概率与统计-中心极限定理
- 格式:ppt
- 大小:477.00 KB
- 文档页数:17
中心极限定理无论随机变量12,,,,n X X X 服从什么分布,当n 充分大时,其和的极限分布是正态分布,这就是我们今天要讲的中心极限定理。
定理 5.5(独立同分布中心极限定理)设随机变量12,,,,n X X X 相互独立,服从同一分布,且具有数学期望和方差2(),()0,i i E X D X μσ==>1,2,i =,则随机变量之和1ni i X =∑的标准化变量nin Xn Y μ-=∑的分布函数()n F x 对于任意X 满足2/2lim ()lim d ()n i x t n n n X n F x P x t x μΦ-→∞→∞⎧⎫-⎪⎪⎪=≤==⎬⎪⎪⎩⎭∑⎰定理 5.5表明,对于均值为,μ方差为20σ>的独立同分布的随机变量的和1ni i X =∑的标准化随机变量,不论12,,,,n X X X 服从什么分布,当n 充分大时,都有~(0,1)nin Xn Y N μ-=∑近似,从而,当n 充分大时21~(,)nii XN n n μσ=∑近似.定理5.5′ 设随机变量列12,,,,n X X X 相互独立,服从同一分布,且具有数学期望和方差2(),()0,i i E X D X μσ==>1,2,i =,令11nn i i X X n ==∑,则当n 充分大时~(0,1)N 近似,即2~(,/)n X N n μσ近似.例5.3 一盒同型号螺丝钉共有100个,已知该型号的螺丝钉的重量是一个随机变量,期望值是100 g,标准差是10 g,求一盒螺丝钉的重量超过10.2 kg 的概率.解 设i X 为第i 个螺丝钉的重量,,100,,2,1 =i Y 为一盒螺丝钉的重量,则1001,i i Y X ==∑12100,,,X X X 相互独立,由()100,i E X=10,σ= 100n =知()100()10 000,i E X E X =⨯=()100()10 000,i D X D X =⨯=由独立同分布中心极限定理,~(10000,10000)Y N 近似,{}{10 200}110 200P Y P Y >=-≤10 00010 20010 0001100100Y P --⎧⎫=-≤⎨⎬⎩⎭1(2)10.977 20.022 8.Φ≈-=-=定理5.6(李雅普诺夫定理)设随机变量 ,,,,21n X X X 相互独立,它们具有数学期望和方差2(),()0,1,2,k k k kE X D X k μσ==>=,记.122∑==nk k nB σ若存在正数δ,使得当∞→n 时,,0}|{|1122→-∑=++nk k knXE B δδμ则随机变量之和∑=n k k X 1的标准化变量nnk kn k kn k k n k k nk k n B X X D X E X Z ∑∑∑∑∑=====-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=11111μ的分布函数)(x F n 对于任意x ,满足2/211lim ()lim d ().n nk k x t k k n n n n X F x P x t x B μΦ-==→∞→∞⎧⎫-⎪⎪⎪⎪=≤==⎨⎬⎪⎪⎪⎪⎩⎭∑∑⎰ 定理5.7(棣莫佛—拉普拉斯定理)设随机变量(1,2,)~(,)(01),n n b n p p η=<<则对任意x ,有22lim d ().t x n P x t x Φ--∞→∞⎧⎫⎪≤==⎬⎪⎭⎰证明 由于n η可视为n 个相互独立、服从同一参数p 的(01)-分布的随机变量12,,,n X X X 的和,即有1nn i i X η==∑,其中(),()(1),i i E X p D X p p ==-1,2,i =,故由独立同分布中心极限定理可得22lim lim d ().n i n n t xX np P x P x t x Φ→∞→∞-⎧⎫-⎪⎪⎧⎫⎪⎪≤=≤⎬⎬⎪⎪⎭⎪⎭==∑⎰, 定理5.7表明:若随机变量n η服从二项分布,即~(,)n b n p η,则当n 充分大时,有~(0,1)npN η-近似,从而,当n 充分大时~(,(1))n N np np p η-近似例5.4 假如某保险公司开设人寿保险业务,该保险有1万人购买(每人一份),每人每年付100元保险费,若被保险人在年度内死亡, 保险公司赔付其家属1万元.设一年内一个人死亡的概率为0.005试问:在此项业务中保险公司亏本的概率有多大?