九年级数学射影定理
- 格式:ppt
- 大小:178.00 KB
- 文档页数:8
中考数学射影定理实例解析1.如图,在Rt△ABC中,∠C=90°,CD⊥AB,BE平分∠ABC交CD于F,EH⊥CD于H,则下列结论正确的结有():①CD²=AD·BD;②AC²+BD²=BC²+AD²;③B+B B=1④若F为BE中点,则AD=3BDA.1个B.2个C.3个D.4个解:①∵∠ACB=90°,CD⊥AB,∴△ACD~△CBD,即CD²=AD-DB,故①正确②∵AC²-AD²=BC²-BD²=CD²∴AC²+BD²=BC²+AD²故②正确③作EM⊥AB,则BD+EH=BM∵BE平分∠ABC,ABCE=△BEM∴BC=BM=BD+EH,所以B+B B=1故③正确:④若F为BE中点,则CF=EF=BF,∴∠BCD=∠CBF=∠DBF=30°,∠A=30°∴AB=2BC=4BD∴AD=3BD。
答案:D2.如图,PA、PB是⊙O的切线,A、B为切点,OP交AB于点D,交⊙O于点C,在线段AB、PA、PB、PC、CD中,已知其中两条线段的长,但还无法计算出⊙O直径的两条线段是() A.AB,CD B.PA,PC C.PA,AB D.PA,PB解:A、构造一个由半径、半弦、弦心距组成的直角三角形,根据垂径定理以及勾股定理即可计算:B、根据切割线定理即可计算;C、首先根据垂径定理计算AD的长,再根据勾股定理计算PD的长,连接OA,根据射影定理计算OD的长,最后根据勾股定理即可计算其半径;D、根据切线长定理,得PA=PB.相当于只给了一条线段的长,无法计算出半径的长答案:D3.如图,AB是半圆O的直径,点D是AB上任意一点(不与点A,B重合),作CD⊥AB与半圆交于点C,设AD=a,BD=b,则下列选项正确的是()A.r2>BB.r2≥BC.r2<BD.r2≤B解:连接AC,BC,∵AB为直径,AB=AD+BD=a+b.∴∠ACD=90°∴∠A+∠B=90°∵CD⊥AB,∴∠ACD=∠CDB∴∠A+∠ACD=90°,∴∠ACD=∠B.∴△ACD~△CBD∴B B=B B即B=B∴CD=B答案:B4.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,弦CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC,给出下列结论:①∠DAC=∠ABC:②AD=CB:③点P是ACQ的外心:④AC²=AE·AB;⑤CB||GD,其中正确的结论是()A.①③⑤B.②④⑤C.①②⑤D.①③④解∵在⊙O中,点C是AD的中点,∴AC=CD∴∠CAD=∠ABC,故①正确;∵AC≠BD,∴AD≠BC.∴AD≠BC,故②错误∵∠ACQ=90°,∵AB是OO的直径,∴∠ACB=90°又·*CE⊥AB,∴∠ACE+∠CAE=∠ABC+∠CAE=90°∴∠ACE=∠ABC又∵C为AD的中点,∴AC=CD∴∠CAP=∠ABC∴∠ACE=∠CAP,∴AP=CP,∴∠ACP+∠PCQ=∠CAP+∠POC=90°∴∠PCQ=∠POC,∴PC=PQ∴AP=PQ,即P为Rt△ACQ斜边AQ的中点∴P为Rt△4CQ的外心,故③正确;∵AB是OO的直径,∴∠ACB=90°,又∵CE⊥AB∴根据射影定理,可得AC²=AE-AB,故④正确如图,连接BD,则∠ADG=∠ABD∵AC≠BD.∴AD≠BC,∴∠ABD≠∠BAC,∴∠ADG≠∠BAC又∵∠BAC=∠BCE=∠PQC,∴∠ADG≠∠PQC∴CB与GD不平行,故⑤错误.答案:D5.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,AC=8,AB=10,则AD等于()A.4.4B.5.5C.6.4D.7.4解:∵∠ACB=90°,CD⊥AB,∴AC²=AD·AB∴AD=8·810=6.4答案:C6.如图所示,在△ABC中,∠C=90°,D为BC边的中点,DE⊥AB于E,则AE²-BE²等于()A.AC²B.BD²C.BC²D.DE²解:作AB的中点F,连接DF,则DF||AC DF=12AC在RT△BDF中,又DE⊥AB,得△DEF~△BDF∴E E=E E即EF·BF=DF2=14AC2∴AE²-BE²=(AE+BE)·(AE-BE)=AB·2EF=4EF·BF=AC²答案:A7.如图,在正方形ABCD内,以D点为圆心,AD长为半径的弧与以BC为直径的半圆交于点P,延长CP、AP交AB、BC于点M、N.