超高层综合体10大技术难点及攻克对策
- 格式:doc
- 大小:46.50 KB
- 文档页数:10
资深工程总必须知道的:超高层10大技术难点及解在40层(大约150米)左右,是超高层建筑设计的敏感高度(建筑物的超长尺度特性将引起建筑设计概念变化),这种变化促使建筑师必须提出有效设计对策,调整设计观念,应用适宜的建筑技术。
超高层楼宇就像一条竖立起来的街道,存在着安全、部交通、环境、能源消耗等多种难以妥善解决的问题,越是向高处发展,安全性、耐久性及适用舒适等问题就愈多,对结构、建筑、机电、暖通、电梯等专业的要求就越高。
难点1——结构系统由于超高层建筑结构的特殊性,建筑部的梁柱将会不可避免的存在,在结构设计中要考虑异形柱的使用,特别是在超高层住宅户型设计中,充分全面考虑梁柱的影响、规避及利用是设计的难点。
对于结构设计来讲,按照建筑使用功能的要求、建筑高度的不同以及拟建场地的抗震设防烈度以经济、合理、安全、可靠的设计原则,选择相应的结构体系,一般分为六大类:框架结构体系、剪力墙结构体系、框架-剪力墙结构体系、框-筒结构体系、筒中筒结构体系、束筒结构体系。
除上述结构体系得到广泛应用外,多筒体结构、带加强层的框架-筒体结构、连体结构、巨型结构、悬挑结构、错层结构等也逐渐在工程中采用。
进入90年代后,由于我国钢材产量的增加,钢结构、钢-混凝土混合结构逐渐采用。
如金茂大厦、地大厦都是钢-混凝土混合结构。
此外,型钢混凝土结构和钢管混凝土结构在高层建筑中也正在得到广泛应用。
高层建筑结构采用的混凝土强度等级不断提高,从C30逐步向C60及更高的等级发展。
预应力混凝土结构在高层建筑的梁、板结构中广泛应用。
钢材的强度等级也不断提高。
高层和超高层建筑在结构设计中除采用钢筋混凝土结构(代号RC)外,还采用型钢混凝土结构(代号SRC),钢管混凝土结构(代号CFS)和全钢结构(代号S或SS)。
建筑高度100m,柱网为8.4m,抗震设防烈度为6度,采用框架-剪力墙或框-筒结构体系较为经济合理,这种结构体系的剪力墙或筒体是很好的抗侧力构件,常常承担了大部分的风载和地震荷载产生的水平侧力,总体刚度大,侧移小,且满足玻璃幕墙的外装饰要求。
超高层建筑10大技术难点及解决方案铉龙城广场装饰装修工程施工承包合同发包人(甲方):湖北铉龙城置业有限公司承包人(乙方):二零一六年一月“铉龙城广场”装饰装修工程施工承包合同发包人(甲方):湖北铉龙城置业有限公司承包人(乙方):依照《中华人民共和国合同法》、《中华人民共和国招标投标法》及其它有关规定,遵循平等、自愿、公平、诚实信用的原则,甲乙双方就“铉龙城广场”装饰装修工程施工的发包与承包事项经协商一致,签订本合同。
1.工程概况1.1工程名称:“铉龙城广场”1.2工程地点:武汉市汉阳区国博大道与三里坡路交汇处1.3工程内容:一栋4-5层商业广场35000平方米;一栋43层酒店70000平方米;一栋52层公寓楼70000平方米;地下室二层59000平方米;1.4承包范围: 公共区域室内设计、装饰(墙体砌筑、墙面、地面、顶棚装饰)地面、顶棚、门窗等施工图纸所表明的范围。
1.5合同价款:合同价款暂定人民币贰亿元整,按实际施工图据实结算。
1.6承包方式:乙方包工、包料(装饰施工图纸内确定的所有内容)。
2.工程质量2.1本工程质量应达到国家、湖北省建设工程的质量检验标准、设计标准。
2.2室内环境约定标准:《民用建筑工程室内环境污染控制规范》(GB50325-2001)。
2.3施工质量验收标准:《建筑工程施工质量验收统一标准》(GB50300-2001)以及相配套的相关工程质量验收规范、标准。
3.工期:3.1总工期: 日(为日历工期,包括法定节假日)3.2开工日期:年月日。
3.3竣工日期:年月日。
3.4延期开工:乙方不能按期开工的,应提前2日以书面形式通知甲方,如甲方15日内未做出答复的,视为同意延期开工,具体开工日期将另行约定(通知)。
如甲方不同意延期开工的,则工期不顺延;如因甲方原因需延期开工的,应征得乙方同意,并相应顺延工期。
3.5暂停工期(停工):甲方要求乙方暂停施工的,应在48 小时内向乙方提出处理意见,乙方应妥善保护已完工工程。
超高层建筑10大技术难点及应对措施,含施工、结构、机电、消防等根据理论及经验分析,一般在40层(大约150米)左右,是超高层建筑设计的敏感高度(建筑物的超长尺度特性将引起建筑设计概念变化),这种变化促使建筑师必须提出有效设计对策,调整设计观念,应用适宜的建筑技术。
超高层楼宇就像一条竖立起来的街道,存在着安全、内部交通、环境、能源消耗等多种难以妥善解决的问题,越是向高处发展,安全性、耐久性及适用舒适等问题就愈多,对结构、建筑、机电、暖通、电梯等专业的要求就越高结构系统难点1由于超高层建筑结构的特殊性,建筑内部的梁柱将会不可避免的存在,在结构设计中要考虑异形柱的使用,特别是在超高层住宅户型设计中,充分全面考虑梁柱的影响、规避及利用是设计的难点。
