八年级数学平均数
- 格式:doc
- 大小:35.50 KB
- 文档页数:8
专题一:平均数一、算术平均数在日常生活中,我们常用平均数表示一组数据的“平均水平”.一般地,对于n 个数x 1,x 2,…,x n ,我们把1n(x 1+x 2+…+x n )叫做这n 个数的算术平均数,简称为平均数,这里记为.求一组数据的平均数是考试中经常出现的题目.例1 新港中学“学用杯”竞赛前10名学生的成绩如下(单位:分): 125,120,115,107,109,120,107,115,115,107.计算这10名学生的平均成绩.析解:根据平均数的定义:x =110(125+120+115+…+107)=110×1140=114(分). 根据定义可求任意一组数据的平均数,但是如果这组数据中的每个数都比较大,计算起来就比较麻烦,那么还有一种计算平均数的方法,如上题还可以这样解答:将本组数据都减去115,得一组新数据:10,5,0,-8,-6,5,-8,0,0,-8,求出这组新数据的平均数x '=110[10+5+0+(-8)+(-6)+…+0+(-8)]=-1,则原数据的平均数x =115+(-1)=114.因此,当一组数据都比较大,且都在某一数的附近波动时,可将它的每一个数都减去同一个适当的数,得到一组新的数据,求出这组新数据的平均数,用这个平均数加上都减去的那个数,就是原数据组的平均数.例2 某校八年级共有六个班,在一次数学考试中,参加的人数和成绩如下表:求该校八年级的全体学生在这一次数学考试中的平均成绩(保留三位有效数字). 析解:根据平均数的定义可知,该校八年级的全体学生在这次数学考试中,平均成绩等于所有的数学成绩总和除以总人数,而成绩总和又等于平均成绩乘以学生总人数,这样可求出各班数学成绩总分,再把各班成绩总分的总和求出来即得全年级成绩总和,从而可求出全年级的平均成绩:x =1308(81×52+80×48+84×55+83×51+86×49+82×53)≈82.7(分). 说明:解答本题时有的学生往往会错解为: 81808483868282.76+++++≈≈82.7(分). 二、加权平均数平均数是体现一组数据的平均状态,但是,在实际问题中,一组数据中的各个数据的“重要程度”并不相同,因而在计算这组数据的平均数时,往往给每一个数据一个“权”,求一组数据的加权平均数通常有两种情况:第一种:该组数据中各数据的重要程度不同,所占比例也不同;例如,李刚的平时成绩为89分,单元测验为90分,期末成绩为91分,如果把三项成绩按2∶3∶4的比例计算总评成绩,那么总评成绩为:89290391490.2234⨯+⨯+⨯++≈≈90.2(分). 在这个问题中,2,3,4分别叫做89,90,91的权,而90.2就是加权平均数.第二种:若一组数据中有多个数据出现多次,例如,数据3,5,10,6,5,3,3,6,10,5,10,3的平均数为:x =112(3×4+5×3+10×3+6×2)=5.75. 其中4,3,3,2分别是3,5,10,6出现的次数,同时也是权.例3 某居民小区开展节约用水活动成效显著,据对该小区200户家庭用水情况统计分析,3月份比2月份节约用水情况如下表所示:求3月份平均每户节约用水多少立方米?分析:本题考查直接求一组数据的加权平均数的方法.解:120 1.520260 1.6200x ⨯+⨯+⨯==(m 3). 上题中,数据20,120,60分别是1,1.5,2的权,本题不能解答为:1 1.52 1.53x ++==(m 3).专练一:1.在一次数学考试中,第一小组的14名同学的成绩与全班平均分的差是2,3,-5,10,12,8,-1,2,-5,4,-10,-2,5,5,全班平均成绩为83分,则这个小组的平均成绩是_________分.2.某班在一次数学测试后,成绩统计如下表:该班这次数学测试的平均成绩是( )A.82 B.75 C.65 D.623.