若AB=2,则AP等于()解:如图,设点S为BC'的中点,连接DP,DS,DS与PC'交于点H,作PE⊥BC于点E,PF⊥AB于点F,∴DP=CD=2,PS=CS=1即DS是PC的中垂线∴△DCS=△DPS∴∠DPS=∠DCB=90°.∴DS=DC²+CS²=2²+1=5∵BC为直径∴∠CPB=90°∴PB=B C²+P C²=255∴PE=FB=B·B B=45∴PF=BE=PB²+PE²=25∴AF=AB-FB=65∴AP=AF²+PF²=答案:B8.如图,点P是OO的直径BA延长线上一点,PC与OO相切于点C,CD⊥AB,垂足为D,连接AC、BC、OC,那么下列结论:①PC²=PA·PB:②PC·OC=OP·CD③OA²=OD·OP;④OA(CP-CD)=AP·CD,正确的结论有()个。
1.射影定理定义①直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.②每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.2.如图在Rt △ABC 中,∠BAC =90°,AD 是斜边BC 上的高,有射影定理如下:注意:直角三角形斜边上有高时,才能用射影定理!【例1】.在矩形ABCD 中,BE ⊥AC 交AD 于点E ,G 为垂足.若CG =CD =1,则AC 的长是 .模型介绍例题精讲解:∵四边形ABCD 是矩形,∴AB =CD =1,∠ABC =90°,∵BE ⊥AC ,∴∠AGB =90°=∠ABC ,∵∠BAG =∠CAB ,∴△ABG ∽△ACB ,∴=,∴AG •AC =AB 2(射影定理),即(AC ﹣1)•AC =12,解得:AC =或AC =(不合题意舍去),即AC 的长为,故答案为:.【例2】.如图:二次函数y =ax 2+bx +2的图象与x 轴交于A 、B 两点,与y 轴交于C 点,若AC ⊥BC ,则a 的值为( )A .﹣B .﹣C .﹣1D .﹣2解:设A (x 1,0)(x 1<0),B (x 2,0)(x 2>0),C (0,t ),∵二次函数y =ax 2+bx +2的图象过点C (0,t ),∴t =2;∵AC ⊥BC ,∴OC 2=OA •OB (射影定理),即4=|x 1x 2|=﹣x 1x 2,根据韦达定理知x 1x 2=,∴a =﹣. 故选:A .【例3】.将沿弦BC 折叠,交直径AB 于点D ,若AD =4,DB =5,则BC 的长是( )A.3B.8C.D.2解:连接CA、CD;根据折叠的性质,知所对的圆周角等于∠CBD,又∵所对的圆周角是∠CBA,∵∠CBD=∠CBA,∴AC=CD(相等的圆周角所对的弦相等);∴△CAD是等腰三角形;过C作CE⊥AB于E.∵AD=4,则AE=DE=2;∴BE=BD+DE=7;在Rt△ACB中,CE⊥AB,根据射影定理,得:BC2=BE•AB=7×9=63;故BC=3.故选:A.变式训练【变式1】.如图,在△ABC中,若AB=AC,BC=2BD=6,DE⊥AC,则AC•EC的值是 9 .解:如图,∵在△ABC中,若AB=AC,BC=2BD=6,∴AD⊥BC,CD=BD=3.又DE⊥AC,∴∠CED=∠CDA=90°.∵∠C=∠C,∴△CDE∽△CAD.∴=,即AC•EC=CD2=9.(射影定理)故答案是:9.【变式2】.如图所示,在矩形ABCD中,AE⊥BD于点E,对角线AC,BD交于O,且BE:ED=1:3,AD=6cm,则AE= cm.解:设BE=x,因为BE:ED=1:3,故ED=3x,根据射影定理,AD2=3x(3x+x),即36=12x2,x2=3;由AE2=BE•ED,AE2=x•3x;即AE2=3x2=3×3=9;AE=3.【变式3】.如图,若抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,若∠OAC=∠OCB.则ac的值为( )A.﹣1B.﹣2C.D.解:设A(x1,0),B(x2,0),C(0,c),∵二次函数y=ax2+bx+c的图象过点C(0,c),∴OC=c,∵∠OAC=∠OCB,OC⊥AB,∴△OAC∽△OCB,∴,∴OC2=OA•OB(即射影定理)即|x1•x2|=c2=﹣x1•x2,令ax2+bx+c=0,根据根与系数的关系知x1•x2=,∴,故ac=﹣1,故选:A.【变式4】.