“互联网+”时代的出租车资源配置
- 格式:pdf
- 大小:909.12 KB
- 文档页数:26
《“互联网+”时代的出租车资源配置模型》篇一互联网+时代的出租车资源配置模型一、引言随着互联网技术的飞速发展,“互联网+”时代已经深入到我们生活的方方面面。
在交通出行领域,以“互联网+”为基础的出租车服务模式正在逐步改变传统的出租车资源配置方式。
本文旨在探讨“互联网+”时代下出租车资源配置模型,分析其特点、优势及存在的问题,并提出相应的优化策略。
二、传统出租车资源配置现状及问题传统出租车资源配置主要依赖于司机巡游、乘客路边拦车或电话叫车等方式。
这种模式存在以下问题:1. 资源分配不均:高峰期部分地区出租车供不应求,而其他地区则出现空驶现象。
2. 信息不对称:乘客与司机之间缺乏有效的信息沟通渠道,导致乘客等待时间长、司机空驶率高。
3. 运营效率低:传统模式缺乏对出租车资源的实时监控和调度,导致运营效率低下。
三、互联网+出租车资源配置模型“互联网+”时代的出租车资源配置模型,通过将互联网技术与出租车服务相结合,实现了资源的优化配置。
主要特点如下:1. 信息共享:通过手机APP等平台,实现乘客与司机之间的信息共享,提高资源利用效率。
2. 实时调度:通过大数据分析和云计算技术,对出租车资源进行实时监控和调度,减少空驶时间。
3. 智能匹配:根据乘客需求和司机位置,实现智能匹配,提高乘客的叫车效率和司机的接单率。
四、模型优势及实践应用“互联网+”出租车资源配置模型具有以下优势:1. 提高运营效率:通过实时调度和智能匹配,提高出租车资源的利用效率。
2. 提升服务质量:乘客可以通过手机APP实时了解车辆信息、评价服务质量等,提升乘客的出行体验。
3. 减少资源浪费:通过信息共享和智能调度,减少出租车资源的空驶时间和空驶距离,降低资源浪费。
在实践中,许多城市已经成功应用了“互联网+”出租车资源配置模型。
例如,通过手机APP叫车已经成为城市居民出行的主要方式之一;通过大数据分析,可以实时监测出租车的运营状况和需求情况,为司机提供更加精准的调度信息;同时,通过智能匹配系统,实现了乘客与司机的快速匹配,提高了出行效率。
“互联网+”时代的出租车资源配置交通工具,其供求问题受到社会的广泛关注。
当供大于求时,过多的出租车不利于形成合理的客运交通结构,增加出租车公司的运输成本的同时,更造成了交通拥堵和环境污染等问题;当供小于求时,出租车的数量无法满足乘车市民的需要,会直接导致出租车服务质量的下降。
因此,建立一个城市出租车供需平衡的模型尤为重要。
采用里程利用率、车辆满载率、万人拥有量三个指标对不同时空出租车资源的“供求匹配”程度的进行评判。
里程利用率=营业里程/行驶里程这一指标反映车辆载客效率,比例高了,说明车辆行驶中载客比例高,而空驶比较低,对于要乘车的乘客来说,可供租用的车辆不多,乘客等待时间增加,说明供求关系比例紧张。
如果比例低了,则车辆空驶比例高,乘客租用比较方便,但经营者的经济效益会下降。
车辆满载率=载客车数/总通过车数通过控制出租汽车的满载率实现运载力与运载量的适当平衡,当在中心城市出租车载客率低于时,增加出租车运载力,从而提高服务质量,满足高峰时运载需求。
万人拥有量=车数(辆)/人口规模(万人)现行的《城市道路交通规划设计规范(GB*****—95)》规定大城市不少于每万人20辆,小城市不少于每千人5辆,中等城市可在其间取值。
根据供需平衡原理,当客运需求量与供给量达到平衡时为最佳状态。
即当由出租车客运需求量测算得到的总有效行驶里程S与由供给量得到的总有效行驶里程相等时,出租车的客运需求量与供给量达到相对平衡。
