发动机后氧传感器的布置方法
- 格式:pdf
- 大小:1.97 MB
- 文档页数:4
后氧传感器电路电压低1.引言1.1 概述概述后氧传感器是一种关键的汽车排放控制设备,其作用是监测和调节发动机废气中的氧气含量。
通过测量进入排气系统的废气中的氧气含量,后氧传感器可以为发动机控制单元提供重要的信息,以便对燃烧过程进行优化。
本文将着重探讨后氧传感器电路电压低的问题。
后氧传感器的电路通常由电源、传感器本体和信号线路组成,其中电源提供电压供电,传感器本体通过化学反应产生电压信号,信号线路将信号传输给发动机控制单元进行处理。
然而,有时候我们可能会遇到后氧传感器电路电压低的情况。
低电压可能会导致传感器无法正常工作,从而影响到发动机控制单元对废气成分的监测和调节,进而影响到发动机的性能和排放控制。
在接下来的正文中,我们将介绍后氧传感器的作用以及其电路的原理。
随后,我们将重点讨论后氧传感器电路电压低的问题,并提供解决这个问题的方法。
通过深入了解后氧传感器电路电压低的原因和解决方案,我们可以更好地理解后氧传感器的工作原理,并为解决实际问题提供参考和指导。
1.2 文章结构文章结构部分的内容:本文共包括三个主要部分:引言、正文和结论。
在引言部分,将对文章的主题进行概述,并介绍文章的结构和目的。
概述部分将简要介绍后氧传感器电路电压低的问题,并引出接下来正文部分所要探讨的内容。
文章结构部分将详细说明本文的组织框架,以帮助读者更好地理解文章的布局和内容。
正文部分将深入探讨后氧传感器的作用以及后氧传感器电路的原理。
在2.1节中,将解释后氧传感器的作用,并介绍其在车辆尾气排放控制系统中的重要性。
2.2节将详细介绍后氧传感器电路的原理,包括其内部构造和工作原理,以帮助读者更好地理解后氧传感器电路的工作机制。
结论部分将总结本文的主要观点和研究结果。
3.1节将详细分析后氧传感器电路电压低的问题,并阐明其可能的原因和影响。
3.2节将提供解决后氧传感器电路电压低问题的方法和建议,以帮助读者更好地解决相关问题。
通过以上的文章结构安排,本文将全面介绍后氧传感器电路电压低的问题,并提供解决方案,帮助读者更好地理解和解决相关的技术难题。
安装及布置要求规范Application Requirements for SystemOH1.2CNG伍德沃德控制器有限公司2006年4月一、线束Wiring harness1.关于图纸的中特殊说明Requirements from wiring diagram:1)主机厂应该对系统线束的质量及布置进行有效的设计及控制;OEM has engineeringcontrol of the engine and ignition wiring harness.2)导线的材料需遵循SAE-J1292,J1128,J2202中的标准;Material of wiring shouldbe followed SAE-J1292,J1128,J2202recommendations.3)系统动力接地和数字/模拟接地应分开接到电池负极;Proper sized ground wiresand separation of analog/digital grounds separate from power grounds. 4)ECM针脚X3和W3必须常通电以保持ECM的记忆功能,只有在紧急情况下或车辆维修时而不得不断开的情况下,才能断开这两个针脚的电源。
