analysis of the method and algorithm aiming at the optimization problem of nonlinear programming. The traditional methods of solving nonlinear programming problems include steepest descent method, Newton method, the feasible direction method, function approximation method and trust region method. Recent studies found more method of solving nonlinear programming problems, such as genetic algorithm, particle swarm optimization (pso) algorithm. In this paper, the nonlinear programming is analyzed from two aspects: the constraint programming and the unconstrained programming.We solve unconstrained condition nonlinear programming problem by steepest descent method and Newton's method, and get the optimal value through MATLAB. Then the convergence and stability are discussed. Besides, the damped Newton method is furnished. By discussing the convergence and stability of the algorithm, the damped Newton method has higher accuracy and faster convergent speed than Newton's method in solving unconstrained nonlinear programming problems.Punishment function is a classical method for solving constrained nonlinear. This paper solves nonlinear programming problem with constraints by using genetic algorithm method, the core of which is SUMT. Get the optimal value through MATLAB, then the convergence and stability are discussed. Improve genetic algorithm, give the fitness function, and improve the convergence and stability of the algorithm through transforming the fitness function.Key words:Nonlinear Programming; Pteepest Descent Method; Newton Method; GeneticAlgorithm目录摘要 (I)ABSTRACT .......................................................................................................................... I I 1 前言 .. (4)1.1 引言 (4)1.2 非线性规划的发展背景 (5)1.3 国内外研究现状 (5)1.4 研究主要内容及研究方案 (6)1.4.1 研究的主要内容 (6)1.4.2 研究方案 (6)1.5 研究难点 (7)2 预备知识 (8)2.1 向量和矩阵范数 (8)2.1.1 常见的向量范数 (8)2.1.2 谱范数 (9)2.2符号和定义 (9)2.3 数值误差 (10)2.4 算法的稳定性 (10)2.5 收敛性 (12)3 非线性规划模型 (13)3.1 非线性规划模型 (13)3.2 无约束非线性规划 (14)3.2.1 最速下降法 (16)3.2.2 牛顿法 (18)3.2.2 阻尼牛顿法 (18)3.3 约束非线性规划 (20)3.3.1 惩罚函数法 (21)3.3.2 遗传算法 (21)3.3.3 自适应遗传算法 (22)结论 (26)参考文献 (27)致谢 (28)附录 (29)1 前言1.1 引言我们知道最优化是一门很古老的求极值问题,最优化在求解线性规划,非线性规划,随机规划,多目标规划,非光滑规划,整数规划,几何规划等方面研究得到迅速发展。
大学数学非线性优化与最优化理论数学是一门广泛应用于各个领域的学科,其中非线性优化与最优化理论被广泛运用于解决实际问题。
本文将介绍大学数学中的非线性优化与最优化理论,深入探讨其基本原理和应用。
一、非线性优化与最优化理论的基本概念和原理1.1 非线性优化的概念非线性优化是指在约束条件下,求解非线性函数的最优解。
与线性优化相比,非线性优化问题更加困难,因为非线性函数的特性使得求解过程更加复杂。