对于结构设计来讲,按照建筑使用功能的要求、建筑高度的不同以及拟建场地的抗震设防烈度以经济、合理、安全、可靠的设计原则,选择相应的结构体系,一般分为六大类:框架结构体系、剪力墙结构体系、框架-剪力墙结构体系、框-筒结构体系、筒中筒结构体系、束筒结构体系。
90年代以来,除上述结构体系得到广泛应用外,多筒体结构、带加强层的框架-筒体结构、连体结构、巨型结构、悬挑结构、错层结构等也逐渐在工程中采用。
进入90年代后,由于我国钢材产量的增加,钢结构、钢-混凝土混合结构逐渐采用。
如金茂大厦、地王大厦都是钢-混凝土混合结构。
此外,型钢混凝土结构和钢管混凝土结构在高层建筑中也正在得到广泛应用。
高层建筑结构采用的混凝土强度等级不断提高,从C30逐步向C60及更高的等级发展。
预应力混凝土结构在高层建筑的梁、板结构中广泛应用。
钢材的强度等级也不断提高。
高层和超高层建筑在结构设计中除采用钢筋混凝土结构(代号RC)外,还采用型钢混凝土结构(代号SRC),钢管混凝土结构(代号CFS)和全钢结构(代号S或SS)。
建筑高度100m,柱网为8.4m,抗震设防烈度为6度,采用框架-剪力墙或框-筒结构体系较为经济合理,这种结构体系的剪力墙或筒体是很好的抗侧力构件,常常承担了大部分的风载和地震荷载产生的水平侧力,总体刚度大,侧移小,且满足玻璃幕墙的外装饰要求。
超高层建筑大技术难点及应对措施前言随着城市化进程的不断发展,高层建筑如雨后春笋般出现在城市的每个角落。
其中,超高层建筑对建筑师和工程师的技术要求尤为严苛,其技术难点也不断被人们所关注。
本文将从超高层建筑的大技术难点及应对措施进行探讨。
超高层建筑的大技术难点1. 抗震设计超高层建筑的高度对抗震设计提出了更高的要求。
在抗震设计中,建筑结构的稳定性是关键因素。
抗震设计涉及到建筑材料、结构形式、防震减灾措施等多个方面,需要工程师综合考虑。
2. 建筑材料选择建筑材料需要达到一定的强度,以确保建筑物有足够的抗震能力。
但是,材料的重量也要受到考虑。
过度使用重量过大的材料会增加建筑物的自重,导致承载能力下降,甚至影响建筑物的使用寿命。
3. 风荷载超高层建筑受到风荷载的影响更为显著。
建筑物的自身重量和高度会导致风荷载的变化,使得建筑物在强风下变得更加危险。
因此,超高层建筑需要对风荷载进行严谨的计算与处理。
4. 空气动力学由于超高层建筑处于高空,建筑物上端的气流速度和压力也会变化。
因此,设计人员需要考虑建筑物的空气动力学特性,使得超高层建筑的结构形态和表面细节能够减小空气阻力,提高建筑物的抗风能力。
5. 硬件设施运行超高层建筑的硬件设施数量庞大,运行管理难度较大。
其中,电气系统、自动化控制系统、给排水系统、通风设备、消防设备等硬件设施都需要进行严谨的设计和施工,以确保设施的正常运转。
应对措施1. 使用新兴技术超高层建筑对建筑师和工程师的技术要求极高,因此需要采用新兴技术来提高建筑物的抗震能力、减少自重、提高空气动力学性能等。
比如,采用新型材料,运用数字化技术、三维打印技术等。
2. 优化结构形式建筑的结构形式对建筑物的抗震能力有着至关重要的作用。
因此,建筑师需要在结构上进行优化。
例如,采用框架结构、剪力墙结构、支撑桁架结构等。
3. 强化监测超高层建筑在建筑过程中需要进行多方面的监测。
比如,在施工过程中对材料的原材料和成品进行严格的质量检测。
超高层施工重点及难点及解决措施范本一:超高层施工重点及难点及解决措施1. 前言本文旨在详细介绍超高层建筑施工中的重点和难点,并提供相应的解决措施。
超高层建筑施工具有复杂性和风险性,需要合理的规划和应对策略。
通过本文档,我们希望能够提供给相关人员一个参考,以便更好地应对超高层施工的挑战。
2. 施工前期准备及管理2.1 地基处理2.1.1 准确勘察地质情况,评估地基承载能力2.1.2 合理选择地基处理方式,如地下连续墙、地基加固等2.2 施工方案设计2.2.1 制定详细的施工方案,明确施工的顺序和方法2.2.2 考虑施工期间的安全性和效率,合理安排施工时间表2.3 环境保护2.3.1 采取合理的措施减少环境污染,如粉尘控制、废弃物处理等2.3.2 加强与当地和环保部门的沟通,确保施工符合相关环保法规要求3. 结构施工3.1 基础施工3.1.1 合理选择基础形式,如深基坑、支撑体系等3.1.2 严格控制基础施工的质量,确保基础的稳固性和承载能力3.2 钢结构施工3.2.1 采用先进的钢结构制作和安装技术,保证结构的安全性3.2.2 加强工人的培训和安全意识,减少人为操作错误造成的事故风险4. 幕墙施工4.1 材料选择4.1.1 选择符合当地法规要求的幕墙材料4.1.2 检查材料的质量和性能,确保其符合设计要求4.2 幕墙安装4.2.1 制定合理的安装方案,确保安装质量4.2.2 建立严格的安全管理制度,提高施工人员的安全意识5. 结束语本文档涉及附件:无本文所涉及的法律名词及注释:无范本二:超高层施工重点及难点及解决措施1. 引言本文档旨在全面介绍超高层建筑施工中的重点和难点,并提供有效的解决措施。
超高层建筑的施工存在着复杂性和风险性,需要合理的规划和应对策略。
