八年级数学梯形1
- 格式:pdf
- 大小:793.42 KB
- 文档页数:9
八年级数学《梯形》的说课稿人教版八年级数学《梯形》的说课稿今天我说课的题目是梯形,这节课我主要从教材背景分析、教学目标设计、学情分析、教学手段及方法、教学程序设计、教学评价设计、板书设计等几方面来完成我的说课。
一、教材分析(一)、教材的地位和作用关于梯形,是人教版教材八年级下册第十九章第三节的内容。
本课知识是对前面所学的平行四边形、矩形、三角形知识的发展、巩固和应用。
梯形是中学阶段几何知识的重要内容。
这节课主要是训练学生的证明思路,通过添加辅助线的方法对等腰梯形的性质进行证明和应用,通过本节课的学习,使学生学到数学转化的思想方法。
同时培养学生分析问题、解决问题的能力。
它对整章节教学起承上启下的作用。
(二)教学目标根据教材分析,结合学生的实际情况,我拟定了以下的教学目标:知识与技能目标探索并掌握梯形的有关概念和基本性质,进一步掌握等腰梯形的性质定理,并能通过逻辑推理进行证明。
能运用梯形的有关概念概念和性质进行简单的计算和证明,进一步培养学生分析问题的能力。
体验添加铺助线对证明的必要性使学生初步掌握等腰梯形中常用辅助线的添加方法和应用。
2、过程与方法目标⑴使学生在探究梯形相关的概念和等腰梯形的性质的过程中发展学生的说理意识;⑵在解决等腰梯形的应用问题的过程中,尝试多样化的方法和策略、3、情感、态度与价值观目标让学生们体会数学活动充满着思考与创造的乐趣,体验与同学合作交流的愉悦;二、教学重点、难点(一)重点:1、等腰梯形的性质2、通过实际操作研究梯形的基本辅助线作法。
(二)难点:灵活添加辅助线,把梯形转化成平行四边形或三角形。
原因是解决梯形问题往往要转化成平行四边形和三角形来处理,经常需要添加辅助线,对于刚刚接触梯形的学生难免会有无从下手的感觉,往往会有题目一讲就明白但自己不会分析解答的情况发生。
富有趣味的符合学生认知规律的教学环节设置、现代化教学手段的使用、在课堂上师生双主体作用的充分发挥、多角度的教学评价设计,都将为明确体现本节课重点、突破难点服务、三、教学方法根据《新课标》的要求,立足于学生的生活经验和已有的数学活动经验,本节课我采用“引、动、导、探”教学法。
梯形(一)梯形的有关概念1. 梯形:一组对边平行且另一组对边不平行的四边形叫做梯形 注:(1)梯形是特殊的四边形 (2)有且只有一组对边平行。
2. 梯形中平行的两边叫做梯形的底,短边为上底,长边为下底,与位置无关,不平行的两边叫做梯形的腰,梯形两底之间的距离叫做梯形的高,它是一底上的一点向另一底作的垂线段的长度。
3. 梯形的分类梯形⎪⎩⎪⎨⎧⎩⎨⎧等腰梯形直角梯形特殊梯形一般梯形(1)直角梯形:有一个角为直角的梯形为直角梯形(2)等腰梯形:两腰相等的梯形叫做等腰梯形 (二)梯形的性质 1. 一般梯形的性质 在梯形ABCD 中,AD ∥BC ,则∠A+∠B=︒180,∠C+∠D=︒180 2. 直角梯形具有的特征 在直角梯形ABCD 中,若AD ∥BC ,∠B=︒90,则∠A=︒90,∠C+∠D=︒180 3. 等腰梯形具有的性质 (1)等腰梯形同一底上的两个内角相等(2)等腰梯形的两条对角线相等(3)等腰梯形是轴对称图形,但不是中心对称图形,等腰梯形的对称轴是两底中点所在的直线。
4. 等腰梯形的判定 (1)利用定义: (2)同一底上的两个角相等的梯形是等腰梯形 (3)对角线相等的梯形是等腰梯形【典型例题】例1. 如图,在等腰梯形ABCD 中,AB ∥CD ,对角线AC 平分∠BAD ,∠B ︒=60,CD=2cm ,则梯形ABCD 的面积为 A. 2cm 33B. 2cm 6C. 2cm 36D. 2cm 12例2. 如图,等腰梯形ABCD 中,AD ∥BC ,点E 是AD 延长线上一点,DE=BC ,(1)求证:∠E=∠DBC (2)判断△ACE 的形状例3. 如图,梯形ABCD 中,AD ∥BC ,AD=1,BC=4,AC=3,BD=4,求ABCD S 梯形。
