(为参数).
= 2sin
故点M的轨迹是以点(6,0)为圆心、2为半径的圆.
反思利用圆的参数方程求动点的轨迹方程是常见的题型,是圆的
参数方程的主要应用之一.
参数方程与普通方程的互化
= 1 + 4cos,
【例 3】 指出参数方程 = -2 + 4sin (为参数)表示什么曲线.
解:(x-1)2+(y+2)2=16cos2t+16sin2t=16,
(2)在参数方程与普通方程的互化中,必须使x,y的取值范围保持
一致.
= 1 + 2cos,
【做一做 3-1】 将参数方程
(为参数)
= 2sin
化为普通方程为
.
-1 = 2cos,
解析:由
= 2sin,
两式平方相加,得(x-1)2+y2=4.
答案:(x-1)2+y2=4
【做一做3-2】 已知圆的方程为x2+y2-6y=0,将它化为参数方程.
解:由x2+y2-6y=0,
得x2+(y-3)2=9.
令x=3cos θ,y-3=3sin θ,
= 3cos,
所以圆的参数方程为
(为参数).
= 3 + 3sin
1.曲线参数方程的特点
剖析曲线的普通方程直接反映了一条曲线上的点的横、纵坐标
之间的联系,而参数方程是通过参数间接反映坐标变量x,y间的联系.
= (),
通方程,求出另一个变数与参数的关系 y=g(t),那么
= ()
就是所求的曲线的参数方程.
(3)消参的常用方法
①代入法.先由一个方程求出参数的表达式(用直角坐标变量表