我们希望通过本文档为相关人员提供参考,以应对超高层施工的挑战。
2. 建前工程准备及管理2.1 地基处理2.1.1 准确勘察地质情况,评估地基承载能力2.1.2 选择合适的地基处理方式,如地下连续墙、地基加固等2.2 施工方案设计2.2.1 制定详细的施工方案,明确施工的顺序和方法2.2.2 考虑施工期间的安全性和效率,合理安排施工时间表2.3 环境保护2.3.1 采取必要措施减少环境污染,如粉尘控制、废弃物处理等2.3.2 加强与当地和环保部门的沟通,确保施工符合相关环保法规要求3. 结构施工3.1 基础施工3.1.1 选择适宜的基础形式,如深基坑、支撑体系等3.1.2 严格控制基础施工质量,确保基础的稳固性和承载能力3.2 钢结构施工3.2.1 采用先进的钢结构制作和安装技术,确保结构的安全性3.2.2 提高员工培训和安全意识,减少人为操作错误造成的事故风险4. 幕墙施工4.1 材料选择4.1.1 选择符合当地法规要求的幕墙材料4.1.2 检验材料质量和性能,确保其符合设计要求4.2 幕墙安装4.2.1 制定合理的安装方案,确保安装质量4.2.2 建立严格的安全管理制度,提高施工人员的安全意识5. 结束语本文档涉及附件:无本文所涉及的法律名词及注释:无。
超高层建筑施工难点(一)引言概述:超高层建筑施工是当代建筑领域的一个重要议题,不仅涉及到工程技术的挑战,还涉及到人员安全和施工效率的问题。
本文将从五个方面阐述超高层建筑施工的难点。
一、基坑施工难点:1. 地下水位高:超高层建筑基坑施工通常会遇到地下水位高的问题,需要采取排水措施来降低地下水位。
2. 土壤力学特性:在超高层建筑的基坑施工过程中,土壤力学特性的复杂性会对施工产生一定影响,需要合理选择施工方法和土方处理方案。
3. 地下管线:在基坑施工过程中,地下管线布置错综复杂,需要进行仔细的管线勘测和合理的管线保护措施。
二、结构施工难点:1. 抗风设计:超高层建筑由于高度较大,面对风力荷载时会面临更大的挑战,需要进行精确的抗风设计和结构加固。
2. 材料运输:超高层建筑结构施工需要大量材料的运输,如混凝土、钢材等,需要合理选择运输方式和保证材料的安全性。
3. 施工设备:超高层建筑施工所需的施工设备一般较大且复杂,对施工空间、施工效率和安全性提出了更高要求。
三、安全施工难点:1. 安全防护:超高层建筑施工过程中需要考虑到高处作业、防坠落、电气安全等多个方面的安全防护,确保工人的人身安全。
2. 建筑外观保护:超高层建筑施工过程中需要采取有效措施保护建筑外观,避免外墙破坏、污染等问题。
四、施工效率难点:1. 进度控制:超高层建筑施工往往涉及到复杂的工序和工期计划,需要进行合理的进度控制和配合。
2. 作业协调:超高层建筑施工需要多个工种之间的协同作业,对工人的技术水平和沟通协调能力提出更高要求。
五、环境保护难点:1. 垃圾处理:超高层建筑施工产生大量垃圾,需要制定垃圾分类和处理方案,确保环境的卫生和安全。
2. 噪音控制:超高层建筑施工现场噪音较大,需要采取措施减少噪音对周边居民的影响。
总结:超高层建筑施工难点主要涉及到基坑施工、结构施工、安全施工、施工效率和环境保护等方面。
在面对这些难点时,施工方需要进行合理规划和顶层设计,同时充分考虑技术、安全、环境等方面的因素,以确保超高层建筑的施工质量和工期的控制。
铉龙城广场装饰装修工程施工承包合同发包人(甲方):湖北铉龙城置业有限公司承包人(乙方):二零一六年一月“铉龙城广场”装饰装修工程施工承包合同发包人(甲方):湖北铉龙城置业有限公司承包人(乙方):依照《中华人民共和国合同法》、《中华人民共和国招标投标法》及其它有关规定,遵循平等、自愿、公平、诚实信用的原则,甲乙双方就“铉龙城广场”装饰装修工程施工的发包与承包事项经协商一致,签订本合同。
1.工程概况1.1工程名称:“铉龙城广场”1.2工程地点:武汉市汉阳区国博大道与三里坡路交汇处1.3工程内容:一栋4-5层商业广场35000平方米;一栋43层酒店70000平方米;一栋52层公寓楼70000平方米;地下室二层59000平方米;1.4承包范围: 公共区域室内设计、装饰(墙体砌筑、墙面、地面、顶棚装饰)地面、顶棚、门窗等施工图纸所表明的范围。
1.5合同价款:合同价款暂定人民币贰亿元整,按实际施工图据实结算。
1.6承包方式:乙方包工、包料(装饰施工图纸内确定的所有内容)。
2.工程质量2.1本工程质量应达到国家、湖北省建设工程的质量检验标准、设计标准。
2.2室内环境约定标准:《民用建筑工程室内环境污染控制规范》(GB50325-2001)。
2.3施工质量验收标准:《建筑工程施工质量验收统一标准》(GB50300-2001)以及相配套的相关工程质量验收规范、标准。
3.工期:3.1总工期: 日(为日历工期,包括法定节假日)3.2开工日期:年月日。
3.3竣工日期:年月日。
3.4延期开工:乙方不能按期开工的,应提前2日以书面形式通知甲方,如甲方15日内未做出答复的,视为同意延期开工,具体开工日期将另行约定(通知)。
