解:根据题意,作出如图所示的单位圆.所要求的函数 f(θ)=
sin cos
θθ--12的最大值与最小值,就转化为求动点
P
与定点(2,1)
连线的斜率的最大值与最小值.从图可以得知,当直线 PM
和圆相切时,分别得到其最大值与最小值.设直线 PM 的斜
率为 k,所以,其方程为:y-1=k(x-2),即 kx-y+1-2k=0.
2α(0<α<2π),M 为 PQ 的中点.
(1)求 M 的轨迹的参数方程;
(2)将 M 到坐标原点的距离 d 表示为 α 的函数,并判断 M 的
轨迹是否过坐标原点.
【解】 (1)依题意有 P(2cos α,2sin α),Q(2cos 2α,2sin 2α),
因此 M(cos α+cos 2α,sin α+sin 2α).
2π).
(1)x2+y2=(-1+2cos θ)2+( 3+2sin θ)2 =4( 3sin θ-cos θ)+8=8sin(θ-π6)+8, ∴当 θ-π6=π2,即 θ=23π时,(x2+y2)max=16. (2)x+y=2(sin θ+cos θ)+ 3-1 =2 2sin(θ+π4)+ 3-1, ∴当 θ+π4=32π,即 θ=54π时, (x+y)min= 3-2 2-1.
变式训练
1.(2013·高考江苏卷)在平面直角坐标系 xOy 中,直线 l 的参 数方程为yy==2t+t 1, (t 为参数),曲线 C 的参数方程为
x=2tan2θ, y=2tan θ
(θ 为参数).试求直线 l 和曲线 C 的普通方程,
并求出它们的公共点的坐标.
解:因为直线 l 的参数方程为xy==2t+t 1 (t 为参数),由 x=t+ 1,得 t=x-1,代入 y=2t,得到直线 l 的普通方程为 2x-y-2 =0. 同理得到曲线 C 的普通方程为 y2=2x. 联立方程组yy=2=22xx-1 ,解得公共点的坐标为(2,2),(12,- 1).