考虑到本问题中要分析不用时空出租车资源的“供求匹配”程度,以静态匹配模型为基础,加入时间维度、空间维度以及实际情况中出租车的出车率,得到供需平衡的出租车动态匹配模型。
如下:对比建设部推荐的大中城市出租车保有量标准为21veh/104人及现行《城市道路交通规划设计规范(GB *****-95)》给出的出租车拥有量的下限,2013年北京汽车保有量为22.4veh/104,略大于所给标准值,即模型所计算出结果与依据规范所推算出的相一致,可得建立的模型合理有效。
2022年数模国赛论文B题-2“互联网+”时代的出租车资源配置摘要关键词:主成分分析法、供求平衡阀法、对比比值法一、问题的重述二、问题分析三、模型的假设与符号说明1、模型假设2、符号说明四、模型建立与求解2.2.1指标体系的建立城市出租车合理运力规模万人拥有量里程利用率空载率居民出行量居民出行量乘客平均等乘客平均车时间等车时间1)万人拥有量:该项指标反映了城市出租车的客观需求。
依据国内外各大城市的经验,城市出租车万人拥有量应介于20-30辆之间,此时能表现出较好的市场接受度。
2)里程利用率:指出租车正常运营过程中一定时间内载客行驶里程占总行驶里程的百分比,其计算公式为:里程利用率=营运载客里程100%总行驶里程3)出租车空载率:是反映出租车营运状况的一个重要指标,其计算公式为:出租车空载率=出租车空车数量100%行驶中的出租车总量4)乘客平均等车时间:指乘客在选择出租车出行的时候等候出租车辆的平均时间,单位为min,其计算公式为:乘客平均等车时间=等车时间总候车次数5)居民出行量:指居民在单位时间内出行人数主成分分析法也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。
2、主成分分析法的算法步骤2.1原始指标数据的标准化设有n个样本,p项指标,可得数据矩阵某(某ij)n某p,i1,2,...,n 表示n个样本,j=1,2,...,p表示p个指标,某ij表示第i个样本的第j 项指标值.用Zcore法对数据进行标准化变换:Zij(某ij某j)/Sj式中,某j(某)/niji1nSj(某ij某j)21/(n1)2i1ni1,2,...,nj1,2,...,p2.2求指标数据的相关矩阵R(rjk)p某pj1,2,...,pk1,2,...,prjk为指标j与指标k的相关系数.1nrjk[(某ij某j)/Sj][(某ik某k)2/Sk]n1i11n即rjkZijZjk有rij1,rjkrkjn1i1i1,2,...,nj1,2,...,pk1,2,...,p2.3求相关矩阵R的特征根特征向量,确定主成分由特征方程式Ip,可求得的p个特征根g(g1,2,...,p),1将其按大小顺序排列为12p,它是主成分的方差,它的大小描述了各个主成分在描述对象上所起作用的大小。
数学建模期末论文“互联网”时代的出租车资源配置引言出租车服务在现代城市中起着至关重要的作用。
然而,在传统的出租车服务模式下,资源的配置通常是不够高效和经济的。
随着互联网的发展,出租车服务也出现了一些创新的解决方案,其中包括利用互联网技术来改善出租车资源的配置。
本文将探讨如何在“互联网”时代中最佳地配置出租车资源。
背景在传统的出租车服务模式下,出租车司机通常会巡游城市中的街道,等待乘客的召唤。
这种模式存在一些问题,例如资源利用率低下、等待时间长等。
随着互联网技术的发展,出现了一些新的出租车服务平台,如滴滴出行,通过互联网平台连接乘客和司机,实现出租车资源的高效配置。
模型建立在研究出租车资源配置的问题时,我们需要考虑到多个因素,包括乘客的需求、司机的路线选择和交通状况等。
为了简化问题,我们可以使用数学建模的方法来建立模型。