甲、乙两篮球队员在以往16场比赛中的得分情况统计如下:则甲、乙两队员的平均每场得分分别是多少(保留整数)?4.在一次运动会上,各队得奖牌情况如下表:现在为了比较各队的综合实力,分别将金、银、铜以每块按1分,0.7分,0.3分来进行计分比较,问哪一队的综合实力最强?5.从鱼池捕得同时放养的鲤鱼230尾,从中任选10尾,称得每尾鱼的质量分别是1.8,1.7,1.2,1.4,1.3,1.6,1.4,1.6,1.5,1.5(单位:千克).(1)这10尾鱼的平均质量是多少千克?(2)你能估计一下这230尾鱼的总质量是多少千克吗?6.某公司去年的广告宣传投资为:电视广告9 000万,报纸广告4 000万,大型活动6 000万.今年该公司为了加大广告宣传力度,三项投资分别比去年增长了10%、5%、15%.该公司今年的广告宣传投资比去年增长的百分数是多少?(保留两位小数)参考答案:1.852.A3.甲:23分,乙:22分4.C队综合实力强5.(1)1.5千克;(2)345千克6.10.53%。
八年级数学上册数学公式八年级数学上册中常见的数学公式包括:
1. 平均数公式:平均数 = 总和 / 数据个数
2. 百分数公式:百分数 = (部分 / 全部) x 100%
3. 比例公式:两个比例相等,即 a / b = c / d
4. 面积公式:
- 矩形面积 = 长 x 宽
- 正方形面积 = 边长 x 边长
- 三角形面积 = 底边长度 x 高 / 2
- 圆面积 = π x 半径²
5. 周长公式:
- 矩形周长 = 2 x (长 + 宽)
- 正方形周长 = 4 x 边长
- 圆周长 = 2 x π x 半径
6. 一次函数公式:y = kx + b
7. 平方公式:(a + b)² = a² + 2ab + b²
8. 勾股定理:c² = a² + b²(其中c为斜边,a和b为直角边)
9. 三角函数公式:
- 正弦定理:sin A / a = sin B / b = sin C / c
- 余弦定理:a² = b² + c² - 2bc*cosA
- 正切定理:tan A = b / c
这些是八年级数学上册中常见的数学公式,希望对你有帮助!。
八年级数学公式总结归纳大全八年级数学公式总结归纳大全如下:
1. 平均数公式:
平均数 = 总和 / 个数
2. 百分数与小数的转换公式:
百分数 = 小数× 100
小数 = 百分数 / 100
3. 百分数之间的转换公式:
百分数A = 百分数B ×百分数C
4. 分数与百分数的转换公式:
百分数 = 分数× 100
分数 = 百分数 / 100
5. 速度公式:
速度 = 路程 / 时间
6. 面积公式:
矩形的面积 = 长×宽
正方形的面积 = 边长×边长
三角形的面积 = 底边×高 / 2
圆的面积 = π×半径×半径
7. 周长公式:
矩形的周长 = (长 + 宽) × 2
正方形的周长 = 边长× 4
三角形的周长 = 边1 + 边2 + 边3
圆的周长 = 2 ×π×半径
8. 三角形内角和公式:
三角形内角和 = 180°
9. 相似三角形的边长比例公式:
两个相似三角形的对应边长的比例 = 两个相似三角形的高度比例 = 两个相似三角形的面积比例 = 两个相似三角形的周长比例
10. 直角三角形的勾股定理公式:
a² + b² = c²
11. 三角形的面积公式(海伦公式):
三角形面积 = √(s × (s - a) × (s - b) × (s - c))
(其中,s为三角形的半周长,a、b、c为三角形的边长)
这些是八年级数学常用的公式,希望对你有帮助。
人教版初中数学八年级下册教案《平均数》一. 教材分析平均数是初中数学中的一个重要概念,它反映了数据集中的趋势。
在本节课中,学生将学习平均数的定义、性质和计算方法,并能运用平均数解决实际问题。
教材通过生动的实例和丰富的练习,帮助学生理解和掌握平均数的概念,培养学生的数学思维能力和解决问题的能力。
