三角函数线及其应用
- 格式:ppt
- 大小:1.36 MB
- 文档页数:24
高考数学知识点:三角函数线(正弦线、余弦线、正切线)高考数学知识点:三角函数线(正弦线、余弦线、正切线)三角函数线的定义:设任意角α的顶点在原点O,始边与x轴的正半轴重合,终边与单位圆相交于点P(x,y),过P点作x轴的垂线,垂足为M,过点A(1,0)作单位圆的切线,高二,设它与角α的终边或其反向延长线相交于点T,则有向线段MP、OM,AT分别叫做角α的正弦线,余弦线,正切线,即:sinα=MP,cosα=OM,ta nα=AT,如下图:注:线段长度表示三角函数值大小,线段方向表示三角函数值正负。
关于三角函数线,要注意以下几点:(1)正弦线、余弦线、正切线都是有向线段,利用它们的数量来表示三角函数值,是数形结合的典型体现。
三角函数线表示三角的函数值的符号规定如下:正弦线MP、正切线AT方向与y轴平行,向上为正,向下为负;余弦线OM在x 轴上,向右为正,向左为负。
(2)作三角函数线时,所用字母一般都是固定的,书写顺序也不能颠倒。
特别要注意正切线必在过A(1,0)的单位圆的切线上(其中二、三象限角需作终边的反向延长线)。
(3)对于终边在坐标轴上的角,有时三角函数线退化为一个点,有时又为整个半径。
当角α的终边在y轴上时,角α的正切线不存在。
(4)当时,正弦线、余弦线、正切线与角α并不是一一对应的。
一般地,每一个确定的MP、OM、AT都对应两个α的值。
诱导公式:公式一公式二公式三公式四公式五公式六规律:奇变偶不变,符号看象限。
即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。
形如2k×90°±α,则函数名称不变。
诱导公式口诀“奇变偶不变,符号看象限”意义:的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。
三角函数线及其应用课时第21.有向线段(1)定义:带有方向的线段.OMMP. (2)表示:用大写字母表示,如有向线段,2.三角函数线PPPMxM. ,过垂直于作轴,垂足为作图:①(1)α的终边与单位圆交于AxT. α0)作的终边或其反向延长线于点轴的垂线,交②过(1,(2)图示:MPOMAT,分别叫做角α、结论:有向线段(3)的正弦线、余弦线、正切线,统称为三、角函数线.思考:当角的终边落在坐标轴上时,正弦线、余弦线、正切线变得怎样?xy轴上当角的终边落在轴上时,正弦线、正切线分别变成了一个点;终边落在提示:时,余弦线变成了一个点,正切线不存在.π8π1.角和角有相同的( )77A.正弦线 B.余弦线.不能确定D .正切线C.π8πC [角和角的终边互为反向线,所以正切线相同.]772.如图,在单位圆中角α的正弦线、正切线完全正确的是( )OMAT′.正弦线′,正切线 A OMAT′.正弦线′,正切线 B MPAT,正切线C.正弦线MPAT′,正切线′D.正弦线MPAT,C,正切线为正确.C [α为第三象限角,故正弦线为]3.若角α的余弦线长度为0,则它的正弦线的长度为.y轴上,正弦线与单位圆的交点为(0,0的余弦线长度为时,α的终边落在1 [若角α1)或(0,-1),所以正弦线长度为1.]】作出下列各角的正弦线、余弦线、正切线.【例1ππ10π17.(3)-;(2);(1)364 [解]如图.MPOMAT为正切线.其中为正弦线,为余弦线,三角函数线的画法x轴的垂(1)作正弦线、余弦线时,首先找到角的终边与单位圆的交点,然后过此交点作线,得到垂足,从而得正弦线和余弦线.xA)的终边(α作正切线时,应从(1,0)点引为第一或第四象限角轴的垂线,交α(2)ATT.于点,即可得到正切线或α终边的反向延长线(α为第二或第三象限角)π5 1.