以下是我们建立的数学模型:输入变量•乘客的位置和目的地•司机的初始位置•出租车司机的数量输出变量•司机的路线选择•乘客等待时间•出租车资源利用率假设•出租车司机以最短路径的方式前往乘客的位置•乘客之间是独立的,即乘客之间不会相互干扰•交通状况不会导致司机无法按照最短路径到达目的地模型公式我们可以使用以下公式来表示出租车资源配置的问题:minimize: ∑(wait_time_i)subject to: ∑(car_utilization_i) = total_cars其中,wait_time_i表示第i个乘客的等待时间,car_utilization_i表示第i个出租车的资源利用率,total_cars表示总出租车数量。
求解方法对于上述建立的模型,我们可以使用线性规划或模拟退火等方法来求解最优解。
这些方法可以通过计算机程序来实现。
线性规划线性规划是一种数学优化方法,可以用来解决具有线性约束条件的最优化问题。
我们可以将上述模型转化为线性规划问题,然后使用线性规划算法求解最优解。
模拟退火模拟退火是一种启发式搜索算法,可以用来求解组合优化问题。
2022年数模国赛论文B题-1互联网时代的出租车资源配置摘要出租车是市民出行的重要交通工具之一,“打车难”是人们关注的一个社会热点问题。
随着互联网时代的到来,很多家出租车公司建立了自己的打车软件服务平台,打车软件服务平台也走进了人们的生活,增加了交易机会,实现了乘客与出租车司机之间的信息互通,同时推出了多种出租车的补贴方案。
我们通过建立合适的数学模型来分析如今的补贴方案是否能缓解打车难的问题。
针对问题一,为了将“供求匹配程度”这一抽象的概念进行定量研究,我们试图建立出租车万人拥有量、空驶率、乘客等车时间、里程利用率等四个指标结合经济学的角度来进行问题的分析,并基于层次分析模型进行模糊综合评价来分析不同时空出租车资源的“供求匹配”程度。
针对问题二,要求我们分析各公司的出租车补贴方案是否对缓解打车难问题有帮助,我们利用数学期望假设检验的方法,主要通过对使用打车软件前后乘客平均等车时间和出租车司机驾车空驶率两个因素的分析,验证出租车补贴方案是否对缓解打车难问题,并验证了这些打车软件服务平台和出台的相应的出租车及乘客补贴政策提高了打车双方的积极性,对缓解“打车难”的问题起到了一定的帮助。
针对问题三,建立一个新的打车软件服务平台首先应该考虑在缓解“打车难“这个难题基础上,增加其核心竞争力,再充分汲取现有打车软件服务平台的优点,寻找背后合作伙伴,在初期实施一些大型的优惠补贴政策,吸引客户,并抢占市场份额。
这就需要我们设计出自己的补贴方案,与在原来的补贴方案下相关数据进行比较,分析原来的补贴数目,做出相应的调整。
并进行试验,从而得出其合理性。
关键词:层次分析法,模糊综合评价法,经济学,数学期望假设检验一、问题重述随着人民生活水平的日益提高,出行乘坐出租汽车的人越来越多。
但是,在许多大城市中,打车已经变得越来越难,特别是在上下班高峰期和恶劣天气时更是“一车难求”。
出租车是市民出行的重要交通工具之一,“打车难”是人们关注的一个社会热点问题。
西安邮电大学(理学院)数学建模报告题目:“互联网+”时代的出租车资源配置问题班级:信息工程1403学号:********姓名:***成绩:2016年6月30日关于“互联网+”时代的出租车资源配置模型摘要本文以互联网+打车软件服务平台为背景,根据“打车难”现象,分别建立了出 租车需求模型, Borda 综合评价模型,排队论模型和多元回归模型,分别求出了出 租车需求函数,乘客等待概率函数和多元回归函数。
针对问题一:本文通过网络,收集了淮南市某周出租车运营相关数据(见表 1), 选取了空载率、满载率、乘客满意度、实际出租车需求量等 4 个指标,通过出租车 需求函数计算出实际出租车需求量 2330 辆,运用 Borda 计算法得出该地区出租车 资源的”供求匹配“程度为 0.61,匹配程度偏差。