保险公司每年利润不少于10万的概率是多少?解 设X 表示一年内被保险人的死亡人数,则,~(10000,0.005)X b ,于是()100000.00550,()100000.0050.99549.75E X D X =⨯==⨯⨯=由棣莫佛—拉普拉斯定理,~(50,49.75)X N 近似.保险公司亏本,也就是赔偿金额大于10 000100100⨯=万元,即死亡人数大于100人的概率所以保险公司亏本的概率为(){100}1{100}117.050P X P X P Φ>=-≤=-≈-= 这说明,保险公司亏本的概率几乎是零.如果保险公司每年的利润不少于10万元,即赔偿人数不超过90人,则保险公司每年利润不少于10万的概率为(){90} 5.671P X ≤≈Φ≈Φ=.可见,保险公司每年利润不少于10万元的概率几乎是100%.。
中心极限定理
这是概率与统计的一个基本定理,阐明当样本数量较大时,不管总体分布的形状如何,分布(来自具有有限方差的总体的随机样本的均值)将近似服从正态分布。
许多常用统计过程都要求数据近似为正态,但中心极限定理使您能够将这些有用的过程应用于呈强烈非正态的总体。
样本数量必须为多大取决于原始分布的形状。
如果总体分布是对称的,则样本数量为 5 即可获得较好的近似;如果总体分布非常不对称,则需要较大的样本数量– 50 或更多–。
例如,假设一个总体服从均匀分布。
左侧的均匀概率分布图表明总体是对称的,但呈强烈非正态。
但是,根据中心极限定理,此总体的样本均值的分布 (n=5) 则近似为正态,如第二个直方图所示。
此样本均值直方图包含一个叠加的正态曲线,揭示了其正态性。
均匀总体的分布来自均匀总体的 1000 个样本均值的分布 (n=5)
以下图形揭示了中心极限定理在服从指数分布的总体上的体现。
此分布既不对称也非正态,如左侧的概率分布图所示。
但是,根据中心极限定理,来自此总体的1000 个大小为 50 的样本的样本均值的分布则近似为正态,如第二个直方图所示。
此样本均值直方图包含一个叠加的正态曲线,揭示了其正态性。
指数总体的分布来自指数总体的 1000 个样本均值的分布 (n=50)。
概率与统计中的抽样分布与中心极限定理概率与统计学是数学中的一个重要分支,它研究的是随机事件出现的规律性。
在概率与统计学中,抽样分布与中心极限定理是两个核心概念,对于理解和应用统计学非常重要。
一、抽样分布在统计学中,我们通常不能对整个总体进行完全的数据收集和分析,因此我们需要利用样本来推断总体的信息,并作出相应的概率判断。
为了进行有关样本的概率推断,我们需要研究抽样分布。
抽样分布是指从总体中抽取多个样本,并计算各个样本所具有的某种统计量的分布。
常见的统计量有样本均值、样本比例、样本方差等。
根据中心极限定理,当样本量足够大时,这些抽样分布会呈现出一些特定的形态,如正态分布或近似正态分布。
二、中心极限定理中心极限定理是概率与统计学中的一个重要理论。
它表明,当从总体中取得足够大的样本量时,样本均值的抽样分布将近似于正态分布。
具体而言,无论总体分布如何,只要样本量足够大,样本均值的分布就会接近正态分布。
中心极限定理的重要性在于,它使得我们可以利用正态分布的性质进行统计推断。
例如,我们可以使用正态分布的性质来计算置信区间、进行假设检验等。
这为统计学的应用提供了便利。
三、应用示例下面通过一个示例来说明抽样分布与中心极限定理的应用。
假设我们关注某个国家的成年人的身高分布。
为了研究这个问题,我们在该国随机抽取了1000个成年人,并测量了他们的身高。
我们想要推断该国成年人平均身高的范围。
根据中心极限定理,由于我们的样本量足够大,样本均值的分布将近似于正态分布。
假设样本均值为μ,标准差为σ,那么根据正态分布的性质,我们可以计算样本均值的置信区间。
假设我们希望以95%的置信水平推断平均身高的范围,那么根据正态分布的性质,我们可以计算一个包含95%的置信区间,公式为:样本均值 ± 1.96 * (标准差/ √样本量)在这个例子中,我们可以根据样本的身高数据计算出样本均值和标准差,然后带入上述公式,得到一个包含95%置信水平的平均身高范围。
若{}n X 的分布函数序列{()}n F x 与X 的分布函数()F x 有,在任意连续点x ,lim ()()n n F x F x →∞=。
依概率收敛若0ε∀>,有()0n n P X X ε→∞->−−−→。