作出-的正弦线、余弦线和正切线.8 ]如图:[解π5????MP-=,sin??8π5????OM-,cos=??8π5????AT-. =tan??8) >cos β,那么下列结论成立的是( 【例2】 (1)已知cos αβsin α>sin .若Aα、β是第一象限角,则α>tan β是第二象限角,则B.若α、βtanα>sin βC.若α、β是第三象限角,则sin>tan β.若α、β是第四象限角,则tan αDππ4π2π4π22π4 的大小.,tan和tan和(2)利用三角函数线比较sin和sin,coscos553533在规定象限内画观察正弦线或正、β的余弦线出α→思路点拨:(1) 切线判断大小满足cos α>cos β2π4π观察图形,(2)作出和的正弦线、余弦线和正切线→比较大小35 错误;A,故βsin <αsin 时,βcos >αcos 可知,(1)由图[ D)1(图(1)由图(2)可知,cos α>cos β时,tan α<tan β,故B错误;图(2)由图(3)可知,cos α>cos β时,sin α<sin β,C错误;图(3)由图(4)可知,cos α>cos β时,tan α>tan β,D正确.]图(4)2π2π2π4π4πMPOMATMPOM′,=′,tan=,=′cos==解:如图,(2)sin,cos,333554πAT′.=tan 5.MPMP′|,符号皆正,| 显然|′|>2π4π∴sin>sin;352π4πOMOM′|,符号皆负,∴cos>cos;|<| |352π4πATAT′|,符号皆负,∴tan<tan|>||.35(1)利用三角函数线比较大小的步骤:①角的位置要“对号入座”;②比较三角函数线的长度;③确定有向线段的正负.(2)利用三角函数线比较函数值大小的关键及注意点:①关键:在单位圆中作出所要比较的角的三角函数线.②注意点:比较大小,既要注意三角函数线的长短,又要注意方向.2π2π2πabc=tan,则( =cos, 2.已知sin=,)777abcacb<..<B<<A babcac<.D<.C<<D[由如图的三角函数线知:2π2ππATMP>,因为=<,784MPOM,>所以.2π2π2π所以cos<sin<tan,777bac.]所以<<πππ3π3.设<α<,试比较角α的正弦线、余弦线和正切线的长度.如果<α<,4224上述长度关系又如何?ππMPOMAT,,余弦线为,正切线为α<时,角α的正弦线为[解] 如图所示,当<42π3πATMPOMMPOM′,′时,角α显然在长度上,的正弦线为>′,余弦线为><;当<α24ATATMPOM′.′>′>′正切线为′,显然在长度上,]探究问题[aaa (|α≥|≤1)的不等式?,sin α≤1.利用三角函数线如何解答形如sinaaa(|,sin α≤|≤1)的不等式:提示:对形如sin α≥图①yOMaay轴的垂线交单位圆于两作),过点(0画出如图①所示的单位圆;在,轴上截取=PPOPOPOPOP′上的角的集合;图中阴影部分即为和点和和′;写出终边在′,并作射线aa的角α的范围.α的角α的范围,其余部分即为满足不等式sin ≥sin 满足不等式α≤aaa|≤1)的不等式?≤α(|.利用三角函数线如何解答形如2cos α≥,cosaaa|≤1)的不等式:≤cos α对形如提示:cos ≥,α(|图②.xaaxOM轴的垂线交单位圆于两,0)=,过点画出如图②所示的单位圆;在(轴上截取作OPOPPPOPOP′上的角的集合;图中阴影部分即为满′,作射线′;写出终边在点和和和aa cos α的角α≥足不等式cos α≤的范围.的角α的范围,其余部分即为满足不等式3】利用三角函数线确定满足下列条件的角α的取值范围.