如甲方不同意延期开工的,则工期不顺延;如因甲方原因需延期开工的,应征得乙方同意,并相应顺延工期。
3.5暂停工期(停工):甲方要求乙方暂停施工的,应在48 小时内向乙方提出处理意见,乙方应妥善保护已完工工程。
超高层建筑十大技术难点及应对根据理论及经验分析,一般在40层(大约150m)左右,是超高层建筑设计的敏感高度(建筑物的超长尺度特性将引起建筑设计概念变化),这种变化促使建筑师必须提出有效设计对策,调整设计观念,应用适宜的建筑技术。
超高层楼宇就像一条竖立起来的街道,存在着安全、内部交通、环境、能源消耗等多种难以妥善解决的问题,越是向高处发展,安全性、耐久性及适用舒适等问题就愈多,对结构、建筑、机电、暖通、电梯等专业的要求就越高。
难点一:结构系统超高层建筑结构的特殊性,建筑内部的梁柱将会不可避免的存在,在结构设计中要考虑异形柱的使用,特别是在超高层住宅户型设计中,充分全面考虑梁柱的影响、规避及利用是设计的难点。
对结构设计来讲,按照建筑使用功能的要求、建筑高度的不同以及拟建场地的抗震设防烈度以及经济、合理、安全、可靠的设计原则,选择相应的结构体系,一般分为六大类:框架结构体系、剪力墙结构体系、框架-剪力墙结构体系、框-筒结构体系、筒中筒结构体系、束筒结构体系。
20世纪90年代以来,除上述结构体系得到广泛应用外,多筒体结构、带加强层的框架-筒体结构、连体结构、巨型结构、悬挑结构、错层结构等也逐渐在工程中采用。
与此同时,由于我国钢材产量的增加,钢结构、钢-混凝土混合结构也逐渐采用,如金茂大厦、地王大厦都是钢-混凝土混合结构。
此外,型钢混凝土结构和钢管混凝土结构在高层建筑中也得到广泛应用。
高层建筑结构采用的混凝土强度等级不断提高,从C30逐步向C60及更高的等级发展。
预应力混凝土结构在高层建筑的梁、板结构中广泛应用,钢材的强度等级也不断提高。
高层和超高层建筑在结构设计中除采用钢筋混凝土结构(代号RC)外,还采用型钢混凝土结构(代号SRC),钢管混凝土结构(代号CFS)和全钢结构(代号S或SS)。
建筑高度100m,柱网为8.4m,抗震设防烈度为6度,采用框架-剪力墙或框-筒结构体系较为经济合理,这种结构体系的剪力墙或筒体是很好的抗侧力构件,常常承担了大部分的风载和地震荷载产生的水平侧力,总体刚度大,侧移小,且满足玻璃幕墙的外装饰要求。
资深工程总必须知道的:超高层10大技术难点及解决方案在40层(大约150米)左右,是超高层建筑设计的敏感高度(建筑物的超长尺度特性将引起建筑设计概念变化),这种变化促使建筑师必须提出有效设计对策,调整设计观念,应用适宜的建筑技术。
超高层楼宇就像一条竖立起来的街道,存在着安全、内部交通、环境、能源消耗等多种难以妥善解决的问题,越是向高处发展,安全性、耐久性及适用舒适等问题就愈多,对结构、建筑、机电、暖通、电梯等专业的要求就越高。
难点1——结构系统由于超高层建筑结构的特殊性,建筑内部的梁柱将会不可避免的存在,在结构设计中要考虑异形柱的使用,特别是在超高层住宅户型设计中,充分全面考虑梁柱的影响、规避及利用是设计的难点。
对于结构设计来讲,按照建筑使用功能的要求、建筑高度的不同以及拟建场地的抗震设防烈度以经济、合理、安全、可靠的设计原则,选择相应的结构体系,一般分为六大类:框架结构体系、剪力墙结构体系、框架-剪力墙结构体系、框-筒结构体系、筒中筒结构体系、束筒结构体系。
除上述结构体系得到广泛应用外,多筒体结构、带加强层的框架-筒体结构、连体结构、巨型结构、悬挑结构、错层结构等也逐渐在工程中采用。
进入90年代后,由于我国钢材产量的增加,钢结构、钢-混凝土混合结构逐渐采用。
如金茂大厦、地王大厦都是钢-混凝土混合结构。
此外,型钢混凝土结构和钢管混凝土结构在高层建筑中也正在得到广泛应用。
高层建筑结构采用的混凝土强度等级不断提高,从C30逐步向C60及更高的等级发展。
预应力混凝土结构在高层建筑的梁、板结构中广泛应用。
钢材的强度等级也不断提高。
高层和超高层建筑在结构设计中除采用钢筋混凝土结构(代号RC)外,还采用型钢混凝土结构(代号SRC),钢管混凝土结构(代号CFS)和全钢结构(代号S或SS)。
建筑高度100m,柱网为8.4m,抗震设防烈度为6度,采用框架-剪力墙或框-筒结构体系较为经济合理,这种结构体系的剪力墙或筒体是很好的抗侧力构件,常常承担了大部分的风载和地震荷载产生的水平侧力,总体刚度大,侧移小,且满足玻璃幕墙的外装饰要求。
超高层建筑10大技术难点及应对措施超高层建筑10大技术难点及应对措施,含施工、结构、机电、消防等根据理论及经验分析,一般在40层(大约150米)左右,是超高层建筑设计的敏感高度(建筑物的超长尺度特性将引起建筑设计概念变化),这种变化促使建筑师必须提出有效设计对策,调整设计观念,应用适宜的建筑技术。
超高层楼宇就像一条竖立起来的街道,存在着安全、内部交通、环境、能源消耗等多种难以妥善解决的问题,越是向高处发展,安全性、耐久性及适用舒适等问题就愈多,对结构、建筑、机电、暖通、电梯等专业的要求就越高结构系统难点1由于超高层建筑结构的特殊性,建筑内部的梁柱将会不可避免的存在,在结构设计中要考虑异形柱的使用,特别是在超高层住宅户型设计中,充分全面考虑梁柱的影响、规避及利用是设计的难点。
