《几何原本》 第一卷《几何基础》
- 格式:doc
- 大小:37.50 KB
- 文档页数:2
国外数学名著系列一、欧几里得的《几何原本》二、卡尔·弗里德里希·高斯的《算术研究》《算术研究》是德国数学家卡尔·弗里德里希·高斯于1801年发表的一部关于数论的著作。
该书首次提出了同余理论,并系统研究了二次互反律、二次剩余等数论问题。
高斯在书中提出的许多理论和方法,对后来的数论研究产生了重要影响,奠定了现代数论的基础。
三、大卫·希尔伯特的《几何基础》《几何基础》是德国数学家大卫·希尔伯特于1899年出版的一部关于几何学的著作。
该书对欧几里得的《几何原本》进行了深刻的反思和改进,提出了几何学公理系统,并探讨了欧氏几何、非欧几何以及拓扑学等几何学分支的基本问题。
希尔伯特在书中提出的许多理论和方法,对20世纪数学的发展产生了重要影响。
四、约翰·冯·诺伊曼的《量子力学的数学基础》《量子力学的数学基础》是美国数学家约翰·冯·诺伊曼于1932年出版的一部关于量子力学的著作。
该书系统阐述了量子力学的数学原理,提出了希尔伯特空间、自伴算符等概念,并解决了量子力学中的许多基本问题。
冯·诺伊曼在书中提出的许多理论和方法,对量子力学的发展产生了重要影响,奠定了现代量子力学的基础。
五、安德烈·魏尔斯特拉斯的《函数论》《函数论》是德国数学家安德烈·魏尔斯特拉斯于19世纪中期发表的一系列关于函数论的论文。
这些论文系统研究了实数域上的连续函数、可微函数和解析函数,提出了魏尔斯特拉斯级数、魏尔斯特拉斯函数等概念。
魏尔斯特拉斯在书中提出的许多理论和方法,对现代分析学的发展产生了重要影响,奠定了实分析的基础。
本系列将陆续介绍更多国外数学名著,敬请期待。
希望这些著作能激发读者对数学的兴趣,为数学学科的发展贡献自己的力量。
六、勒内·笛卡尔的《几何学》《几何学》是法国哲学家、数学家勒内·笛卡尔于1637年发表的一部著作。
几何《原本》简介欧几里得(Euclid,希腊人,生于公元前300年前后),著名的数学家.欧几里得以数学经典名著几何《原本(Elements)》闻名于世.但他的生平后世所知并不多,从一些典籍中知道他是托勒密一世时代的人(公元前323—公元前285在位),他对柏拉图(Plato,公元前427—前347)的学说颇有研究,曾给托勒密讲授几何学.当托勒密问他说,除了几何原本之外,还有没有什么学习几何的快捷方式时,他说出了“几何无王者之道!”(“There is no royal road to geometry.”)的千古名言.几何原本前6卷讲几何,7至10卷是用几何方式来叙述数论,其余各卷也是几何,基本上一本几何书.它的内容和中国传统的算学书大异其趣,为了区别起见,所以应创新词来代表,由于“几何”二字既和geometric的字音相近,又反映了数量大小的意思,采用它可以音意兼顾.第1卷,首先给出23个定义.如“点是没有部分的”,“线只有长度而没有宽度”等,以及平面、直角、垂直、锐角、钝角、平行线等定义.接着是5个公设,前4个是显而易见的,第5个就很复杂:“一直线与两直线相交,所构成的同侧内角和若小于两直角,则这两直线延长后一定会在这两个同侧内角的那一侧相交”,这就是后来引起许多纠纷的“欧几里得平行公设”或简称第5公设.公设之后有5个公理,之后给出48个命题.第47命题就是著名的勾股定理:“直角三角形斜边上的正方形等于两股上正方形的和”.第2卷,包括14个命题,用几何的语言叙述代数的恒等式.第11命题是分线段为中末比,也就是后来所称的黄金分割;第12、13命题相当于余弦定理.第3卷,包含37个命题,讨论圆、弦、切线、圆周角、圆内接四边形及与圆有关的图形.第4卷,有16个命题,包括圆内接与外切三角形、正方形的研究,及圆内接正多边形(5边、10边、15边)的作图.第5卷,比例论,有25个命题.第6卷,把第5卷中已建立的理论用到平面图形上,共33个命题.第7、8、9卷,这三卷是数论,分别有39、27、36个命题,完全用几何的方法来叙述.第7卷,第1命题是欧几里得辗转相除法的出处.第9卷第20命题是数论中的欧几里得定理:“质数的个数有无限多.”第10卷,包含115个命题,分量占全书的四分之一,主要讨论无理量.第1命题“给定大小两个量,从大量中减去它的一大半,再从剩下的量中减去它的一大半,如此继续下去,可使所余的量小于所给的小量”相当重要,它是极限论的雏形,也是穷尽法的理论基础.第11卷,讨论空间的直线与平面的各种关系.第12卷,利用穷尽法证明“圆面积的比等于直径平方的比”.此外还证明了“球体积的比等于直径立方的比”、“锥体体积等于同底等高的柱体的三分之一”.第13卷,着重研究五个正多面体.。