准确的表述是,0ε∀>,0δ∀>,,N n N ∃>,有()n P X X εδ-><成立(3)几乎必然收敛如果有(lim )1n n P X X →∞==。
准确的表述是,除掉一个0概率集A ,对所有的\A ω∈Ω,有lim ()()n n X X ωω→∞=成立。
这是概率空间上的点收敛。
定理1。
(切贝雪夫大数律){}n X 相互独立,且有相同的期望和方差,(不一定同分布)()n E X u =2()n D X σ=,,n ∀ 记11n n i i Y X n ==∑,则P n Y u −−→。
统计发生——事物某方面的定量记录事前是不确定的,发生后的数据由真值和误差两部分构成,εμ+=X。
X 是数据,μ是真值,ε是误差。
导致误差的原因有:1. 系统性误差:偏离真值的本质性错误,有内在原因所致;2. 随机性误差:偏离真值的偶然性错误,没有内在原因,是纯偶然因素所致。
总体就是一个特定的随机变量通过抽样,获得样本,构造样本统计量,由此推断总体中某些未知的信息从总体中抽样是自由的,且当总体数量足够大,有放回与无放回抽样区别不大,有理由认为,取得的抽样观察值是没有关系的。
所以,样本在未抽取前它们是与总体X 同分布的随机变量,且是相互独立的,称此为随机样本。
定义2。
设1,,n x x 是取自总体X 的一组样本值, 1(,,)n g x x 是Borel 可测函数,则称随机变量1(,,)n g X X 是一个样本统计量。
如果总体X 中分布函数有某些参数信息是未知的,我们用统计量1(,,)n g X X 去推断这些信息,称此问题为统计推断问题。
给样本值11(,,),(,,)N N x x x y y y ''== ,定义: (1)样本均值1(/)ni i x x n ==∑(2)样本方差2211ˆˆvar()()1ni i x x x n σ===--∑ 样本标准差ˆ..)s e e σ==(3)样本协方差 111ˆ(,)()()1ni i c o v x y xx y y n ==---∑ 样本相关系数1/2ˆ(,)ˆˆ[()()]xy covx y varx var y γ=(4)样本k 阶矩 11n kk i i A x n ==∑ 1,2,k =(5)样本k 阶中心矩 11()nk k i i B x x n ==-∑1,2,k =X 的左侧分位点F α,()()F P X F dF x ααα∞<==⎰。
如果X 是连续型随机变量.=≥-}|)X (E X {|P ε()dx x |)X (E x |⎰≥-εϕ()()dx x )X (E x |)X (E x |⎰≥--≤εϕε22()()⎰∞+∞--≤dx x )X (E x ϕε222εDX=思考题解答:本课程的主要内容:中心极限定理:1.李雅普诺夫定理;2.推论:独立同分布定理;3.拉普拉斯定理(独立同分布定理推论);4.拉普拉斯局部极限定理;抽样分布:设ΛΛn X ,X ,X 21是相互独立的随机变量有期望值i i EX α=及方差+∞<=2ii DX σ()Λ21,i =若每个i X 对总和∑=ni iX 1的影响不大.一.定理5.3: (李雅普诺夫定理)11()()n i i n i i E X x D X =→∞=⎫⎪⎪≤=⎬⎪⎪⎭∑∑2212tx e dt π--∞⎰()x Φ=1121lim n n i i i i n n i i X a P x σ===⎧⎫-⎪⎪⎪⎪≤=⎨⎬⎪⎪⎪⎪⎩⎭∑∑∑}{lim 1x nn XP ni in ≤-∑=∞→σμ⎰∞=x-2t -dt e 212π设X 1,X 2, …是独立同分布的随机变量序列,且E (X i )= ,D (X i )= ,i =1,2,…,则2σμ列维一林德伯格(Levy -Lindberg )定理.推论(独立同分布下的中心极限定理)请看演示中心极限定理的直观演示说明:在定理条件下:()()11~0,1nii Xn N nμσ=-∑()12~ni i X =∑()2,N n n μσ和函数的正态性;()11~0,1/ni i X n N nμσ=-∑算术均值的正态性;或()113~ni i X n =∑2,N n σμ⎛⎫⎪⎝⎭n 较大的情况下,一般n>30;例3在一个罐子中,装有10个编号为0-9的同样的球,从罐中有放回地抽取若干次,每次抽一个,并记下号码.问对序列{X k },能否应用大数定律?诸X k 独立同分布,且期望存在,故能使用大数定律.