对于结构设计来讲,按照建筑使用功能的要求、建筑高度的不同以及拟建场地的抗震设防烈度以经济、合理、安全、可靠的设计原则,选择相应的结构体系,一般分建筑师赫尔佐格设计的前述之德国汉诺威建筑博览会管理办公楼,也以其生态观念赢得了众口称赞。
电梯难点3在超高层建筑中,快速、高效、平稳的垂直服务是难点之一。
电梯作为垂直交通工具,对其数量的配置、控制方式及有关参数的选定将不仅直接影响建筑物的一次投资(一般电梯投资约占建筑物总投资的10%左右),而且还将影响建筑物的使用安全和经营服务质量。
在建筑物内,恰当地选用电梯的台数、容量、运行速度、控制方式非常重要,而建筑物内的电梯一经选定和安装使用就几乎成了永久的事实,以后若想增加或改型非常困难,甚至是不可能的了,因此,在设计中应该在设计开始时对电梯的配置应予以充分重视。
现代超高层建筑大都超过60层,建筑内人口流动大,纵向交通主要依赖电梯,有效设计超高层建筑的电梯的关键是运用各种局部电梯进行服务,并把局部区域电梯系统组织起来。
通往这些局部区域,通过由地面始发站至局部区域的空中候梯厅之间的快速穿梭电梯进行服务,乘客到达空中候梯厅后再换乘区间电梯。
超高层建筑10大技术难点及应对措施1.基础技术难点:超高层建筑的基础需要承受巨大的上部荷载,如何确保基础的稳定性是一个关键问题。
应对措施可以采用特殊的基础结构设计,如悬挑式基础或者深基坑技术。
2.结构技术难点:超高层建筑的结构需要具备良好的抗震性能,以应对地震等自然灾害。
为此,可以采用新型的结构材料,如高性能混凝土和钢材,同时配合先进的结构设计和加固技术,确保结构的稳定性和安全性。
3.风载技术难点:超高层建筑容易受到强风的影响,对建筑物的稳定性和结构安全提出了更高的要求。
可以采用风洞试验和数值模拟等技术手段,对建筑物的风载进行详细的分析和评估,进而优化建筑结构的设计。
4.垂直运输技术难点:超高层建筑的垂直运输需要满足高效、安全的要求。
可以采用先进的电梯技术,并增加多层电梯间,以提高运输效率和安全性。
5.建筑节能技术难点:超高层建筑的能耗较高,需要采用先进的节能技术,如建筑外保温、智能控制系统等,以减少能耗并提高建筑的环保性能。
6.防火技术难点:超高层建筑的火灾风险较大,需要采用严格的防火措施。
可以采用防火材料和火灾报警系统等,确保建筑物的防火安全。
7.维护和管理技术难点:超高层建筑的维护和管理困难度较大,需要采用先进的维护技术,如无人机巡检和远程监控等,以便及时发现和处理建筑物的问题。
8.人员疏散技术难点:超高层建筑中的疏散困难度较高,需要设计可靠的人员疏散通道,并进行定期演习和培训,确保人员在紧急情况下能够安全疏散。
9.电力供应技术难点:超高层建筑电力供应的安全和稳定性要求高,需要采用多电源供应、备用电源和电力管理系统等,以保障电力的可靠供应。
10.环境影响技术难点:超高层建筑会对周围环境产生一定的影响,如阻断风景和遮挡阳光等。
可以通过景观设计和绿化配置等手段,减轻对环境的影响。
在应对这些技术难点时,需要充分利用现代化的技术手段和工程经验,进行科学的设计和施工,并遵循相关法规和标准,以确保超高层建筑的安全和可持续发展。
资深工程总必须知道的:超高层10大技术难点及解在40层(大约150米)左右,是超高层建筑设计的敏感高度(建筑物的超长尺度特性将引起建筑设计概念变化),这种变化促使建筑师必须提出有效设计对策,调整设计观念,应用适宜的建筑技术。
超高层楼宇就像一条竖立起来的街道,存在着安全、部交通、环境、能源消耗等多种难以妥善解决的问题,越是向高处发展,安全性、耐久性及适用舒适等问题就愈多,对结构、建筑、机电、暖通、电梯等专业的要求就越高。
难点1——结构系统由于超高层建筑结构的特殊性,建筑部的梁柱将会不可避免的存在,在结构设计中要考虑异形柱的使用,特别是在超高层住宅户型设计中,充分全面考虑梁柱的影响、规避及利用是设计的难点。
对于结构设计来讲,按照建筑使用功能的要求、建筑高度的不同以及拟建场地的抗震设防烈度以经济、合理、安全、可靠的设计原则,选择相应的结构体系,一般分为六大类:框架结构体系、剪力墙结构体系、框架-剪力墙结构体系、框-筒结构体系、筒中筒结构体系、束筒结构体系。
除上述结构体系得到广泛应用外,多筒体结构、带加强层的框架-筒体结构、连体结构、巨型结构、悬挑结构、错层结构等也逐渐在工程中采用。
进入90年代后,由于我国钢材产量的增加,钢结构、钢-混凝土混合结构逐渐采用。
如金茂大厦、地王大厦都是钢-混凝土混合结构。
此外,型钢混凝土结构和钢管混凝土结构在高层建筑中也正在得到广泛应用。
高层建筑结构采用的混凝土强度等级不断提高,从C30逐步向C60及更高的等级发展。
预应力混凝土结构在高层建筑的梁、板结构中广泛应用。
钢材的强度等级也不断提高。