《几何原本》利玛窦徐光启(合译)展开全文中国最早的译本是1607年意大利传教士利玛窦(Matteo Ricci,1552-1610)和徐光启根据德国人克拉维乌斯校订增补的拉丁文本《欧几里得原本》(15卷)合译的,定名为《几何原本》,几何的中文名称就是由此而得来的。
该译本第一次把欧几里德几何学及其严密的逻辑体系和推理方法引入中国,同时确定了许多我们如今耳熟能详的几何学名词,如点、直线、平面、相似、外似等。
他们只翻译了前6卷,后9卷由英国人伟烈亚力和中国科学家李善兰在1857年译出。
徐光启翻译中的重要贡献徐光启译《几何原本》徐光启和利玛窦《几何原本》中译本的一个伟大贡献在于确定了研究图形的这一学科中文名称为“几何”,并确定了几何学中一些基本术语的译名。
“几何”的原文是“geometria”,徐光启和利玛窦在翻译时,取“geo”的音为“几何”,而“几何”二字中文原意又有“衡量大小”的意思。
用“几何”译“geometria”,音义兼顾,确是神来之笔。
几何学中最基本的一些术语,如点、线、直线、平行线、角、三角形和四边形等中文译名,都是这个译本定下来的。
这些译名一直流传到今天,且东渡日本等国,影响深远。
前六卷的翻译工作《几何原本》传入中国,首先应归功于明末科学家徐光启。
徐光启(1562~1633),字子先,上海吴淞人。
他在加强国防、发展农业、兴修水利、修改历法等方面都有相当的贡献,对引进西方数学和历法更是不遗余力。
他认识意大利传教士利玛窦之后,决定一起翻译西方科学著作。
利玛窦主张先译天文历法书籍,以求得天子的赏识。
但徐光启坚持按逻辑顺序,先译《几何原本》。
对徐光启而言,《几何原本》有严整的逻辑体系,其叙述方式和中国传统的《九章算术》完全不同。
这种区别于中国传统数学的特点,徐光启有着比较清楚的认识。
他还充分认识到几何学的重要意义,他说“窃百年之后,必人人习之”。
他们于1606年完成前6卷的翻译,1607年在北京印刷发行。
再读《几何原本》第一卷(一)本阅读将第一册的48个命题平均分为三部分。
每部分有16个命题。
第一部分研究相等关系,包括三边相等的三角形、两个全等的三角形、等线段、两边相等的三角形、两个角相等的部分、相交成等邻角的直线等等。
第二部分研究不等关系和平行关系,≠ ,不等号是这样的,研究平行线时,也是这样的,用一条斜线交两线。
第三部分研究等面积变换。
先从第三部分开始讨论,然后第一部分,最后第二部分。
因为第三部分,相对容易理解。
这部分的目标:化任意多边形为等面积的正方形。
内容:从第三十三命题到第四十八命题。
因为这些命题,大部分是夹在平行线之间的平行四边形以及三角形,只要预先假定两平行线之间,距离处处相等。
距离由于欧氏几何独特的性质,如图,从S点向直线TV引垂线ST,这垂线必然也垂直于直线SU。
因此,可以定义平行线之间的距离。
这些距离,图中ST,UV,WZ,等,都相等。
有了这个假设,则大部分命题比较容易理解。
其实,这个命题也可以作为公设,代替传说中的第五公设。
这个命题与第五公设是等价的。
有了第五公设,就有了平行线的性质,这个假设也就不是假设,而是可以证明的定理。
但书中似乎没有出现“距离”这样的字样。
一直用线段度量线段,就是考虑线段与线段的比值。
这一点,同《九章算术》明显不同。
《九章》中,(刘徽)在计算圆周率的时候,就使用了各种长度单位;在《海岛算经》中,各种长度单位的转化更是繁复。
在单位中,实际上定义了一个固定的线段。
其他的与它成比例。
只有利用阿基米德公理才能完成测量。
用比例,就避免了单位的转化。
相同单位的两个量一比,单位就消失了。
更重要的原因是,继承了毕达哥拉斯学派的传统,一定要找到线段和线段之间的“最大公约数”,就是“可公度量”。
让线段之间可以产生比。
当时比的是除法,就是分数还不知道。
这与无理数不能精确地用比例表示有关。
无理数的危机怎么解决?我要看完那一章才知道。
因为现在倒着看这一章书,所以先假定有“距离”这概念。