解: ,9.01.001~⎭⎬⎫⎩⎨⎧k X k =1,2, …E (X k )=0.1,⎩⎨⎧=否则次取到号码第001k X k (1) 设,k =1,2, …∑=∞→=<-nk k n X n P 11}|1.01{|lim ε即对任意的ε>0,解: ,9.01.001~⎭⎬⎫⎩⎨⎧k X k =1,2, …E (X k )=0.1,诸X k 独立同分布,且期望存在,故能使用大数定律.(2) 至少应取球多少次才能使“0”出现的频率在0.09-0.11之间的概率至少是0.95?解:设应取球n 次,0出现频率为∑=nk k X n 11,n .)X (E nk k 101=∑=n.)X (D nk k 0901=∑=由题可知:95011010901.}.X n .{P nk k ≥≤≤∑=由中心极限定理近似N (0,1)nnX nk k 3.01.01-∑=nX n nk k 3.01.011-=∑=}11.0109.0{1≤≤∑=nk k X n P 1)30(2-≈n ΦnX n nk k 3.01.011-∑=近似N (0,1)}n/...n /..X n n /...{P n k k 30101103010130100901-≤-≤-=∑=}n n/..X n n {P nk k 3030101301≤-≤-=∑=95.01)30(2≥-n Φ欲使975.0)30(≥n Φ即96.130≥n 查表得从中解得3458≥n 即至少应取球3458次才能使“0”出现的频率在0.09-0.11之间的概率至少是0.95.(3) 用中心极限定理计算在100次抽取中,数码“0”出现次数在7和13之间的概率.解:在100次抽取中, 数码“0”出现次数为∑=1001k k X 3101001-∑=k k X 即近似N (0,1)由题:所求概率为:∑=≤≤1001)137(k k X P =⎪⎪⎭⎫ ⎝⎛∑=1001k k X E 1010100=⨯.=⎪⎪⎭⎫ ⎝⎛∑=1001k k X D 9090100=⨯.即在100次抽取中,数码“0”出现次数在7和13之间的概率为0.6826.∑=≤≤1001)137(k k XP =0.68263101001-∑=k k X近似N (0,1))13101(1001≤-≤-=∑=k k X P )1()1(-Φ-Φ≈1)1(2-Φ=例1 根据以往经验,某种电器元件的寿命服从均值为100小时的指数分布. 现随机地取16只,设它们的寿命是相互独立的. 求这16只元件的寿命的总和大于1920小时的概率.由题给条件知,诸X i 独立,同分布.16只元件的寿命的总和为∑==161k kX Y 解: 设第i 只元件的寿命为X i , i =1,2, …,16E (X i )=100, D (X i )=10000依题意,所求为P (Y >1920)由于E (Y )=1600,D (Y )=160000由中心极限定理,近似N (0,1)4001600-Y P (Y >1920)=1-P (Y ≤1920)).(801Φ-≈=1-0.7881=0.2119⎪⎭⎫ ⎝⎛-≤--=4001600192040016001Y P ⎪⎭⎫ ⎝⎛≤--=8040016001.Y P})1({lim x p np np Y P n n ≤--∞→设随机变量服从参数n, p (0<p <1)的二项分布,则对任意x ,有n Y dte xt ⎰∞--=2221π定理表明,当n 很大,0<p <1是一个定值时(或者说,np (1-p )也不太小时),二项变量的分布近似正态分布N (np ,np (1-p )).n Y 二.定理(棣莫佛-拉普拉斯定理)例:一复杂的系统由100个相互独立起作用的部件组成,在整个运行期间每个部件损坏的概率为0.1,为使整个系统起作用,至少必须有85个部件正常工作求整个系统起作用的概率一复杂的系统由n 个相互独立起作用的部件所组成,每个部件的可靠性为0.9,且必须至少有80%的部件工作才能使整个的系统正常工作,问n 至少为多大才能使系统的可靠性不低于0.95?解:设100中个正常工作数为X,()~100,0.9X B ()85P X ≥=()185P X -<851000.911000.90.1-⨯⎛⎫=-Φ ⎪⨯⨯⎝⎭()1 1.67=-Φ-=0.95252) X~B(n, 0.9)()0.80.95P X n ≥≥()10.80.95P X n -<≥0.80.90.050.90.1n n n -⨯⎛⎫Φ≤ ⎪⨯⨯⎝⎭21.640.0924.20.01n ⨯=≈由题意可知即:()0.80.05P X n <≤0.90.8 1.960.90.1n n n -⨯≈⨯⨯查表得:解方程:至少25件.