高层和超高层建筑在结构设计中除采用钢筋混凝土结构(代号RC)外,还采用型钢混凝土结构(代号SRC),钢管混凝土结构(代号CFS)和全钢结构(代号S或SS)。
建筑高度100m,柱网为8.4m,抗震设防烈度为6度,采用框架-剪力墙或框-筒结构体系较为经济合理,这种结构体系的剪力墙或筒体是很好的抗侧力构件,常常承担了大部分的风载和地震荷载产生的水平侧力,总体刚度大,侧移小,且满足玻璃幕墙的外装饰要求。
超高层建筑10大技术难点及应对措施概要1.地基处理:超高层建筑需要经过深基坑开挖及地基处理工艺,以确保建筑行为受控制,减小沉降和地震对建筑物的影响。
应对措施:运用大型挖掘机和地基处理技术,如梁底喷射灌注桩、地下连续墙等,稳定土壤,减小地基沉降。
2.结构设计:超高层建筑的结构设计需要考虑纵向和横向荷载的影响,确保承载力和稳定性。
应对措施:采用高效的计算技术和先进的结构材料,如高强度钢筋和高强度混凝土,提高结构的抗风、抗震能力。
3.抗风设计:超高层建筑面对强风荷载的挑战,需采取抗风设计措施,减小建筑物的摇摆和变形。
应对措施:采用结构抗风计算方法和风洞试验,优化建筑物的形态设计和结构布置,增设风阻板和防风索等。
4.节能设计:超高层建筑的能耗较大,需要考虑节能设计措施,减少能源消耗和碳排放。
应对措施:采用高效的隔热和保温材料,合理设置通风与空调系统,利用太阳能发电和地热能等可再生能源。
5.抗震设计:超高层建筑需要考虑地震荷载的影响,确保其在地震中的安全性。
应对措施:采用抗震设计规范,采用减震装置和加强结构抗震的技术措施,如防震垫、防震减振器等。
6.竖向交通系统:超高层建筑需要解决人员和物品的竖向运输问题,确保交通高效且安全。
应对措施:设置高速电梯和安全逃生通道,合理规划竖向交通系统,提供多样化的运输组织方式。
7.消防安全:超高层建筑面临着高楼火灾蔓延和人员疏散的风险,需要消防安全设施和预案。
应对措施:设置火灾报警和自动喷水灭火系统,设计消防逃生通道和安全集结点,加强人员消防培训和预案制定。
8.供水和排水系统:超高层建筑需要提供稳定的供水和排水系统,以满足大量的人员需求。
应对措施:采用高效的供水和排水系统,合理设置水泵和水箱,增设消防水炮和防洪措施。
9.电力供应:超高层建筑需要保证充足的电力供应,满足建筑和设备的需求。
应对措施:设置备用发电机组和电力保障设备,优化电力供应系统,提供可靠的市电和备用电源。
10.建筑维护:超高层建筑需要定期维护和检修,减小建筑物老化和损坏的风险。
超高层装配式建筑施工难点与攻克策略超高层装配式建筑是指建筑高度超过200米,且采用装配式建造方式的建筑。
它具有节能环保、施工周期短、质量可控等优势,得到了越来越多的关注和应用。
然而,在实际施工过程中,依然存在一些难点需要攻克。
本文将从结构设计、物流运输、安全保障等方面,对超高层装配式建筑施工的难点进行分析,并提出相应的解决策略。
一、结构设计与质量控制在超高层装配式建筑的结构设计和质量控制方面,存在以下难点:1. 钢材选型与连接技术:钢材在超高层装配式建筑中承担着重要的支撑作用,因此钢材选型及连接技术的选择非常关键。
不仅需要满足强度和刚度要求,还要考虑腐蚀性、耐久性等问题。
2. 系统整体力学性能:超高层装配式建筑通常由多个模块组成,每个模块都要承担相应的荷载。
如何保证整体结构的力学性能和稳定性是一个难点。
为了解决以上问题,可以采取以下策略:1. 加强前期设计:针对超高层装配式建筑的特点,进行充分的前期设计,包括选择合适的钢材、优化连接技术、进行系统整体力学模拟等。
通过科学设计来解决结构设计和质量控制中的难题。
2. 引进先进技术:借鉴国内外经验,引进和吸收先进的装配式建造技术。
例如,采用模块化建造方式,通过工厂预制和现场安装相结合,提高施工效率和质量控制水平。
二、物流运输与组装超高层装配式建筑需要大量的材料运输和模块组装工作,其中存在以下难点:1. 材料采购与仓储管理:由于超高层装配式建筑需要大量的材料供应,在采购和仓储管理方面会面临挑战。
关键材料的及时供应以及安全存放是一个难题。
2. 模块运输与组装:超高层装配式建筑通常需要将各种模块从生产地运输到建筑工地进行组装,而模块的运输和组装会面临复杂的环境,尤其是在城市中心区域。
针对以上问题,可以采取以下措施:1. 加强供应链管理:与供应商建立长期稳定的合作关系,提前规划好物料采购计划,并密切跟踪物流运输情况。
同时,在现场设立临时仓库,加强物料管理和监控。
超高层综合体10大技术难点及攻克对策核心提示:超高层综合体就像竖立起来的街道,存在着安全、内部交通、环境、能源消耗等多种难以妥善解决的问题,越是向高处发展,安全性、耐久性及适用舒适等问题就愈多,对结构、建筑、机电、暖通、电梯等专业的要求就越高。
根据理论及经验分析,一般在40层(大约150米)左右,是超高层综合体建筑设计的敏感高度(建筑物的超长尺度特性将引起建筑设计概念变化),这种变化促使建筑师必须提出有效设计对策,调整设计观念,应用适宜的建筑技术。