《九章算术》与《几何原本》异同一、《九章算术》与《几何原本》的内容相似有以下几个方面:1、《九章算法》的第一章“方田”:主要讲述了平面几何图形面积的计算方法。
包括长方形、等腰三角形、直角梯形、等腰梯形、圆形、扇形、弓形、圆环这八种图形面积的计算方法;而《几何原本》第一卷:几何基础。
重点内容有三角形全等的条件,三角形边和角的大小关系,平行线理论,三角形和多角形等积(面积相等)的条件,第一卷最后两个命题是毕达哥拉斯定理的正逆定理;第二卷:几何与代数。
讲如何把三角形变成等积的正方形;其中12、13命题相当于余弦定理。
第三卷:本卷阐述圆,弦,切线,割线,圆心角,圆周角的一些定理。
第四卷:讨论圆内接和外切多边形的做法和性质;它们都是在平面上来研究几何图形的面积及性质。
2、《九章算术》第四章“少广”:已知面积,体积,反求其一边长和径长等;第五章“商功”:土石工程、体积计算;除给出了各种立体体积公式外,还有工程分配方法;而《几何原本》第十一卷、十二、十三卷:最后讲述立体几何的内容.它们研究都涉及立体几何的内容。
3、《九章算术》第二章“粟米”:谷物粮食的按比例折换;提出比例算法,称为今有术;衰分章提出比例分配法则,称为衰分术;第三章“衰分”:比例分配问题;而《几何原本》第五卷:讨论比例理论,多数是继承自欧多克斯的比例理论,被认为是“最重要的数学杰作之一”。
第六卷:讲相似多边形理论,并以此阐述了比例的性质。
第五、第七、第八、第九、第十卷:讲述比例和算术的理论。
它们都涉及到比例的算法。
4、《九章算术》第九章“勾股”:利用勾股定理求解的各种问题,提出了勾股数问题的通解公式:若a、b、c分别是勾股形的勾、股、弦,《几何原本》中的命题1.47,证明了是欧几里德最先发现的勾股定理。
在它们研究的范围内都用到勾股定理。
二、《九章算术》与《几何原本》的思维方面有很大的区别:1、《九章算术》是一部经几代人整理、删补和修订而成的古代数学经典著作,约成书于东汉初年〔公元前一世纪〕。
《几何原本》第一卷《几何基础》
23条定义
1、点是没有部分的
2、线只有长度而没有宽度
3、一线的两端是点
4、直线是它上面的点一样地平放着的线
5、面只有长度和宽度
6、面的边缘是线
7、平面是它上面的线一样地平放着的面
8、平面角是在一平面内但不在一条直线上的两条相交线相互的倾斜度.
9、当包含角的两条线都是直线时,这个角叫做直线角.
10、当一条直线和另一条直线交成邻角彼此相等时,这些角的每一个叫做直角,而且称这一条直线垂直于另一条直线。
11、大于直角的角叫钝角。
12、小于直角的角叫锐角
13、边界是物体的边缘
14、图形是一个边界或者几个边界所围成的
15、圆:由一条线包围着的平面图形,其内有一点与这条线上任何一个点所连成的线段都相等。
16、这个点(指定义15中提到的那个点)叫做圆心。
17、圆的直径是任意一条经过圆心的直线在两个方向被圆截得的线段,且把圆二等分。
18、半圆是直径与被它切割的圆弧所围成的图形,半圆的圆心与原圆心相同。
(暂无注释,可能是接着17的)
19、直线形是由线段围成的,三边形是由三条线段围成的,四边形是由四条线围成的,多边形是由四条以上线段围成的。
20、在三边形中,三条边相等的,叫做等边三角形;只有两条边相等的,叫做等腰三角形;各边不等的,叫做不等边三角形.
21、此外,在三边形中,有一角是直角的,叫做直角三角形;有一个角是钝角的,叫做钝角三角形;有三个角是锐角的,叫做锐角三角形。
22、在四边形中,四边相等且四个角是直角的,叫做正方形;角是直角,但四边不全相等的,叫做长方形;四边相等,但角不是直角的,叫做菱形;对角相等且对边相等,但边不全相等且角不是直角的,叫做斜方形;其余的四边形叫做不规则四边形.
23、平行直线是在同一个平面内向两端无限延长不能相交的直线.
五条公理
1、等于同量的量彼此相等;
2、等量加等量,其和相等;
3、等量减等量,其差相等;
4、彼此能重合的物体是全等的;
5、整体大于部分。
五条公设
1、过两点能作且只能作一直线;
2、线段(有限直线)可以无限地延长;
3、以任一点为圆心,任意长为半径,可作一圆;
4、凡是直角都相等;
5、同平面内一条直线和另外两条直线相交,若在直线同侧的两个内角之和小于180°,则这两条直线经无限延长后在这一侧一定相交。
(近代数学不区分公设,公理,统一称为公理)。