针对问题二:就出租车运行效率 μ 和乘客乘车率 λ 建立 M / M / n / ∞ / ∞ 排队模 型。
得到乘客等待概率函数:⎧ 1 ( λ )np n ≤ c ⎪⎪ p n = ⎨n ! μ 0 ⎪ 1 1 ( λ )n p n > c⎪⎩ c ! cn -cμ 对函数进行数学分析和数据代入检验得出 P n 0与 μ 呈负相关,即随着 μ 的增大 P n减小。
( P n 代表乘客等待概率)结合滴滴打车公司补贴方案、社会实际现象和相关评 论,综合得出一定的补贴对出租车运行效率 μ 有促进效果,即对缓解打车难有帮助。
针对问题三:建立了司机平均补贴金额 y ,有效行驶里程 x 1 和全天载客次数 x 2 的多元回归模型,采用 MATLAB 软件,拟合得到 y = 5.9305 + 0.0347x 1 + 0.4799x 2 ,拟 合决定系数 R 2 =0.9381。
有效行驶里程每增加 100 公里,每天补贴金额多 3.47 元。
全天载客次数增加 10 次,补贴金额多 4.79 元,高于之前打车软件。
本文主要特点在于所建模型易于操作,在对原始数据进行简单预处理后,就可 应用于模型求解。
《“互联网+”时代的出租车资源配置模型》篇一互联网+时代的出租车资源配置模型一、引言随着互联网技术的飞速发展,“互联网+”时代已经深入到我们生活的方方面面。
特别是在交通出行领域,互联网与出租车的结合,不仅改变了传统的出租车运营模式,也极大地提升了出租车资源配置的效率。
本文旨在探讨“互联网+”时代下出租车资源配置模型的设计与实施,以优化出租车服务,提高资源利用效率。
二、传统出租车资源配置的局限性在传统模式下,出租车资源的配置主要依赖于司机巡游和乘客叫车两种方式。
这种方式存在资源浪费、效率低下等问题。
一方面,空驶率较高,导致资源浪费;另一方面,乘客在叫车时可能面临等待时间过长的问题。
因此,传统模式下的出租车资源配置亟需改进。
三、互联网+出租车资源配置模型的设计(一)模型概述在“互联网+”时代,通过引入先进的互联网技术和大数据分析,可以实现对出租车资源的有效配置。
该模型主要包括三个部分:数据收集、数据分析与调度优化、服务反馈与改进。
(二)数据收集首先,通过安装车载GPS设备、智能终端等设备,实时收集出租车的位置、状态、乘客需求等信息。
此外,还可以通过社交媒体、手机APP等途径收集乘客的出行习惯和需求偏好等数据。
(三)数据分析与调度优化利用大数据分析技术,对收集到的数据进行处理和分析,预测未来一段时间内的乘客需求和出租车供需情况。
根据分析结果,通过智能调度系统对出租车进行合理调度,降低空驶率,提高出租车的使用效率。
(四)服务反馈与改进通过乘客评价、司机反馈等途径,收集用户对服务的评价和建议。
根据反馈信息,对模型进行持续改进和优化,提高服务质量。
四、实施效果与案例分析(一)实施效果通过实施互联网+出租车资源配置模型,可以有效降低空驶率,提高出租车的使用效率。
同时,乘客可以通过手机APP实时查看附近的可用出租车数量和位置,方便快捷地叫车。
此外,通过大数据分析,还可以为乘客提供个性化的出行建议和推荐。
(二)案例分析以某城市为例,实施互联网+出租车资源配置模型后,空驶率降低了XX%,同时乘客的平均等待时间也缩短了XX%。
《“互联网+”时代的出租车资源配置模型》篇一互联网+时代的出租车资源配置模型一、引言随着互联网技术的飞速发展,“互联网+”时代已经深入到我们生活的方方面面。
在交通出行领域,以“互联网+”为基础的出租车服务模式正在逐步改变传统的出租车资源配置方式。