超高层建筑就像一条竖立起来的街道,存在着安全、内部交通、环境、能源消耗等多种难以妥善解决的问题,越是向高处发展,安全性、耐久性及适用舒适等问题就愈多,对结构、建筑、机电、暖通、电梯等专业的要求就越高。
难点1—结构系统由于超高层建筑结构的特殊性,建筑内部的梁柱将会不可避免的存在,在结构设计中要考虑异形柱的使用,特别是在超高层住宅户型设计中,充分全面考虑梁柱的影响、规避及利用是设计的难点。
对于结构设计来讲,按照建筑使用功能的要求、建筑高度的不同以及拟建场地的抗震设防烈度以经济、合理、安全、可靠的设计原则,选择相应的结构体系,一般分为六大类:框架结构体系、剪力墙结构体系、框架-剪力墙结构体系、框-筒结构体系、筒中筒结构体系、束筒结构体系。
90年代以来,除上述结构体系得到广泛应用外,多筒体结构、带加强层的框架-筒体结构、连体结构、巨型结构、悬挑结构、错层结构等也逐渐在工程中采用。
进入90年代后,由于我国钢材产量的增加,钢结构、钢-混凝土混合结构逐渐采用。
如金茂大厦、地王大厦都是钢-混凝土混合结构。
此外,型钢混凝土结构和钢管混凝土结构在高层建筑中也正在得到广泛应用。
高层建筑结构采用的混凝土强度等级不断提高,从C30逐步向C60及更高的等级发展。
预应力混凝土结构在高层建筑的梁、板结构中广泛应用。
钢材的强度等级也不断提高。
高层和超高层建筑在结构设计中除采用钢筋混凝土结构(代号RC)外,还采用型钢混凝土结构(代号SRC),钢管混凝土结构(代号CFS)和全钢结构(代号S或SS)。
建筑高度100m,柱网为8.4m,抗震设防烈度为6度,采用框架-剪力墙或框-筒结构体系较为经济合理,这种结构体系的剪力墙或筒体是很好的抗侧力构件,常常承担了大部分的风载和地震荷载产生的水平侧力,总体刚度大,侧移小,且满足玻璃幕墙的外装饰要求。
超高层建筑的楼板和屋盖具有很大的平面刚度,是竖向钢柱与剪力墙或筒体的平面抗侧力构件,同时使钢柱与各竖向构件(剪力墙或筒体)起到变形协调作用。
一般钢结构建筑物的楼板和屋盖,都采用轧制的压型钢板加现浇钢筋混凝土(简称钢承混凝土)楼板和屋盖,厚度一般不小于150mm。
目前在设计钢承混凝土楼板和屋盖时没有考虑钢承混凝土楼板和屋盖与钢梁共同作用。
主要是对于板底呈波形的计算原理不甚了解或认为计算繁琐,就按平板计算,这样既不安全又增加了钢梁的用钢量。
如果采用钢梁与钢承混凝土楼板共同作用,简称MST组合梁,只要计算正确,配筋合理,栓钉可靠,则可以节约楼层和屋盖钢梁的用钢量20%左右,而且不需对钢梁进行稳定验算。
难点2—垂直交通设计超高层建筑,核心筒的设计需平衡采光、节能、易于维护、减少公摊、不同业态核心筒上下统一等多方要求,是建筑设计的难点之一。
高层建筑与其他建筑之间的最大区别,就在于它有一个垂直交通和管道设备集中在一起的、在结构体系中又起着重要作用的“核”。
而这个“核”也恰恰在形态构成上举足轻重,决定着高层建筑的空间构成模式。
随着高层建筑建设的发展、高度的增加和技术的进步,在高层建筑的设计过程中,逐渐演化出了中央核心筒式的“内核”空间构成模式。
1.内核式:中央核心筒布局在建筑处理上,为了争取尽量宽敞的使用空间,希望将电梯、楼梯、设备用房及卫生间、茶炉间等服务用房向平面的中央集中,使功能空间占据最佳的采光位置,力求视线良好、交通便捷。
在结构方面,随着筒体结构概念的出现、高度的增加,也希望能有一个刚度更强的筒来承受剪力和抗扭。
在建筑的中央部分,有意识地利用那些功能较为固定的服务用房的围护结构,形成中央核心筒,而筒体处于几何位置中心,还可以使建筑的质量重心、刚度中心和型体核心三心重合,更加有利于结构受力和抗震。
这种“内核”空间构成模式,经过长期的实践检验,以其结构合理、使用方便和造价相对低廉的优势,很快便成为高层建筑中最为流行的空间布局形式。
尽管中央核心筒式布局的筒体周围的房间需要人工采光和机械通风,总会多少给人带来不适感,但“内核”式的布局形式及其变种在数量上占有绝对优势,大多数著名的超高层写字楼建筑也都采用这种形式。
但是作为超高层住宅建筑,这种内核式的布局存在着诸多不便利之处。
2.外核式:双侧外核心筒布局随着时代的发展、技术的进步,人们对建筑需求的变化和设计侧重点的不同,以中央核心筒为主流的高层建筑“内核”空间构成模式开始受到了挑战。
第一次变革主要还是出于造型上的需要和建筑设计理念的变化,如 70 年代前后出现的“双核”构成模式。
双侧外核心筒的布局,不仅有利于避难疏散,而且也使高层建筑的外观造型产生了巨大的变化。
贝聿铭设计的新加坡“华侨银行中心”和日建设计设计的日本“IBM 本社大楼”等等就是当年风行一时的双侧外核设计手法的代表。
3.多核式:分散多个外核布局第二次变革最先对核心筒提出革命性建议的是设备专业,他们认为随着建筑设备的日趋增多和越来越复杂,如果把设备用房和管道井从核心筒中分离出来,可能会更有利于管理和维修。
而80 年代以后,智能化建筑的普及和电信设施的不断增加,导致了在高层建筑中大量应用计算机和电信通讯设备,甚至许多建筑在竣工之后,仍然频繁地改造布线系统和增添新设备。