二. 学情分析学生在小学阶段已经接触过平均数的概念,但对平均数的理解和计算方法可能还不够深入。
他们对平均数有一定的认识,但缺乏对平均数性质和应用的理解。
此外,学生可能对平均数的计算公式记忆不牢,需要通过练习来巩固。
三. 教学目标1.理解平均数的定义和性质,掌握平均数的计算方法。
2.能够运用平均数解决实际问题,提高解决问题的能力。
3.培养学生的数学思维能力和团队合作能力。
四. 教学重难点1.重点:平均数的定义、性质和计算方法。
2.难点:平均数的性质和应用。
五. 教学方法1.情境教学法:通过实例引入平均数的概念,让学生在实际情境中理解和掌握平均数。
2.练习法:通过大量的练习,巩固学生对平均数的理解和计算方法。
3.小组合作学习:让学生在小组内讨论和解决问题,培养学生的团队合作能力。
六. 教学准备1.教材和教辅资料。
2.实例和练习题。
3.投影仪和黑板。
七. 教学过程1.导入(5分钟)通过一个实际问题引入平均数的概念,例如:“某班有30名学生,他们的身高分别为160cm、165cm、170cm等,请计算该班学生的平均身高。
”让学生思考和讨论如何计算平均身高,引出平均数的概念。
2.呈现(15分钟)介绍平均数的定义和性质,通过实例和讲解让学生理解和掌握平均数的概念。
强调平均数的性质,例如:平均数是一组数据的集中趋势,受到极端值的影响等。
3.操练(15分钟)让学生进行大量的练习,巩固对平均数的理解和计算方法。
可以设置不同难度级别的题目,让学生根据自己的能力选择练习。
4.巩固(10分钟)通过小组合作学习,让学生在小组内讨论和解决问题。
八年级数学《平均数、众数和中位数》知识点班级姓名一、基本定义1、平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
即有n个数x1,x2,…,x n,则x=1n(x1+x2+…+x n)叫这n个数的平均数。
平均数的计算方法:(1)定义法;(2)加权平均法;(3)新数据法:x=x1+a,x是x1,x2,…,x n的平均数,x1是x11=x1-a,x21=x2-a,…,x n1=x n-a的平均数.2、中位数:将一组数据按大小顺序排列,处在最中间位置的一个数或最中间的两个数的平均数叫做这组数据的中位数。
3、众数:在一组数据中出现次数最多的数叫做这组数据的众数。
二、平均数的优点和缺点平均数:一组数据的平均值(平均水平).平均数是描述一组数据的一种常用指标,反映了这组数据中各数据的平均大小。
平均数的大小与一组数据里的每个数据都有关系,其中任何数据的变动都会引起平均数的相应变动.平均数一般的计算方法为:用一组数据的总和除以这组数据的个数.平均数的优点:反映一组数的总体情况比中位数、众数更为可靠、稳定.平均数的缺点:平均数需要整批数据中的每一个数据都加人计算,因此,在数据有个别缺失的情况下,则无法准确计算,计算的工作量也较大。
平均数易受极端数据的影响,从而使人对平均数产生怀疑。
三、中位数的优点和缺点中位数:在有序排列的一组数据中最居中的那个数据(中等水平).中位数是描述数据的另一种指标,如果将一组数按从小到大排列那么中位数的左边和右边恰有一样多的数据。
中位数仅与数据的大小排列位置有关,某些数据的变动对它的中位数没有影响.中位数是将数据按大小顺序依次排列(相等的数也要全部参加排序)后“找”到的.当数据的个数是奇数时,中位数就是最中间的那个数据;当数据的个数是偶数时,就取最中间的两个数据的平均数作为中位数.中位数的优点:简单明了,很少受一组数据的极端值的影响。
中位数的缺点:中位数不受其数据分布两端数据的影响,因此中位数缺乏灵敏性,不能充分利用所有数据的信息。
人教版数学八年级下册20.1.1《平均数》说课稿一. 教材分析《平均数》是人教版数学八年级下册第20章第1节的内容。
本节课主要介绍了平均数的定义、性质和求法,以及平均数在实际生活中的应用。