例4. 如图,已知:AD 是△ABC 边BC 上的高线,E 、F 、G 分别是BC 、AB 、AC 的中点,求证:四边形EDGF 是等腰梯形。
梯形(基础)知识点归纳及典型例题讲解【学习目标】1.理解梯形的有关概念,理解直角梯形和等腰梯形的概念.2.掌握等腰梯形的性质和判定.3.初步掌握研究梯形问题时添加辅助线的方法,使问题进行转化.4. 熟练运用所学的知识解决梯形问题.5. 掌握三角形,梯形的中位线定理.【要点梳理】知识点一、梯形的概念一组对边平行,另一组对边不平行的四边形叫梯形. 在梯形中,平行的两边叫做梯形的底,较短的底叫做上底,较长的底叫做下底,不平行的两边叫做梯形的腰,夹在两底之间的垂线段叫做梯形的高,一腰和底的夹角叫做底角.要点诠释:(1)定义需要满足三个条件:①四边形;②一组对边平行;③另一组对边不平行.(2)有一组对边平行的四边形有可能是平行四边形或梯形,关键在于另一组对边的位置或者数量关系的不同.梯形只有一组对边平行,而平行四边形两组对边都平行;平行四边形中平行的边必相等,梯形中平行的一组对边必不相等.(3)在识别梯形的两底时,不能仅由两底所处的位置决定,而是由两底的长度来决定梯形的上、下底.知识点二、等腰梯形的定义及性质1.定义:两腰相等的梯形叫等腰梯形.2.性质:(1)等腰梯形同一个底上的两个内角相等.(2)等腰梯形的两条对角线相等.要点诠释:(1)等腰梯形是特殊的梯形,它具有梯形的所有性质.(2)由等腰梯形的定义可知:等腰相等,两底平行.(3)等腰梯形同一底上的两个角相等,这是等腰梯形的重要性质,不仅是“下底角”相等,两个“上底角”也是相等的.知识点三、等腰梯形的判定1.用定义判定:两腰相等的梯形是等腰梯形.2.判定定理:(1)同一底边上两个内角相等的梯形是等腰梯形.(2)对角线相等的梯形是等腰梯形.知识点四、辅助线梯形问题常常是通过作辅助线转化为特殊的平行四边形及三角形问题加以研究,一些常用的辅助线做法是:知识点五、三角形、梯形的中位线联结三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.联结梯形两腰中点的线段叫梯形的中位线.梯形的中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.【典型例题】类型一、梯形的计算1、已知:如图,在梯形ABCD中,AD//BC,AB=DC=AD=2,BC=4.求∠B的度数及AC的长.【答案与解析】解:过A点作AE∥DC交BC于点E.∵ AD∥BC,∴四边形AECD是平行四边形.∴ AD=EC,AE=DC.∵ AB=DC=AD=2,BC=4,∴ AE=BE=EC=AB.可证△BAC是直角三角形,△ABE是等边三角形.∴∠BAC=90°,∠B=60°.在Rt△ABC中,2223=-=.AC BC AB∴ ∠B =60°,23=AC .【总结升华】平移一腰,把梯形分成一个平行四边形和三角形. 举一反三:【变式】如图所示,已知四边形ABCD 是梯形,AD ∥BC ,∠A =90°,BC =BD ,CE ⊥BD ,垂足为E . (1)求证:△ABD ≌△ECB ;(2)若∠DBC =50°,求∠DCE 的度数.【答案】证明:(1)∵ AD ∥BC , ∴ ∠ADB =∠EBC . 又∵ CE ⊥BD ,∠A =90°, ∴ ∠A =∠CEB . 在△ABD 和△ECB 中,A CEBADB EBC BD CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ △ABD ≌△ECB .(2)∵ ∠DBC =50°,BC =BD ,∴ ∠BCD =65°. 又∵ ∠BEC =90°,∴ ∠BCE =40°.∴∠DCE=∠BCD-∠BCE=25°.2、如图所示,等腰梯形ABCD中,AD∥BC,AB=CD,对角线AC⊥BD,AD=4,BC=10,求梯形的面积.