ECM pins X3and W3 require battery power all the time for keep alive memory.Any devices that remove power from these pins should only be activated during service of the vehicle or in emergency.5)ECM到点火模块的线束、转速传感器线束以及氧传感器信号线应包以铝质屏蔽层,屏蔽层的末端应尽量接近ECM,同时需接到电池负极;Use a shielded aluminum cable to protect the spark index,spark trigger,spark return,cam and/or crank signals,and vehicle speed signals.Connect the drain at one location preferably near the ECM,and ties these to the power ground.6)所有未使用的接插件的孔需堵以防水塞;Install plugs in all unused cavitiesof connectors.7)诊断线必须使用双绞线,以减少电磁干扰;Diagnostic wires should be twistedto reduce the electromagnetic coupling.8)按图纸要求使用合适的保险丝及继电器;Proper sized fusing should be employedas denoted on the Woodward harness drawing.9)有空调的车辆上,空调信号开关需安装。
本田xrv的氧传感器更换方法
更换本田XR-V的氧传感器需要一些基本工具和一些步骤。
以下是一般的更换方法:
1. 确保车辆处于安全状态,关闭发动机并等待引擎冷却。
2. 找到氧传感器。
一般来说,本田XR-V的氧传感器位于排气系统中的几个位置之一,包括排气歧管和催化转化器附近。
您可以参考车辆的服务手册或咨询专业技师以确定准确的位置。
3. 使用扳手或扳手扳手拧下氧传感器。
请注意,有些氧传感器可能已经焊接在排气管上,需要特殊工具进行移除。
4. 在安装新的氧传感器之前,检查新传感器是否与旧传感器匹配,并确保它们具有相同的插头类型和线束长度。
5. 将新传感器插入安装位置,并使用扳手或扳手扳手将其拧紧。
确保不要过度拧紧,以免损坏传感器或排气系统。
6. 确保传感器已正确安装并连接。
然后,重新连接电池负极。
7. 启动引擎,并观察车辆的运行情况。
如果氧传感器更换正确,您应该注意到
引擎运行更加平稳,并且没有出现任何故障指示灯。
请注意,这仅是一般的指导,具体的步骤可能因车辆型号和年份而有所不同。
如果您不确定如何更换氧传感器,建议咨询专业技师或参考车辆的服务手册以获取准确的信息。
氧传感器使用说明书 (第一版)适用零件号:25327985 253599081.概述氧传感器是现代发动机管理系统中必不可少的重要零部件。
它是一种利用电化学工作原理发展出来的电器元件。
氧传感器在现代发动机管理系统的配置机构中被用于探测汽车发动机所排出的燃烧废气中氧的含量,借以判定发动机实时燃油供给空气燃料混合比的实际状态,并通过自身产生的电器反应信号反馈给发动机电子控制模块(ECM),以作为系统燃油管理系统的闭环燃油修正补偿控制的重要依据,使燃油管理子系统能够更加精确地控制调整发动机各种工作状态下的空气燃料混合比;并在绝大多数工况下使系统保持在理想空燃比工作状态,以便获得更加优良的汽车排放控制特性和燃油经济性。
氧传感器的输出信号为0 ~ 1V的交变电压信号。
传感器可根据发动机所排燃烧气中氧的含量高低自动感应和探测并向发动机电子控制模块输出这一高低变化的电压信号。
现代发动机管理系统采用的氧传感器有两种主要类型:非加热型氧传感器和加热型氧传感器。
装配在发动机排气歧管上的氧传感器,由于可以利用发动机所排出燃烧废气的余热进行快速加热,故可使用价格低廉的非加热型氧传感器;当氧传感器的安装位置受到整车布置限制,氧传感器距离发动机排气歧管出口较远时,由于不能利用发动机燃烧废气对于传感器迅速加热,此时必然需要采用加热式氧传感器。
加热式氧传感器的内部设计有热敏电加热元件,可利用系统供电电压强制使氧传感器加速预热,促使其快速起燃,及早实现系统的闭环燃油管理控制。