教材通过丰富的实例,引导学生认识平均数,探究平均数的性质,培养学生运用平均数解决实际问题的能力。
二. 学情分析八年级的学生已经掌握了整数、分数和小数的知识,具备了一定的逻辑思维和运算能力。
但他们对平均数的理解可能仅停留在表面,对其性质和求法不够了解。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生深入理解平均数,提高他们运用平均数解决实际问题的能力。
三. 说教学目标1.知识与技能:理解平均数的定义,掌握平均数的性质和求法,能运用平均数解决实际问题。
2.过程与方法:通过观察、分析、归纳等方法,探究平均数的性质,提高学生的逻辑思维能力。
3.情感态度与价值观:培养学生对数学的兴趣,使他们认识到数学在生活中的重要作用。
四. 说教学重难点1.重点:平均数的定义、性质和求法。
2.难点:平均数的性质和求法,以及运用平均数解决实际问题。
五. 说教学方法与手段1.教学方法:采用启发式教学法、案例教学法和小组合作学习法。
2.教学手段:利用多媒体课件、实物模型和数学软件辅助教学。
六. 说教学过程1.导入新课:通过一个实际问题,引导学生思考如何求解平均数,激发学生的学习兴趣。
2.探究平均数的定义:让学生观察、分析实例,引导学生发现平均数的性质,总结出平均数的定义。
3.讲解平均数的性质:通过实例和数学推理,讲解平均数的性质,让学生加深对平均数的理解。
4.学习平均数的求法:引导学生运用公式法和列举法求解平均数,巩固所学知识。
5.应用拓展:让学生运用平均数解决实际问题,提高他们运用数学知识解决问题的能力。
6.总结:对本节课的内容进行总结,强调平均数在实际生活中的重要作用。
七. 说板书设计板书设计如下:八. 说教学评价本节课的评价主要从学生的知识掌握、能力培养和情感态度三个方面进行。
第八章数据的代表
§8.1平均数(一)
教学目标:
(一)知识目标:1、掌握算术平均数,加权平均数的概念。
2、会求一组数据的算术平均数和加权平均数。
(二)能力目标:1、通过对数据的处理,发展学生初步的统计意识和数据处理的能力。
2、根据有关平均数的问题的解决,培养学生的合作意识和能力。
(三)情感目标:1、通过小组合作的活动,培养学生的合作意识和能力。
2、通过解决实际问题,让学生体会数学与生活的密切联系。
教学重点:算术平均数,加权平均数的概念及计算。
教学难点:加权平均数的概念及计算。
教学方法:讨论与启发性。
教学过程:
一、引入新课:
在某次数学测试后,你想了解自己与班级平均成绩的比较,你先想了解该次数学成绩什么量呢?(引入课题)
二、讲授新课:
1、引例:下面是某班30位同学一次数学测试的成绩,各小组讨论如何求出它们的平均分:
95、99、87、90、90、86、99、100、95、87、88、86、94、92、90、95、
87、86、88、86、90、90、99、80、87、86、99、95、92、92
甲小组:X= =91(分)
甲小组做得对吗?有不同求法吗?
乙小组:X=
= 91(分)
乙小组的做法可以吗?还有不同求法吗?
丙小组:先取一个数90做为基准a ,则每个数分别与90的差为:
5、9、-3、0、0、-4、……、2、2 求出以上新的一组数的平均数X'=1 所以原数组的平均数为X=X'+90=91 想一想,丙小组的计算对吗?
95+99
…
30 95×4+99×4+87×4+90×5+86×5+88×2+92
30
2、议一议:问:求平均数有哪几种方法?
(1)X= (X 1+X 2+…+X n ) ——算术平均数
(2)X= (f 1+f 2+…f k =n) ——
利用加权求平均数
(3)X=X'+a ——利用基准求平均数 问:以上几种求法各有什么特点呢? 公式(1)适用于数据较小,且较分散。
公式(2)适用于出现较多重复数据。
公式(3)适用于数据较为接近于某一数据。
3、练习:P213 利用计算器
(1)计算两支球队的平均身高,哪支球队队员的身材更为高大?