【思路点拨】题目中有对角线互相垂直的条件,可通过平行移动对角线的方法,将两条对角线集中到一个直角三角形中,利用这个条件求出高.【答案与解析】解:如图所示,过D作DF∥AC交BC的延长线于F,作DE⊥BC于E,∴四边形ACFD为平行四边形,∴ DF=AC,CF =AD=4.∵ AC⊥BD,AC∥DF,∴ ∠BDF =∠BOC =90°. ∵ ABCD 是等腰梯形 ∴ AC =BD ,∴ BD =DF .∴ BF =BC +CF =14,∴ DE =12BF =7.∴ 1(410)7492ABCDS=+⨯=梯形. 【总结升华】作对角线的平行线(平移对角线),将上底平移与下底拼接在一起构造两底之和,把梯形转化成平行四边形是常见的辅助线方法. 类型二、梯形的证明3、如图,在平行四边形ABCD 中,∠BAD 、∠BCD 的平分线分别交BC 、AD 于点E 、F ,AE 、DC 的延长线交于点G ,试说明四边形AFCG 为等腰梯形.【思路点拨】先证明四边形AFCG为梯形,再通过证底角相等证明四边形AFCG为等腰梯形.【答案与解析】解:∵四边形ABCD为平行四边形,∴∠BAD=∠BCD,又AE、CF分别为∠BAD、∠BCD的平分线,∴∠1=∠2=∠4,又AD∥BC,∴∠1=∠3,∴∠2=∠3,∴CF∥AG,又AF不平行于CG,∴四边形AFCG为梯形;又∠G=∠BCD-∠3=∠2+∠4-∠3=∠1,∴四边形AFCG为等腰梯形(同一底上两个角相等).【总结升华】本题考查了平行四边形的性质,难度适中,解题关键是熟练掌握并灵活运用等腰梯形的判定方法.举一反三:【变式】如图,梯形ABCD中,AD∥BC,AB=DC,∠BAD、∠CDA的平分线AE、DF分别交直线BC于点E、F.求证:CE=BF.【答案】证明:在梯形ABCD中,AB=DC,∴∠ABC=∠DCB,∠BAD=∠CDA.∵AE、DF分别为∠BAD与∠CDA的平分线,∴∠BAE=12∠BAD,∠CDF=12∠CDA.∴∠BAE=∠CDF.∴△ABE≌△DCF.(ASA)∴BE=CF.∴BE-BC=CF-BC.即CE=BF.4、如图所示,在梯形ABCD中,AD ∥BC ,对角线AC =5,BD =12,两底AD 、BC 的和为13.(1)求证:AC ⊥BD ;(2)求梯形ABCD 的面积.【答案与解析】证明:(1)过D 作DE ∥AC 交BC 的延长线于E 点,又∵ AD ∥BC ,∴ 四边形ACED 为平行四边形.∴ DE =AC =5,CE =AD .在△BDE 中,BD =12,DE =5,BE =BC +CE =BC +AD =13,且22251213+=,即DE 2+BD 2=BE 2,∴ △BDE 为直角三角形,∴ ∠BDE =90°,则DE ⊥BD ,又DE ∥AC ,∴ AC ⊥BD .(2)111()222ABD CBD ABCD S S S BD OA BD OC BD OA OC =+=+=+g g △△梯形 115123022BD AC ==⨯⨯=g . 【总结升华】(1)对角线互相垂直的四边形的面积等于对角线长度乘积的一半.(2)通过辅助线将已知数据转化在同一个三角形内,然后由勾股定理的逆定理得到垂直关系,这是本题的关键.类型三、三角形、梯形的中位线5、如图,已知P、R分别是长方形ABCD的边BC、CD上的点,E、F分别是PA、PR的中点,点P在BC上从B向C移动,点R不动,那么下列结论成立的是()A .线段EF 的长逐渐增大B .线段EF 的长逐渐变小C .线段EF 的长不变D .无法确定【答案】C ;【解析】连AR ,由E 、F 分别为PA ,PR 的中点知EF 为△PAR 的中位线, 则12EF AR ,而AR 长不变,故EF 大小不变.【总结升华】当条件中含有中点的时候,要将它与中位线联系起来,进行联想,必要时添加辅助线,构造中位线图形.6、在直角梯形ABCD 中(如图所示),已知AB∥DC,∠DAB=90°,∠ABC=60°,EF 为中位线,且BC =EF =4,那么AB =( )A .3B .5C .6D .8【答案】B;【解析】解:作CG⊥AB于G点,∵∠ABC=60°BC=EF=4,∴BG=2,设AB=x,则CD=x-2,∵EF为中位线,∴AB+CD=2EF,即x+x-2=8,解得x=5,【总结升华】此题综合运用了梯形的中位线定理、直角三角形的性质.在该图中,最关键的地方是正确的构造直角三角形.。