2. 工作原理德尔福公司生产的氧传感器是采用氧化锆元件作为传感器的基础元件。
氧化锆元件是一种通体充满无数微孔的陶瓷基础元件外面镀有氧化锆涂层,该涂层外测暴露于发动机燃烧废气之中;涂层的内侧透过含微孔的陶瓷元件与大气相通。
集中在氧化锆内外两侧电极之间氧含量的差别形成的微分电压信号。
当氧化锆元件被电流加热或被流经传感器的发动机燃烧废气加热所激活,空气经过通体充满无数微孔的陶瓷基础元件进入氧化锆元件的内电极,而燃烧废气流经氧化锆的外电极。
汽车发动机氧传感器常见故障及诊断方法金宜南【期刊名称】《内江科技》【年(卷),期】2018(039)012【总页数】2页(P48-49)【作者】金宜南【作者单位】西安汽车科技职业学院【正文语种】中文汽车发动机氧传感器是电子控制发动机燃料系统用于闭环控制的一个重要电子元件,也是多种故障信号的报警元件,传感器信号的准确性及反应率直接影响排放的多少。
精准的传感器故障诊断有利于减少汽车发动机的排放,缓解大气污染。
本文针对氧传感器常见故障及诊断方法进行论述,供有关人员参考。
氧传感器是通过监测废气中的氧离子含量来获得混合物的空燃比信号,并将该信号转换成电信号到电子燃油喷射系统ECU。
ECU基于氧传感器输入的信号确定混合物的浓度,并校正喷油脉宽,实施空燃比反馈控制以控制接近理论值14.7的空燃比,获得最佳燃油混合气进入发动机,以减少有害气体排放并节省燃料。
由于其反应灵敏,并能对汽车排放实时监测及反馈,因此是汽车常见传感器之一,被广泛应用于现代轿车上。
如果氧气传感器发生故障,将导致发动机燃油消耗增加,污染排放增加,并可能导致汽车失火,怠速不稳定和喘振等故障,影响汽车发动机正常运转。
1 氧传感器常见故障氧传感器有两个主要的故障原因。
一个是积碳堵塞传感器,发动机EFI系统ECU会控制喷油器少喷油,这样将会使混合气过稀;另一个是灰尘和油堵塞氧气传感器和大气的通孔,电子燃油喷射系统ECU指示喷油器喷射更多油,导致混合气过浓。
如果使用含铅汽油,或在修理发动机的过程中使用了不符合标准的硅橡胶垫圈,氧传感器的寿命将会缩短。
(1)氧传感器中毒。
氧传感器中毒是一种经常发生在发动机电子控制系统中的故障。
一种是铅中毒,一种是硅中毒。
铅中毒是由铅污染引起的,传感器尖端会出现红褐色物质。
使用含铅汽油、发动机油或其他化学品如各种添加剂会导致空燃比从开始的略有变化,到最终传感器完全失灵。
当驾驶员注意到时,一般情况氧传感器已经严重中毒或完全失灵,已导致燃油经济性或驾驶性能恶化。
后氧传感器工作原理
后氧传感器是一种用于检测可燃气体和有毒气体浓度的仪器。
它的工作原理主要有以下几个步骤:
1. 传感器加热:后氧传感器里面有一个电加热器,在工作时会将气体传感器加热到一定温度,一般在300℃到600℃之间。
2. 氧气栅极:传感器里面还有一个氧气栅极,它和检测气体的电极相隔一定距离,形成一个电极间的电场。
3. 气体浓度检测:当可燃气体或有毒气体进入传感器时,会与传感器中的氧气进行反应。
如果气体中存在可燃物质或有毒物质,它们会与氧气反应,从而改变氧气栅极上的电势。
4. 电位变化:氧气栅极上的电位变化会导致传感器电路中的电压或电流发生变化。
5. 信号处理:传感器的输出信号会被传感器信号处理电路进行处理,通常是转换为相应的电压或电流信号。
6. 数据分析:处理后的信号会被连接的数据采集设备获取并分析。
根据传感器输出信号的大小,可以得出待测气体浓度的相关信息。
总的来说,后氧传感器通过加热传感器、检测气体与氧气的反应,以及信号处理和数据分析等步骤,来实现对可燃气体和有毒气体浓度的检测和监测。
一、氧传感器简介1. 氧传感器燃油反馈控制系统氧传感器是燃油反馈控制系统的重要部件,用汽车示波器观察到的氧传感器的信号电压波形能够反映出发动机的机械部分、燃油供给系统以及发动机电脑控制系统的运行情况,并且,所有汽车的氧传感器信号电压的基本波形都是一样的,利用波形进行故障判断的方法也相似。
