三角函数线
- 格式:pptx
- 大小:497.42 KB
- 文档页数:10
三角函数线
三角函数线是正弦线、余弦线、正切线、余切线、正割线和余割线的总称(有时还包括正矢线、余矢线等,是三角函数的几何表示。
如图:
设任意角a的顶点在原点O(单位圆的圆心),始边与x轴的非负半轴重合,终边与单位圆相交于点P(x,y),过点P作x轴的垂线,,垂足为点M;过点A(1,0)作单位圆的切线,设它与角a的终边(当a位于第一、第四象限时)或其反向延长线(当a位于第二、第三象限是)相交于点T,于是有sin a=y=MP,cos a=x=OM,tan a=y/x=PM/OM=AT/OA=AT.
我们规定与坐标轴同向时,方向为正方向,与坐标轴反向时,方向为负向,则有向线段MP,OM,AT,分别叫做角a的正弦线、余弦线、正切线,他们统称三角函数线。
(1)三角函数线的意义是可以表示三角函数的值,其长度等于三角
函数值的绝对值,方向表示三角函数值的正负。
(2)因为三角函数线是与单位圆有关的有向线段,所以作角的三角函数线时,一定要先做单位圆。
(3)有向线段的书写:有向线段的起点字母写在前面,终点字母写在后面。
高考数学知识点:三角函数线(正弦线、余弦线、正切线)高考数学知识点:三角函数线(正弦线、余弦线、正切线)三角函数线的定义:设任意角α的顶点在原点O,始边与x轴的正半轴重合,终边与单位圆相交于点P(x,y),过P点作x轴的垂线,垂足为M,过点A(1,0)作单位圆的切线,高二,设它与角α的终边或其反向延长线相交于点T,则有向线段MP、OM,AT分别叫做角α的正弦线,余弦线,正切线,即:sinα=MP,cosα=OM,ta nα=AT,如下图:注:线段长度表示三角函数值大小,线段方向表示三角函数值正负。
关于三角函数线,要注意以下几点:(1)正弦线、余弦线、正切线都是有向线段,利用它们的数量来表示三角函数值,是数形结合的典型体现。
三角函数线表示三角的函数值的符号规定如下:正弦线MP、正切线AT方向与y轴平行,向上为正,向下为负;余弦线OM在x 轴上,向右为正,向左为负。
(2)作三角函数线时,所用字母一般都是固定的,书写顺序也不能颠倒。
特别要注意正切线必在过A(1,0)的单位圆的切线上(其中二、三象限角需作终边的反向延长线)。
(3)对于终边在坐标轴上的角,有时三角函数线退化为一个点,有时又为整个半径。
当角α的终边在y轴上时,角α的正切线不存在。
(4)当时,正弦线、余弦线、正切线与角α并不是一一对应的。
一般地,每一个确定的MP、OM、AT都对应两个α的值。
诱导公式:公式一公式二公式三公式四公式五公式六规律:奇变偶不变,符号看象限。
即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。
形如2k×90°±α,则函数名称不变。
诱导公式口诀“奇变偶不变,符号看象限”意义:的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。
单位圆中的三角函数线
圆心在原点,半径等于1的圆为单位圆.设角α的顶点在圆心O,始边与x轴正半轴重合,终边交单位圆于P,过P作PM垂直x轴于M,作PN垂直y轴于点N.以A为原点建立y'轴与y轴同向,与α的终边(或其反向延长线)相交于点T(或T'),则有向线段0M、0N、AT(或AT')分别叫作α的余弦线、正弦线、正切线,统称为三角函数线.有向线段:既有大小又有方向的线段.
要点诠释:
三条有向线段的位置:
正弦线为α的终边与单位圆的交点到x轴的垂直线段;
余弦线在x轴上;
正切线在过单位圆与x轴的正方向的交点的切线上;
三条有向线段中两条在单位圆内,一条在单位圆外.
第1 页共1 页。
高考数学知识点:三角函数线(正弦线、余弦线、正切线)_知识点总结高考数学知识点:三角函数线(正弦线、余弦线、正切线)三角函数线的定义:设任意角α的顶点在原点O,始边与x轴的正半轴重合,终边与单位圆相交于点P(x,y),过P点作x轴的垂线,垂足为M,过点A(1,0)作单位圆的切线,高二,设它与角α的终边或其反向延长线相交于点T,则有向线段MP、OM,AT分别叫做角α的正弦线,余弦线,正切线,即:sinα=MP,cosα=OM,tanα=AT,如下图:注:线段长度表示三角函数值大小,线段方向表示三角函数值正负。
关于三角函数线,要注意以下几点:(1)正弦线、余弦线、正切线都是有向线段,利用它们的数量来表示三角函数值,是数形结合的典型体现。
三角函数线表示三角的函数值的符号规定如下:正弦线MP、正切线AT 方向与y轴平行,向上为正,向下为负;余弦线OM在x轴上,向右为正,向左为负。
(2)作三角函数线时,所用字母一般都是固定的,书写顺序也不能颠倒。
特别要注意正切线必在过A(1,0)的单位圆的切线上(其中二、三象限角需作终边的反向延长线)。
(3)对于终边在坐标轴上的角,有时三角函数线退化为一个点,有时又为整个半径。
当角α的终边在y轴上时,角α的正切线不存在。
(4)当时,正弦线、余弦线、正切线与角α并不是一一对应的。
一般地,每一个确定的MP、OM、AT都对应两个α的值。
诱导公式:公式一公式二公式三公式四公式五公式六规律:奇变偶不变,符号看象限。
即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。
形如2k×90°±α,则函数名称不变。
诱导公式口诀“奇变偶不变,符号看象限”意义:的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。