1.2 最优化理论的基本原理最优化理论是指通过建立适当的数学模型,寻求使特定目标函数取得极大或极小值的方法。
最优化理论可以包括线性优化、非线性优化、凸优化等不同的分支。
1.3 非线性优化与最优化理论的区别与联系非线性优化是最优化理论中的一个重要分支,它研究的是求解非线性函数的最优解问题。
非线性优化与最优化理论之间存在紧密的联系,但非线性优化更加具体,更加专注于非线性函数的求解方法和优化算法。
二、非线性优化与最优化理论的应用领域2.1 金融领域非线性优化与最优化理论在金融领域广泛应用于投资组合优化、风险管理、资产定价等问题。
通过建立适当的数学模型,可以帮助金融机构以及个人投资者在获得最大利润的同时降低风险。
2.2 物流与供应链管理在物流与供应链管理中,非线性优化与最优化理论可以应用于路线优化、资源分配、库存管理等问题。
通过求解非线性函数的最优解,可以提高物流效率、降低成本。
2.3 工程领域非线性优化与最优化理论在工程领域中有广泛的应用,如结构优化、参数估计、信号处理等。
通过对非线性函数进行求解,可以优化工程设计方案、提高系统性能。
2.4 人工智能当前人工智能领域中,非线性优化与最优化理论也发挥着重要作用。
在机器学习、深度学习等算法中,通过优化模型参数,使得模型在给定任务上取得最佳性能。
三、非线性优化与最优化理论的解法与算法3.1 基于梯度的方法梯度是许多非线性优化算法中的重要工具,通过计算目标函数的梯度信息,可以确定当前点的搜索方向和步长。
非线性最优化理论与方法答案
1。
非线性规划极值问题的特点:(1)非线性规划的极值有可能在边界上取得,也可能在可行域的任一点处取得。
即极值问题可能在可行域内。
(2)目标函数如果是凸函数,定义域为凸规划时,它们的任一点局部极值点极为全局极值点。
(3)非线性凸规划问题的极值点存在的充要条件是库恩塔克条件(凸函数极值点处的梯度向量为零)。
2.凸规划的定义:(1)目标函数为凸函数(2)约束条件图形特征表现为凹函数。
凸规划的可行域为凸集,任意一极小点都为全局极小点,且极小点的合集为一凸集。
证明:任意一一个极小点都为全局极小点。
假设X为凸规划问题的一个局部极小点,
则对于X'的一个充分小的邻域N;(X')内任一点X(Xe Ni(X)都有f(X)>f(X)。
设Y是凸规划可行域上的一个局部极小点,入为任意小的正数,
那么:λX+(1-λ)YeN;(X),则根据上面的叙述有:f(λ
X+(1-λ)Y)≥f(X)。
又f(X)为凸函数,根据凸函数的性质有f(λX+(1-λ)Y)≤λf(X)+(1一λ)f(Y)..f(Y)≥f(X),即任意一个极小值点为全局极小点
证明:凸规划极小值点的合集是一一个凸集。
非线性优化算法研究及其应用一、引言非线性优化是一类重要的数学问题,应用广泛于科学、工程、经济等领域。
目前,该领域已经发展出多种非线性优化算法,本文将介绍其中常用的几种算法及其应用。
二、常见非线性优化算法1. 梯度法梯度法也称作最速下降法,是求解无约束问题的常用方法。
该算法的基本思想是:从某一初始点出发,在每一步中沿着当前位置的求导方向下降最快的方向走向下一个点,直到达到最优解。
梯度法的优点是简单易用,但由于其收敛速度较慢,在复杂问题中应用受到限制。
2. 共轭梯度法共轭梯度法是用于求解对称正定问题的一种方法。
在每一步中,该算法找到和前一步方向不同的下降方向,从而加快了收敛速度。
如果函数能够准确地表示为二次函数,则共轭梯度法能够在有限步数内找到最优解。
3. 牛顿法牛顿法是使用二阶导数信息来求解无约束问题的一种加速方法。
该算法在每一步中使用当前位置的一阶导数和二阶导数信息来进行迭代。
由于牛顿法需要计算二阶导数,因此它可能会受到数值不稳定性的影响。
此外,在复杂问题中它的收敛速度也较慢。
4. 拟牛顿法拟牛顿法是一种非常流行的无约束问题求解方法。
与牛顿法不同的是,拟牛顿法使用一阶导数信息来逼近二阶导数信息。
通常情况下,它会使用BFGS或DFP方法进行逼近。
拟牛顿法的优点是在需要求解大型问题时,它能够处理复杂的变量空间,且比梯度法更快。
三、应用案例1.工程中的优化问题在工程中,优化问题常常用于设计产品、制造工艺和材料的选择等领域。
利用非线性优化算法,工程师可以对设计和生产流程进行优化,提高产品的质量和降低成本。
例如,一家航空公司可能会使用拟牛顿法来优化旅客飞行过程中的飞机燃油消耗问题。
借助该算法,他们可以计算出最佳飞行路线以及在飞机使用的燃料和航速之间进行最优权衡。
2.金融中的优化问题金融中的优化问题也非常关键。
例如,一家投资组合管理公司可能需要在市场上进行投资,并考虑一些限制因素。
非线性优化算法可以帮助他们优化投资策略,达到最佳风险/收益比。
非线性最优化理论和凸分析是数学领域中重要的两个分支,它们在优化问题和凸集合方面发挥着关键作用。
以下简要介绍它们的基本概念:
1. 非线性最优化理论:
-非线性最优化理论研究的是在目标函数或约束条件为非线性情况下的最优化问题。
-最优化问题可以形式化为找到使目标函数取得最大值或最小值的变量取值。
-非线性最优化问题通常包括局部最优解和全局最优解的寻找。
2. 凸分析:
-凸分析是研究凸集合和凸函数性质的数学分支。
-凸集合是对于任意两点的连线上的所有点都在该集合内的集合,而凸函数则满足在定义域内的任意两点间的函数值都在这两点连线上。
-凸集合和凸函数有许多重要性质,如局部最小值即为全局最小值等。
在实际应用中,非线性最优化理论和凸分析经常结合使用,尤其在机器学习、数据分析、工程优化等领域。
通过凸分析的方法,可以更好地理解和解决非线性最优化问题,帮助优化算法更快地收敛到最优解,并且保证最优解的准确性和稳定性。