2. 氧传感器与三元催化器发动机电脑利用氧传感器的输出信号来控制混合气的空燃比,即令空燃比总是在理论空燃比14.7的上下波动。
这不仅是发动机进行安全燃烧的要求,也是三元催化器中两种主要化学反应(氧化和还原)的需要。
要想优化氧化过程,就必须有足够的氧,也就是三元催化器需要稍稀的混合气;而为了优化还原过程,氧气量又必须少,为此,三元催化器又需要稍浓的混合气。
但混合气不可能同时既是浓的又是稀的,所以,汽车工程师在设计燃油反馈控制系统时将混合气设计成从稍浓至稍稀,再从稍稀至稍浓这样的循环变化,使碳氢化合物(HC)和一氧化碳(CO)氧化反应过程的需要和氮氧化合物(NOx)还原反应过程的需要都能得到满足。
由此可知,为了使燃油反馈控制系统正常工作,氧传感器输出的信号电压必须能够高、低变化。
发动机工作时,发动机电脑根据各种传感器(例如:空气流量计、进气压力传感器、节气门位置传感器等)的输入信号来计算混合气的空燃比并控制喷油器喷油,使空燃比十分接近14.7。
随后,发动机电脑又根据氧传感器的信号发出加浓或减稀的命令,这就使三元催化器的效率大大提高,同时又延长了它的使用寿命。
好的氧传感器是非常灵敏的,但其信号也极易受干扰。
若发动机有故障,氧传感器的输出信号一定会有反应。
所以,当氧传感器的信号电压波形正常时就可以断定整个发动机控制系统的工作是正常的或对发动机的修理是成功的。
在汽车示波器上进行氧传感器信号电压波形分析,通常称为氧反馈平衡测试(Oxygen Sensor Feedback Balance),简称O2FB。
二、氧传感器波形分析1. 基本概念:a.上流动系统(Upstream System)上流动系统是指位于氧传感器前的,包括传感器、执行器、发动机电脑的发动机各系统(包括辅助系统),即在氧传感器之前的影响尾气的所有机械部件和电子部件。
⼀、氧传感器简介⼀、氧传感器简介1. 氧传感器燃油反馈控制系统氧传感器是燃油反馈控制系统的重要部件,⽤汽车⽰波器观察到的氧传感器的信号电压波形能够反映出发动机的机械部分、燃油供给系统以及发动机电脑控制系统的运⾏情况,并且,所有汽车的氧传感器信号电压的基本波形都是⼀样的,利⽤波形进⾏故障判断的⽅法也相似。
2. 氧传感器与三元催化器发动机电脑利⽤氧传感器的输出信号来控制混合⽓的空燃⽐,即令空燃⽐总是在理论空燃⽐14.7的上下波动。
这不仅是发动机进⾏安全燃烧的要求,也是三元催化器中两种主要化学反应(氧化和还原)的需要。
要想优化氧化过程,就必须有⾜够的氧,也就是三元催化器需要稍稀的混合⽓;⽽为了优化还原过程,氧⽓量⼜必须少,为此,三元催化器⼜需要稍浓的混合⽓。
但混合⽓不可能同时既是浓的⼜是稀的,所以,汽车⼯程师在设计燃油反馈控制系统时将混合⽓设计成从稍浓⾄稍稀,再从稍稀⾄稍浓这样的循环变化,使碳氢化合物(HC)和⼀氧化碳(CO)氧化反应过程的需要和氮氧化合物(NOx)还原反应过程的需要都能得到满⾜。
由此可知,为了使燃油反馈控制系统正常⼯作,氧传感器输出的信号电压必须能够⾼、低变化。
发动机⼯作时,发动机电脑根据各种传感器(例如:空⽓流量计、进⽓压⼒传感器、节⽓门位置传感器等)的输⼊信号来计算混合⽓的空燃⽐并控制喷油器喷油,使空燃⽐⼗分接近14.7。
随后,发动机电脑⼜根据氧传感器的信号发出加浓或减稀的命令,这就使三元催化器的效率⼤⼤提⾼,同时⼜延长了它的使⽤寿命。
好的氧传感器是⾮常灵敏的,但其信号也极易受⼲扰。
若发动机有故障,氧传感器的输出信号⼀定会有反应。
所以,当氧传感器的信号电压波形正常时就可以断定整个发动机控制系统的⼯作是正常的或对发动机的修理是成功的。
在汽车⽰波器上进⾏氧传感器信号电压波形分析,通常称为氧反馈平衡测试(Oxygen Sensor Feedback Balance),简称O2FB。
⼆、氧传感器波形分析1. 基本概念:a.上流动系统(Upstream System)上流动系统是指位于氧传感器前的,包括传感器、执⾏器、发动机电脑的发动机各系统(包括辅助系统),即在氧传感器之前的影响尾⽓的所有机械部件和电⼦部件。