最优设计-准则与算法
- 格式:ppt
- 大小:646.50 KB
- 文档页数:66
1.优化设计数学模型的三要素是什么?试写出其数学表达式。
2.常用的迭代终止准则有哪些?(1)点距准则 ||Xk+1-Xk||≤ε(2)值差准则 |f(Xk+1)-f(Xk)|≤ε(3)梯度准则 ||▽ f(Xk+1) ||≤ε3.设计的变量和设计空间的关系是什么?由n个设计变量x1,x2,…xn为坐标所组成的实空间称作设计空间。
4.梯度和方向导数的关系是什么?梯度▽ F(X) 是一个向量,梯度方向是函数具有最大变化率的方向(方向导数最大的方向)。
5.如何判断矩阵的正定性?若有HTHX>0,则称矩阵H是正定矩阵;矩阵A正定的条件是A的各阶主子式大于零。
6.为什么说正定二次函数在最优化理论中具有特殊意义?因为许多最优化理论和最优化方法都是根据正定二次函数提出并加以证明的,而且所有对正定二次函数适用并有效的最优化算法,经证明,对一般非线性函数也是适用和有效的。
7.什么是库恩-塔克条件?其几何意义又是什么?等式约束:不等式约束:8.为什么二次插值法的收敛速度要比黄金分割法快?而在相同τ下的实际精度没有黄金分割法高?9.试写出梯度法(最速下降法)的迭代算法公式,并简要叙述该算法的特点。
公式:方法特点:1)初始点可任选,每次迭代计算量小,存储量少,程序简短。
即使从一个不好的初始点出发,开始的几步迭代,目标函数值下降很快,然后慢慢逼近局部极小点;2)任意相邻两点的搜索方向是正交的,它的迭代路径为绕道逼近极小点。
当迭代点接近极小点时,步长变得很小,越走越慢。
梯度法只具有线性收敛速度。
10.梯度法计算速度慢的原因是什么?为什么一些好的算法第一步迭代都以负梯度作为搜索方向?在迭代点向函数极小点靠近的过程,走的是曲折的路线,形成“之”字形的锯齿现象,而且越接近极小点锯齿越细。
11.牛顿方向如何得到?有何优点?12.共轭方向如何产生?有何优点?13.线性规划的基本解、基本可行解和最优解之间有什么关系?14.在解的转换中,如何保证目标函数值不仅下降,而且下降的最多?15.非线性约束最优化问题的求解方法有哪两类?各有什么特点?16.约束优化方法中的可行方向法产生可行方向应满足什么条件?试用文字描述并用公式表达。
第四章 共轭梯度法§4.1 共轭方向法共轭方向法是无约束最优化问题的一类重要算法。
它一方面克服了最速下降法中,迭代点列呈锯齿形前进,收敛慢的缺点,同时又不像牛顿法中计算牛顿方向耗费大量的工作量,尤其是共轭方向法具有所谓二次收敛性质,即当将其用于二次函数时,具有有限终止性质。
一、共轭方向定义4.1 设G 是n n ⨯对称正定矩阵,1d ,2d 是n 维非零向量,若120T d Gd = (4.1)则称1d ,2d 是G -共轭的。
类似地,设1,,m d d 是n R 中一组非零向量。
若0T i j d Gd =()i j ≠ (4.2)则称向量组1,,m d d 是G -共轭的。
注:(1) 当G I =时,共轭性就变为正交性,故共轭是正交概念的推广。
(2) 若1,,m d d G -共轭,则它们必线性无关。
二、共轭方向法共轭方向法就是按照一组彼此共轭方向依次搜索。
模式算法:1)给出初始点0x ,计算00()g g x =,计算0d ,使000Td g <,:0k = (初始共轭方向);2)计算k α和1k x +,使得0()min ()k k k k k f x d f x d ααα≥+=+,令1k k k k x x d α+=+;3)计算1k d +,使10Tk j d Gd +=,0,1,,j k =,令:1k k =+,转2)。
三、共轭方向法的基本定理共轭方向法最重要的性质就是:当算法用于正定二次函数时,可以在有限多次迭代后终止,得到最优解(当然要执行精确一维搜索)。
定理4.2 对于正定二次函数,共轭方向法至多经过n 步精确搜索终止;且对每个1i x +,都是()f x 在线性流形00,i j j j j x x x d αα=⎧⎫⎪⎪=+∀⎨⎬⎪⎪⎩⎭∑中的极小点。
证明:首先证明对所有的1i n ≤-,都有10T i j g d +=,0,1,,j i =(即每个迭代点处的梯度与以前的搜索方向均正交)事实上,由于目标函数是二次函数,因而有()11k k k k k k g g G x x Gd α++-=-=1)当j i <时, ()1111iTT T i j j j k k j k j g d gd gg d +++=+=+-∑110iT T j j kkj k j gd dGd α+=+=+=∑2)当j i =时,由精确搜索性质知:10T i j g d +=综上所述,有 10Ti j g d += (0,1,,)j i =。