例2. (供电问题)某车间有200台车床,在生产期间由于需要检修、调换刀具、变换位置及调换工件等常需停车. 设开工率为0.6, 并设每台车床的工作是独立的,且在开工时需电力1千瓦.问应供应多少瓦电力就能以99.9%的概率保证该车间不会因供电不足而影响生产?设需要x千瓦电力.由题意得:()999≤0.P≥Xx用X 表示在某时刻工作着的车床数,解:对每台车床的观察作为一次试验,每次试验观察该台车床在某时刻是否工作,工作的概率为0.6,共进行200次试验.依题意,X ~B (200,0.6),现在的问题是:P (X ≤x )≥0.999的最小的x .求满足设需x 千瓦电力,(由于每台车床在开工时需电力1千瓦,x 台工作所需电力即x 千瓦.)由德莫佛-拉普拉斯极限定理)1(p np npX --近似N (0,1),于是P (X ≤x )= P (0≤X ≤x )这里np =120,np (1-p )=48)()x (4812048120---≈ΦΦ)x (48120-≈Φ查正态分布函数表得由≥0.999,)x (48120-Φ从中解得x ≥141.5,即所求x =142.(千瓦)也就是说, 应供应142 千瓦电力就能以99.9%的概率保证该车间不会因供电不足而影响生产.999.0)1.3(=Φ48120-x ≥3.1,故三.定理5.4(拉普拉斯局部极限定理)当时,n →∞()P X k =≈()2212k n p n p qen p qπ--01()k np npqnpqϕ-=例:10部机器独立工作,每部停机得概率为0.2,求3部机器同时停机的概率?解:设10部中同时停机的数为X,()~10,0.2X B ()3P X ==013100.2()100.20.8100.20.8ϕ-⨯⨯⨯⨯⨯01(0.79)1.265ϕ==0.2308统计量既然是依赖于样本的,而后者又是随机变量,故统计量也是随机变量,因而就有一定的分布,这个分布叫做统计量的“抽样分布”.§7.4几个常用统计量的分布主要介绍正态总体下的统计量的分布.设总体X ()2σμ,N ~()n X ,X ,X Λ21是总体X 的一个样本.由此构成的样本函数:∑==ni iX n X 11()∑=--=ni i X X n S 12211它们服从什么分布?()n,,i ,N ~X i Λ212=σμ一.关于样本均值的分布的定理设X 1,X 2,…,X n 是取自正态总体),(2σμN 的样本,则有),(~2nN X σμ)1,0(~N nX σμ-(1)(2)令U=)1,0(~N nX σμ-U-分布的临界值:它是指在一定的概率之下,随机变量取值落入某一区间内的区间上限或下限.例:P{ξ≤λ}=α,λ称为U 分布的临界值λα已知α的值可查表求临界值λ.即:由左边面积求U 的临界值二.关于样本方差S 2的分布定理(一)()2n χ分布()2n χ分布的密度函数为()1222102(2)00n x n x e x f x n x --⎧≥⎪=Γ⎨⎪<⎩来定义.1>=⎰∞--r ,dx e x )r (x r Γ其中伽玛函数通过积分)r (ΓE (X )=n , D (X )=2n演示χ2 分布()2n χ分布的上分位点:α2()n αχ例如:0.1,25n α==20.1(25)χ=34.4 当n 充分大时,有费歇(R.A.Fisher)公式:()221()212n z n ααχ≈+-例如:20.05(50)χ≈()21 1.65992+=67.28定理2.1: 设相互独立, 都服从标准正态分布N (0,1), 则随机变量:服从的分布为自由度为n 的分布.n X X X ,,,21Λ222212nX X X +++=Λχ2χ(0,1)N 定理2.2:设相互独立, 都服从标准正态分布n X X X ,,,21Λ则(二)标准正态分布下平方和分布定理∑==n i i X n X 11(1) 与()∑=-ni i X X 12相互独立.(2) ()21~ni i X X=-∑()21n χ-作业:1.预习:抽样分布2. 练习P116 7---163思考题:A组:甲乙两个戏院在竞争1000名观众,假定每个观众完全随机地选择一个戏院,且观众之间选择是彼此独立的,问每个戏院应该设有多少个座位才能保证因缺少座位而使观众离去的概率小于1%?B组:总结算术平均的分布.X。