八年级数学上册第十一章梯形知识点总
结 (新版)新人教版
1. 梯形的定义
梯形是指有两条平行边的四边形。
其中,较长的两边叫做上底和下底,两条连接上底和下底的斜边叫做腰,而两条腰的交点叫做顶点。
2. 梯形的分类
根据上底和下底的长度关系,梯形可以分为以下几类:
- 等腰梯形:上底和下底长度相等的梯形。
- 直角梯形:腰和底边之间有直角的梯形。
- 一般梯形:除了等腰梯形和直角梯形以外的其他梯形。
3. 梯形的性质
- 梯形的对边平行:一条边和与之不共顶点的另一条边平行。
- 梯形的底角和顶角互补:底边的两个邻角和顶边的两个邻角互补,即它们的和为180度。
- 等腰梯形的性质:等腰梯形的底角相等,顶角相等,且底边中点连线与顶边中点连线平行。
4. 梯形的面积计算
梯形的面积可以用以下公式计算:
面积 = [(上底 + 下底) ×高] ÷ 2
5. 梯形的周长计算
梯形的周长可以用以下公式计算:
周长 = 上底 + 下底 + 两条腰的长度
以上是八年级数学上册第十一章梯形的基本知识点总结,希望对您的研究有所帮助!。
新课标人教版初中数学八年级下册第十九章《19.3梯形》精品教案梯形知识归纳1.梯形的定义及其有关概念一组对边平行而另一组对边不平行的四边形叫做梯形.平行的两边叫做梯形的底,其中长边叫下底;不平行的两边叫腰;两底间的距离叫梯形的高.一腰垂直于底的梯形叫直角梯形,两腰相等的梯形叫等腰梯形.2.梯形的性质及其判定梯形是特殊的四边形,它具有四边形所具有的一切性质,此外它的上下两底平行.一组对边平行且另一组对边不平行的四边形是梯形,但要判断另一组对边不平行比较困难,一般用一组对边平行且不相等的四边形是梯形来判断.3.等腰梯形的性质和判定性质:等腰梯形在同一底上的两个角相等,两腰相等,两底平行,两对角钱相等,是轴对称图形,只有一条对称轴,底的中垂线就是它的对称轴.判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;对角钱相等的梯形是等腰梯形.梯形重难点分析本节的重点是等腰梯形的性质和判定.梯形仍是具有特殊条件的四边形,它与平行四边形同属于特殊的四边形,它只有一组对边平行,而另一组对边不平行,但平行四边形两组对边分别平行.而等腰梯形又是特殊的梯形,它的许多性质和判定方法与矩形、菱形、正方形这些特殊的平行四边形有一定的相似性和可比性.本节的难点也是等腰梯形的性质和判定.由于等腰梯形又是特殊的梯形,它的许多性质和判定方法与矩形、菱形、正方形这些特殊的平行四边形有一定的相似性和可比性,虽然学生在小学时已经接触过等腰梯形,在认识和理解上有一定的基础,但还是容易同特殊的平行四边形混淆,再加上梯形问题往往要转化成平行四边形和三角形来处理,经常需要添加辅助线,学生难免会有无从下手的感觉,往往会有对题目一讲就明白但自己不会分析解答的情况发生,教师在教学中要加以注意.梯形的教学建议1.关于梯形的引入生活中有许多梯形的例子,小学又接触过梯形内容,学生对梯形并不陌生,梯形的引入可从下面几个角度考虑:①从生活实例引入,如防洪堤坝、飞机机翼,别致窗户、音箱外形等等;②从小学学习过的旧知识复习引入;③从发现的角度引入,比如给出一组图形,告诉学生这就是梯形,然后寻找这些图形的共同点,根据共同点对梯形进行定义以及性质、判定的研究;④可用问题式引入,开始时设计一系列与梯形概念相关的问题由学生进行思考、研究,然后给出梯形的定义和性质.2.关于梯形的概念梯形的相关概念小学就已经接触过,但并不深入,在研究梯形的概念时可设计如下问题加深对梯形相关概念的理解:①一组对边平行的四边形是不是梯形?②一组对边平行一组对边相等的图形是不是梯形?