本文旨在探讨“互联网+”时代下出租车资源配置模型的设计、运行及优势,并对其未来发展趋势进行分析。
二、传统出租车资源配置的问题在传统模式下,出租车资源配置主要依靠人工调度和司机的自主运营。
这种方式存在以下问题:1. 供需不平衡:在高峰时段,供不应求;而在非高峰时段,又可能出现空驶率较高的情况。
2. 调度效率低:由于缺乏有效的信息传递和数据分析手段,无法准确判断乘客需求和车辆位置。
3. 乘客体验差:叫车困难、等待时间长、费用不透明等问题较为突出。
三、互联网+出租车资源配置模型的设计针对上述问题,本文提出一种基于互联网的出租车资源配置模型。
该模型主要包含以下几个部分:1. 智能调度系统:通过大数据分析和云计算技术,实时收集并处理交通、天气、乘客需求等数据,为司机提供最优的接单建议。
2. 实时信息发布:乘客可以通过手机APP实时查看附近车辆信息、价格、司机信息等,方便选择合适的车辆。
3. 动态定价机制:根据供需关系和行驶距离等因素,动态调整价格,以平衡供需关系和提高司机收入。
4. 评价系统:乘客可以对司机进行评价,以提高服务质量。
四、模型的运行与优势该模型运行后,可以显著改善出租车行业的运营效率和服务质量。
具体优势如下:1. 提高调度效率:通过智能调度系统,可以实时匹配乘客需求和车辆位置,减少空驶率,提高车辆利用率。
2. 平衡供需关系:通过动态定价机制,可以平衡高峰时段和平峰时段的供需关系,减少乘客等待时间。
3. 提高服务质量:乘客可以通过APP实时查看车辆信息和司机信息,选择满意的车辆和服务。
同时,评价系统可以督促司机提高服务质量。
4. 提升乘客体验:乘客可以通过手机APP轻松叫车、支付和评价服务,提高了出行的便捷性和舒适性。
“互联网+”时代的出租车资源配置摘要随着“互联网+”时代的到来,互联网技术为人们带来了丰厚的红利,基于智能手机的互联网应用应运而生。
本文就出租车的资源配置现状,以及出租车公司补贴方案对打车难易程度进行讨论与分析,通过建立合理的数学模型,推出更优的补贴方案。
针对问题一,通过确立里程利用率和供求比率的理想值来分析匹配程度。
将这两个指标抽象为二维空间中的坐标,通过实际点与平衡点之间的距离来判断综合不匹配程度,求解出高峰时段、常规时段、市区和郊区的综合不匹配程度分别为2.4103,2.1056,3.2238,2.1493,从而分析得出高峰时段的供求匹配程度优于常规时段,郊区的供求匹配程度优于市区。
针对问题二,我们以出题那一年即2015年滴滴和快的打车公司为例,分别计算出各公司对乘客和司机的补贴金额,通过确定意愿半径和打车软件使用人数比例这两个指标,建立了缓解程度判断模型。
接着对未使用打车软件及使用打车软件两种情况进行了对比分析,分别得出两种情况下的人均出租车占有率,以此判断补贴方案对于“打车难”的缓解程度。
最终求得各公司缓解率的分布范围为-0.02~0.37,说明各公司出租车的补贴方案对缓解“打车难”有一定帮助,但效果不大。
问题三中,我们综合考虑了空间和时间因素,将城市划分为若干区域,制订了分区域动态实时补贴方案。
可以根据乘客和司机两个方面来设计模型并制定补偿方案。
针对乘客,我们认为可以采用积分奖励,补贴免单等激励补贴政策;针对司机方面,我们考虑了地理位置以及时间因素,通过综合考虑,将城市划分为了许多个区域,与此同时制定分区域动态的实时补贴方案。
综上所述,本文通过建立供求匹配模型,缓解程度判断模型,对出租车资源的供求匹配程度和补贴方案进行了分析,并指出了模型的优缺点,具有重要的推广价值。
关键词:资源配置;供求匹配;判断模型;相似度1.11%一、问题重述出租车是市民出行的重要交通工具之一,“打车难”是人们关注的一个社会热点问题。