【例132. αα|≤(1)cos α>-≤;(3)|sin ;(2)tan 223的写出角α确定对应确定角α的终→思路点拨:→――方程的解边所在区域取值范围[解] (1)如图,由余弦线知角α的取值范围是3π3π???kkk?Z,<α<2π2+π-∈. α???44??(2)如图,由正切线知角α的取值范围是ππ???kkk?Zπ+∈π,α≤. α???62??111(3)由|sin α|≤,得-≤sin α≤.222如图,由正弦线知角α的取值范围是ππ???kkk?∈,π+Zπ-α≤≤.α???66??2”,求α的取值范围.的不等式改为“cos α< 1.将本例(1)2[解]如图,由余弦线知角α的取值范围是π7π???kkk?Z<2,π2+π+∈<α. α???44??132.将本例(3)的不等式改为“-≤sin θ<”,求α的取值范围. 22π117π3π2π????-=-,sin且-≤sin θ=]由三角函数线可知sin=sin,sin=[解??62633223,故θ的取值集合是< 2ππ2π7π????kkkk????k+22π2,+π+π,2π- (.∈Z)∪????6633yx-1的定义域..利用本例的方法,求函数=2sin 3x-1≥0,2sin ]要使函数有意义,只需解[1x≥.即sin 2π5π??kk??k++,2π2π∈Z). (由正弦线可知定义域为??66利用单位圆中的三角函数线解不等式的方法(1)首先作出单位圆,然后根据各问题的约束条件,利用三角函数线画出角α满足条件的终边的位置.(2)角的终边与单位圆交点的横坐标是该角的余弦值,与单位圆交点的纵坐标是该角的正弦值.写角的范围时,抓住边界值,然后再注意角的范围的写法要求.(3)在一定范围内先找出符合条件的角,再用终边相同的角的表达式写出符合条件的提醒:所有角的集合..本节课的重点是三角函数线的画法,以及利用三角函数线解简单的不等式及比较大小1 问题,难点是对三角函数线概念的理解. .本节课应重点掌握三角函数线的以下三个问题2 ;三角函数线的画法,见类型1(1) ;利用三角函数线比较大小,见类型2(2)3.利用三角函数线解简单不等式,见类型(3).三角函数线是三角函数的几何表示,它们都是有向线段,线段的方向表示三角函数值3的正负,与坐标轴同向为正,异向为负,线段的长度是三角函数的绝对值,这是本节重中之 重. .利用三角函数线解三角不等式的方法41.下列判断中错误的是( )A .α一定时,单位圆中的正弦线一定B .在单位圆中,有相同正弦线的角相等C .α和α+π有相同的正切线D .具有相同正切线的两个角的终边在同一条直线上π5πB [A正确;B 错误,如与有相同正弦线;C 正确,因为α与π+α的终边互为反66向延长线;D 正确.]πOMMP 分别是角α=的余弦线和正弦线,那么下列结论正确的是( 2.如果, )5MPOMMPOM <0<.B0<<.A .MPOMMPOM 0>>>>0 DC ..ππOM 的余弦线和正弦线满足α=[角β=的余弦线与正弦线相等,结合图象可知角D 54MP 0.]>>baba,则cos 4 ,3.若.=sin 4,的大小关系为=ππ35ba<,<< [因为424 ,如图4弧度角的正弦线和余弦线()画出ba.]<cos 4,即观察可知sin 4<的集合.α的终边范围,并由此写出角α.在单位圆中画出适合下列条件的角413. α≤-(1)sin α;≥(2)cos 223yOBABOA=(1)作直线[α的终边在如图①所交单位圆于解,两点,连接],,则角2π2???kkk?∈Zπ,≤π≤απ+2+2.α)含边界,角的取值集合为α(示的阴影区域内???33??图①图②1xCDOCOD,则角α=-(2)作直线交单位圆于,两点,连接,的终边在如图②所示的2.24???kkk?∈,Zπ≤α≤+2π2π+π.阴影区域内(α的取值集合为,角含边界)α???33??。