最优化方法-习题解答张彦斌计算机学院2014年10月20日Contents1第一章最优化理论基础-P13习题1(1)、2(3)(4)、3、412第二章线搜索算法-P27习题2、4、643第三章最速下降法和牛顿法P41习题1,2,374第四章共轭梯度法P51习题1,3,6(1)105第五章拟牛顿法P73-2126第六章信赖域方法P86-8147第七章非线性最小二乘问题P98-1,2,6188第八章最优性条件P112-1,2,5,6239第九章罚函数法P132,1-(1)、2-(1)、3-(3),62610第十一章二次规划习题11P178-1(1),5291第一章最优化理论基础-P13习题1(1)、2(3)(4)、3、4 1.验证下列各集合是凸集:(1)S={(x1,x2)|2x1+x2≥1,x1−2x2≥1};需要验证:根据凸集的定义,对任意的x(x1,x2),y(y1,y2)∈S及任意的实数λ∈[0,1],都有λx+(1−λ)y∈S.即,(λx1+(1−λ)y1,λx2+(1−λ)y2)∈S证:由x(x1,x2),y(y1,y2)∈S得到,{2x1+x2≥1,x1−2x2≥12y1+y2≥1,y1−2y2≥1(1)1把(1)中的两个式子对应的左右两部分分别乘以λ和1−λ,然后再相加,即得λ(2x1+x2)+(1−λ)(2y1+y2)≥1,λ(x1−2x2)+(1−λ)(y1−2y2)≥1(2)合并同类项,2(λx1+(1−λ)y1)+(λx2+(1−λ)y2)≥1,(λx1+(1−λ)y1)−2(λx2+(1−λ)y2)≥1(3)证毕.2.判断下列函数为凸(凹)函数或严格凸(凹)函数:(3)f(x)=x21−2x1x2+x22+2x1+3x2首先二阶导数连续可微,根据定理1.5,f在凸集上是(I)凸函数的充分必要条件是∇2f(x)对一切x为半正定;(II)严格凸函数的充分条件是∇2f(x)对一切x为正定。
运筹学中的优化算法与算法设计运筹学是一门研究如何有效地利用有限资源来实现最优决策的学科。
在运筹学中,优化算法是一种关键工具,它可以帮助我们找到最佳的解决方案。
本文将重点介绍运筹学中的优化算法与算法设计。
优化算法是一种数学方法,通过计算机模拟和运算,解决最优化问题。
最优化问题通常包括了一个待优化的目标函数和一组约束条件。
优化算法的目标就是找到目标函数的最小值或最大值,同时满足约束条件。
在运筹学中,优化算法的应用非常广泛,例如在生产调度、资源分配、路径规划等领域都有重要的作用。
优化算法主要分为数学规划和启发式算法两大类。
数学规划是一种基于数学模型的优化方法,其核心思想是将问题转化为数学形式,通过数学方法求解最优解。
常见的数学规划方法包括线性规划、整数规划、非线性规划等。
这些方法在理论上非常严谨,能够保证找到全局最优解,但在实际问题中往往由于问题的规模较大而难以求解。
相比之下,启发式算法是一种更加灵活和高效的优化方法,它通过模拟生物进化、物理过程或者人工智能等方法,尝试寻找最优解。
启发式算法通常不保证找到全局最优解,但在解决大规模问题时具有很好的效果。
常见的启发式算法包括遗传算法、模拟退火算法、蚁群算法、粒子群算法等。
算法设计是优化算法中至关重要的一环,良好的算法设计可以显著提高算法的效率和性能。
在算法设计中,需要考虑如何选择合适的搜索策略、参数设置、停止准则等关键因素。
合理设计算法的复杂度可以有效减少计算时间,提高算法的适用性和可靠性。
总的来说,优化算法在运筹学中扮演着重要角色,它们为我们解决实际问题提供了有力的工具和方法。
无论是数学规划还是启发式算法,都有着各自的优势和不足,我们需要根据具体问题的特点选择合适的算法来解决。
在未来,随着信息技术的不断发展和算法设计的进步,优化算法将在运筹学中发挥更加重要的作用。
VHDL有如下特点:①支持从系统级到逻辑门级电路的描述;②具有很强的硬件描述能力;③设计技术齐全、方法灵活、支持广泛;④对设计描述具有相对的独立性;⑤具有很强的移植能力;⑥易于共享和复用;⑦具有丰富的仿真语句和库函数;⑧设计结构清晰、易读易懂;⑨易实现系统的更新和升级;⑩数据类型丰富、安全性好。
VHDL语言中常用的五种库:1)IEEE库:VHDL语言设计中最常见的库。
2) STD库:VHDL语言的标准库3) WORK库:用户的VHDL语言工作库。
4)VITAL库: VHDL语言的时序仿真库5)用户自定义的库:用户自定义的资源库变量的使用规则:①变量不能用于硬件连线和存储元件;②变量赋值和初始化赋值都用“:=”表示;③变量的初值不是预设的,某一时刻只能有一个值;④变量不能用于在进程间传递数据;⑤仿真时,变量用于建模;⑥综合时,变量充当数据的暂存。
信号与变量的区别:①使用场合不同:变量在进程、函数和过程中说明;信号在结构体中说明。
②赋值符号不同:变量用“:=”号赋值, 其值被立即使用(无时间延时);信号用“<=”赋值,其值可以附加延时。
VHDL语言预定义了五种运算符:逻辑运算符、算术运算符、关系运算符、符号运算符、移位运算符主要的三家公司:Xilinx、Altera、LatticeEDA软件系统包括子模块:设计输入子模块、设计数据库子模块、分析验证子模块、综合仿真子模块、布局布线子模块。
电子系统设计的仿真过程分为两个阶段:设计前期的系统级仿真和设计过程的电路级仿真。
(系统仿真主要验证系统的功能;电路级仿真主要验证系统的性能,决定怎样实现设计所需的精度。
)设计过程中的仿真有三种:行为仿真、功能仿真、时序仿真数字系统的两个模块(子系统):数据处理子系统、控制子系统数据处理子系统主要完成数据的采集、存储、运算、传输,主要由存储器、运算器、数据选择器等功能电路组成。
数字系统设计方法:模块设计方法、自顶向下设计法、自底向上设计法。