智能化办公楼中的光缆与电脑网络管道井、配线箱以及中继装置等,每层都必须设置三处以上才算合理。
这样,建筑上为了满足机电设备经常变动的需要,便开始将“核”分散化,分置多处设备用房和管道井,以便于局部更改。
对于结构专业来说,加强建筑周边的刚度也会有效地抵抗地震对高层建筑的破坏,所以如果将垂直交通和设备用房等分散地布置在周边,则无疑也会对结构抗震有利。
同时,这种分散的多个外核的空间构成模式,也正好适用于新兴的巨型框架结构,使这种结构体系中的巨型支撑柱具有了使用功能。
其最典型的实例就是丹下健三设计的日本“东京都新都厅”。
而从建筑设计的角度来看,核的移动、垂直交通、服务性房间和管道井分散到建筑的周边,对于高层建筑的空间构成模式和立面造型上的变化也是极具革命性的。
它不但适应了其它专业的需求,而且还有利于避难疏散,创造更大的使用空间和使高层建筑的底部获得解放。
这种空间构成模式所具有的灵活性和先进性,很快便被推崇技术表现的欧洲建筑师们所发现,并创造性地应用在他们的作品之中。
罗杰斯设计的英国“伦敦劳埃德大厦”、88木街办公楼和福斯特设计的“香港汇丰银行”等等即是分散式核心筒的杰作,它们从内部的空间构成到外部立面,均与中央核心筒式的高层建筑大相经庭。
此外,在规模较小的高层建筑中,近年来还出现一种核与主要使用空间分离化的现象,垂直交通、服务性用房和设备管道井均分别独立,与建筑主体分开。
主要使用空间更加完整,四面对外,核与主要使用空间之间以连廊相接。
从结构的角度来看,核的刚度较大,而主体较柔,两部分各自分别工作,既受力合理又相对经济。
当然,连接部分的设计是这类高层建筑设计的关键所在,不过这种设计方式给建筑外观带来的变化,已引起了建筑师们的关注,并很快在欧洲和日本流行起来。
德国的汉诺威建筑博览会管理办公楼、埃森RWE公司办公楼,以及日本东京的东急南大井大楼和大阪的凯恩斯本部办公楼。
核与主要使用空间分散和分离还可以使楼梯间、卫生间等直接对外自然采光通风,既节约能源,又省去消防所需的加压送风设备,更符合低能耗,可循环的现代设计原则。
因此,近几年强调生态、节能的高层建筑多采用这种布局方式。
马来西亚建筑师杨经文设计的高层建筑,不但楼梯、卫生间等全部对外,而且电梯筒壁还被刻意用来遮挡日晒,可谓“分散外核空间构成模式的生态设计方式”。
“吉隆坡广场大厦”及其最新设计的“新加坡展览大厦”就都反映出这一设计特征。
而另一位欧洲的建筑师赫尔佐格设计的前述之德国汉诺威建筑博览会管理办公楼,也以其生态观念赢得了众口称赞。
难点3—电梯在超高层建筑中,快速、高效、平稳的垂直服务是难点之一。
电梯作为垂直交通工具,对其数量的配置、控制方式及有关参数的选定将不仅直接影响建筑物的一次投资(一般电梯投资约占建筑物总投资的10%左右),而且还将影响建筑物的使用安全和经营服务质量。
在建筑物内,恰当地选用电梯的台数、容量、运行速度、控制方式非常重要,而建筑物内的电梯一经选定和安装使用就几乎成了永久的事实,以后若想增加或改型非常困难,甚至是不可能的了,因此,在设计中应该在设计开始时对电梯的配置应予以充分重视。
现代超高层建筑大都超过60层,建筑内人口流动大,纵向交通主要依赖电梯,有效设计超高层建筑的电梯的关键是运用各种局部电梯进行服务,并把局部区域电梯系统组织起来。
通往这些局部区域,通过由地面始发站至局部区域的空中候梯厅之间的快速穿梭电梯进行服务,乘客到达空中候梯厅后再换乘区间电梯。
为了能够将乘客以最快的速度运送到达目的地,一般以建筑每30~35层为一局部区域。
由于超高层建筑采用多梯系统,应采用微机电梯控制系统,通过计算机控制系统及时地处理大量信息,判断各站台的呼叫信息和各电梯的位置、方向、开闭状态、轿厢内呼叫等各种状态,以提高运送能力,改善服务质量,提高超建筑的经济效益。
难点4—供电安全性和稳定性作为超高层建筑,安全性必然是供电系统设计所需要格外注意的地方,其次是供电可靠性。
配电系统的设计上,需考虑多回路供电及备用发电机组的配置。
因超高建筑的高度,变配电房可以考虑设置在塔楼中部的楼层,以减少低压配电的损耗。
备用柴油发电机设置于地库层,供电电压采用10千伏输出,再经变压器降压至低压配电,保证配电至塔楼的高层。
在超高层建筑的配电系统上,供电距离、电缆的长度、电缆大小的适当调整以及安装时的施工工艺也是难题之一。
由于超高层面积大、楼层多,自然会出现远距离供电的问题,因此后备电源可考虑采用高压发电机来发电,从而解决了这个难题。
另外还需要特别注意的是,超高层建筑遇到强风时,可能会出现左右晃动。
由于超高层建筑物会有一定的摇摆度,在上升主干线的设计上可以考虑将电缆连接铜母线槽配电,以减低超高层建筑物在摇摆时对铜母线槽接驳组件位置的拉扯压力,减少发生故障及维修的机会,也相对地增加了主干系统的寿命。
建成后业主的使用方便也是必须要考虑到的,在电气设备的空间安排方面要有可调整的空间。
作为超高楼,楼层多,机电方面的设备自然也多,为了让业主获得更多的使用空间,在排布电缆和竖井方面要尽量减少转换竖井和缩小竖井等所占用的空间,以便提供出更多的空间给业主使用。