教学案例:三角函数线的应用一、案例过程在必修4第一章三角函数的复习课上,当复习到三角函数线的时候,我和以前一样,复习完定义之后,接下来就要复习三角函数的同角关系式和诱导公式了。
就在这时候,有个学生提问说:“老师,三角函数线有哪些应用呢?”我接着问:“那么大家想一想,三角函数线有哪些应用呢?能够相互讨论。
”学生开始思考,互相讨论,也有同学讲课本打开……讨论结果整理如下:1、在讲解三角函数线的时候,学习了如何利用三角函数线解不等式,例如解不等式21sin >x 。
2、同时有些学生发现利用三角函数线记忆特殊角ππππ2,23,,2,0的正弦值和余弦值更加深刻。
3、利用三角不等线能够画三角函数的图像,和分析三角函数的性质。
4、在利用三角不等线证明同角关系式1cos sin 22=+αα二、案例分析看到同学们讨论结果,我们了解了三角函数线应用很广泛,我们还应用它,多次作为基本工具,讲解公式和函数图像性质,但我发现在证明诱导公式的时候,我们是利用三角函数的定义证明的。
这时候我就想能不能利用三角函数线证明诱导公式呢?如图,角α的终边与单位圆的交点为P ,过P 作x PM ⊥轴于M ,则角απ+,απ-,α-的终边如图所示。
我们以ααπsin )sin(-=+,ααπcos )cos(-=+为例。
如图,角απ+的终边与单位圆的交点为Q ,过Q 作x QN ⊥轴于N ,则ON OM =+=)cos(,cos απα,由图可知,NQ MP ,长度相等,方向相反,所以ααπcos )cos(-=+同理可证其他的诱导公式。
三、案例反思这节课给我的触动很大,通过三角函数线的应用的研究,我发现课本中某些内容存有相互联系,但在讲课过程中,我仅仅利用它,而没分析和总结他们之间的联系,在以后的教学中,我要善于总结知识点之间的联系,而不能将它们孤立,作为教师要善于思考和总结。
x。
三角函数线及应用三角函数是高等数学中的重要内容,广泛应用于各个领域,如工程、物理、天文学等。
本文将介绍三角函数的定义、性质及其在实际问题中的应用。
首先,我们来定义三角函数。
在平面直角坐标系中,以原点O为起点,做一条射线r,与X轴正半轴之间的夹角记为θ。
此时,r与X轴正半轴的交点为点P。
根据射线和X轴的夹角θ不同,我们定义三角函数sinθ、cosθ、tanθ和cotθ等,其中:正弦函数sinθ等于点P的纵坐标y与斜边OP的长度之比;余弦函数cosθ等于点P的横坐标x与斜边OP的长度之比;正切函数tanθ等于点P的纵坐标y与点P的横坐标x之比;余切函数cotθ等于点P的横坐标x与点P的纵坐标y之比。
根据三角函数的定义,我们可以得到以下性质:1. 对于任意实数θ,有sin²θ+ cos²θ= 1。
这被称为“三角恒等式”,是三角函数的基本性质之一。
2. sinθ和cosθ的取值范围均在[-1, 1]之间,tanθ和cotθ的取值范围为实数集。
3. 三角函数在不同象限的取值情况:第一象限:sinθ> 0,cosθ> 0,tanθ> 0,cotθ> 0;第二象限:sinθ> 0,cosθ< 0,tanθ< 0,cotθ< 0;第三象限:sinθ< 0,cosθ< 0,tanθ> 0,cotθ> 0;第四象限:sinθ< 0,cosθ> 0,tanθ< 0,cotθ< 0。
接下来,我们来看一些三角函数的具体应用。
1. 工程中的应用:在工程中,三角函数常常被用于解决各种测量和设计问题。
例如,在建筑设计中,建筑师需要根据太阳的位置来确定房间的采光效果。
这时,就可以利用三角函数来计算太阳的仰角和方位角,从而确定阳光的照射方向和强度。
2. 物理学中的应用:在物理学中,三角函数被广泛应用于描述振动、波动和旋转等现象。