(2)计算两支球队的平均年龄,哪支球队队员的年龄更为年轻?
4、加权平均数:
例1,某广告公司欲招聘广告策划人员一名,对A ,B ,C 三名候选人进行了三项素质测试,他们的各项测试成绩如下表所示:
n 1
x 1f 1+x 2f 2+x 3f 3+…
f 1+f 2+f 3…+f k
(1)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用?
(2)根据实际需要,公司将创新,综合知识和语言三项测试得分按4:3:1的比例确定各人的测试成绩,此时谁将被录用?
小结:实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而,在计算这组数据的平均数时,往往给每个数据一个“权”,如例1中4,3,1分别是创新、综合知识、语
72×4+50×3+88
言三项测试成绩的权,而称为A的三
4+3+1
项测试成绩的加权平均数。
三、练一练:P216 随堂练习
四、小结:通过本节课的学习,你有哪些收获与体会?
五、作业:书P216 习题8.1
§8.1平均数(二)
教学目标:
(一)知识目标:
1、会求加权平均数,并体会权的差异对结果的影响。
2、理解算术平均数和加权平均数的联系与区别,并能利用它们解决一些现实问题。
(二)能力目标:
1、通过利用平均数解决实际问题,发展学生的数学应用能力。
2、通过探索算术平均数和加权平均数的联系和区别,发展学生的求同和求异的思维。
(三)情感目标:通过解决实际问题,体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。
教学重点:加权平均数中权对结果的影响及与算术平均数的联系与区别。
教学难点:探索算术平均数和加权平均数的联系和区别。
教学方法:探讨教学
教学过程:
一、引入新课:
1、什么是算术平均数?加权平均数?
2、算术平均数与加权平均数有什么联系与区别吗?(引入)
二、讲授新课:
1、例题讲解:
我校对各个班级的教室卫生情况的考查包括以下几项:黑板、门窗、桌椅、地面。
一天,三个班级的各项卫生成绩分别如下:
(1)小明将黑板、门窗、桌椅、地面这四项得分依次按15%、10%、35%、40%的比例计算各班的卫生成绩,那么哪个班的成绩最高?
(2)你认为上述四项中,哪一项更为重要?请你按自己的想法设计一个评分方案,根据你的方案,哪一个班的卫生成绩最高?与同伴进行交流。
解:(1)一班的卫生成绩为:
95×15%+90×10%+90×35%+85×40%=88.75
二班的卫生成绩为:
90×15%+95×10%+85×35%+90×40%=88.75
三班的卫生成绩为:
85×15%+90×10%95×35%+90×40%=91
因此,三班的成绩最高。
(2)分组讨论交流
小结:以上四项所占的比例不同,即权有差异,得出的结果
就会不同,也就是说权的差异对结果有影响。
2、议一议:
小颖家去年的饮食支出为3600元,教育支出为1200元,其他支出为7200元,小颖家今年的这三项支出依次比去年增长39%,3%,6%,小颖家今年的总支出比去年增长的百分数是多少? 问:如何求今年的总支出比去年总支出的百分比呢? 百分比=今年总支出—去年总支出
去年总支出 以下是小明和小亮的两种解法?谁做得对?
小明: (9%+30%+6%)=15%
小亮: =9.3%
由于小颖家去年的饮食、教育和其他三项支出金额不等,因
此,饮食、教育和其他三项支出的增长率“地位”不同,它们对总支出增长率的“影响”不同,不能简单地用算术平均数计算总支出的增长率,而应将这三项支出金额3600,1200,7200分别视为三项支出增长率的“权”,从而总支出的增长率为小美的求法是对的。
三、课堂练习:
1、小明骑自行车的速度是15千米/时,步行的速度是5千米/时。
1
3 9%×3600+30%×1200+6%
3600+1200+7
(1)如果小明先骑自行车1小时,然后又步行了1小时,那么他的平均速度是多少?
(2)如果小明先骑自行车2小时,然后步行了3小时,那么他的平均速度是多少?
2、某市七月中旬各天的最高气温统计如下:
求该市七月中旬的最高气温的平均数。