③一组对边相等的图形是不是梯形?④一组对边相等一组对边不相等的图形是不是梯形?⑤对角线相等的图形是不是梯形?⑥有两个角是直角的梯形是不是直角梯形?⑦两个角相等的梯形是不是等腰梯形?⑧对角线相等的梯形是不是等腰梯形?一、教学目标1. 掌握梯形、等腰梯形、直角梯形的有关概念.2. 掌握等腰梯形的两个性质:等腰梯形同一底上的两个角相等;两条对角线相等.3. 能够运用梯形的有关概念和性质进行有关问题的论证和计算,进一步培养学生的分析能力和计算能力.4. 通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想二、教法设计小组讨论,引导发现、练习巩固三、重点、难点1.教学重点:等腰梯形性质.2.教学难点:解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线).四、课时安排1课时五、教具学具准备多媒体,小黑板,常用画图工具六、师生互动活动设计教师复习引入,学生阅读课本;学生在教师引导下探索等腰梯形的性质,归纳小结梯形转化的常见的辅助线七、教学步骤【复习提问】1.什么样的四边形是平行四边形?平行四边形有什么性质?2.小学学过的梯形是什么样的四边形.(让学生动手画一个梯形,并找3名同学到黑板上来画,并指出上、下底和腰,然后由学生总结出梯形的概念).【引入新课】(板书课题)梯形同样是一个特殊的四边形,与平行四边形一样,它也有它的特殊性,今天我们就重点来研究这个问题.1.梯形及梯形的有关概念(l)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形.(2)底:平行的一组对边叫做梯形的底(通常把较短的底叫上底,较长的底叫下底).(3)腰:不平行的一组对边叫做梯形的腰.(4)高:两底间的距离叫做梯形高.(5)直角梯形:一腰垂直于底的梯形.(6)等腰梯形:两腰相等的梯形.(以上这一过程借助多媒体或投影仪演示)提醒学在注意:①梯形与平行四边形同属于特殊的四边形,因为它们具有不同的特殊条件,所以必然有不同的性质.②平行四边形的对边平行且相等,而梯形中,平行的一组对边不能相等(让学生想一想,为什么不能相等).③上、下底的概念是由底的长短来定义的,而并不是指位置来说的.2.等腰梯形的性质例1 如图,在梯形中,,,求证:.分析:我们学过“等腰三角形两底角相等”,如果能将等腰梯形在同一底上的两个角转化为等腰三角形的两个底角,问题就容易解决了.证明:(略)由此得出等旧梯形的性质定理:等腰梯形在同一高上的两个角相等.例2 如图,求证:等腰梯形的两条对角线相等.已知:在梯形中,,,求证:.分析:要证,只要用等腰梯形的性质定理得出,然后再利用,即可得出.证明过程:(略).由此得到多腰梯形的第一条性质:等腰梯形的两条对角线相等.除此之外,等腰梯形还是轴对称图形,对称轴是过两底中点的直线.3.解决梯形问题常用的方法在证明梯形性质定理时,我们采取的方法是过点作交于,从而把梯形问题转化成三角形来解,实质上是相当于把采取平行移动到的位置,这种方法叫做平行移动(也可移对角线),这是解决梯形问题常用的方法之—(让学生想一想,还可以用什么样的方法作辅助线来解决梯形问题,多找几名学生回答,然后教师总结,可借助多媒体演示见图).(1)“作高”:使两腰在两个直角三角形中.(2)“移对角线”:使两条对角线在同一个三角形中.(3)“延腰”:构造具有公共角的两个等腰三角形.(4)“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形.综上所述:解决梯形问题的基本思想和方法就是通过添加适当的辅助线,把梯形问题转化为已经熟悉的平行四边形和三角形问题来解决.【总结、扩展】小结:(以提问的方式总结)(1)梯形的有关概念.(2)梯形性质(①-③).(3)解决梯形问题的基本思想和方法.(4)解决梯形问题时,常用的几种辅助线.八、布置作业教材P179中2、3、4九、板书设计十、随堂练习教材P176中1、3。