如图,正方形ABCD中,E为AB上一点,AF⊥DE于点F,已知DF=5EF=5,过C、D、F的⊙O与边AD交于点G,则DG=____________.解:连接CF、GF,如图:在正方形ABCD中,∠EAD=∠ADC=90°,AF⊥DE,∴△AFD∽△EAD,∴=,又∵DF=5EF=5,∴AD====CD,在Rt△AFD中,AF===,∵∠CDF+∠ADF=90°,∠DAF+∠ADF=90°,∴∠DAF=∠CDF,∵四边形GFCD是⊙O的内接四边形,∴∠FCD+∠DGF=180°,∵∠FGA+∠DGF=180°,∴∠FGA=∠FCD,∴△AFG∽△DFC,∴=,∴=,∴AG=,∴DG=AD﹣AG=﹣【变式5】.如图,在△ABC中,以AC边为直径的⊙O交BC于点D,过点B作BG⊥AC交⊙O于点E、H,连AD、ED、EC.若BD=8,DC=6,则CE的长为 2 .解:∵AC为⊙O的直径,∴∠ADC=90°,∵BG⊥AC,∴∠BGC=∠ADC=90°,∵∠BCG=∠ACD,∴△ADC∽△BGC,∴=,∴CG•AC=DC•BC=6×14=84,连接AE,∵AC为⊙O的直径,∴∠AEC=90°,。
射影定理的推导过程射影定理是数学中的一个重要定理,它在几何学和代数学中都有广泛的应用。
下面我将以人类的视角,用自然流畅的语言来描述射影定理的推导过程。
假设我们有一个平面上的点A和一条直线L,我们希望得到点A到直线L的距离。
首先,我们需要找到点A关于直线L的射影点B。
为了找到射影点B,我们可以从点A引一条垂直于直线L的线段,假设这条线段与直线L的交点为B。
现在我们可以看到,点A、B 和直线L形成了一个直角三角形。
根据直角三角形的性质,我们可以利用勾股定理来计算点A到直线L的距离。
假设直线L的方程为ax + by + c = 0,点A的坐标为(x0, y0),则点B的坐标为(x1, y1)。
由于点B是点A关于直线L的射影点,因此直线AB与直线L垂直。
根据直线的斜率性质,我们可以得到直线AB的斜率为-k/a,其中k 是直线L的斜率。
接下来,我们可以利用点斜式来表示直线AB的方程。
假设直线AB 的方程为y = mx + d,其中m是直线AB的斜率,d是直线AB与y 轴的交点。
由于点A在直线AB上,所以点A的坐标(x0, y0)满足直线AB的方程。
将点A的坐标代入直线AB的方程,我们可以得到y0 = m*x0 + d。
将直线AB的方程和直线L的方程联立,我们可以得到一个关于m 和d的方程组。
解出m和d的值后,我们就得到了直线AB的方程。
现在,我们可以计算点A到直线L的距离了。
根据点到直线的距离公式,点A到直线L的距离等于点A到射影点B的距离。
利用两点间距离的公式,我们可以得到点A到射影点B的距离为:distance = sqrt((x0 - x1)^2 + (y0 - y1)^2)至此,我们成功地推导出了射影定理的计算公式。
射影定理的推导过程虽然涉及了一些几何和代数的知识,但通过合理的描述和逻辑推理,我们可以用生动的语言将其阐释清楚。
希望这段文字能够帮助你更好地理解射影定理的推导过程。
初中数学射影定理应用教案教学目标:1. 理解射影定理的概念和意义。
2. 学会运用射影定理解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
教学内容:1. 射影定理的定义和表达式。
2. 射影定理的应用实例。
教学步骤:一、导入(5分钟)1. 引导学生回顾三角形的基本概念和性质。
2. 提问:你们听说过射影定理吗?射影定理是什么?二、讲解射影定理(15分钟)1. 给出射影定理的定义和表达式。
2. 通过图示和实例解释射影定理的意义。
3. 引导学生理解射影定理中的各个术语和符号的含义。
三、应用实例(15分钟)1. 给出几个应用实例,让学生尝试运用射影定理解决问题。
2. 引导学生步骤性地解题,注意运用射影定理的正确性。
3. 让学生展示自己的解题过程和答案,互相交流和讨论。
四、练习与拓展(15分钟)1. 给出一些练习题,让学生独立完成,巩固对射影定理的理解和应用。
2. 引导学生思考:射影定理在实际生活中有哪些应用?五、总结与反思(5分钟)1. 让学生回顾本节课所学的内容,总结射影定理的概念和应用。
2. 提问:你们觉得射影定理在解决数学问题中有何作用?教学评价:1. 课后对学生的练习进行评分,了解学生对射影定理的掌握程度。
2. 在下一节课开始时,让学生分享自己在生活中运用射影定理的经历,以此评估学生对射影定理的应用能力。
教学资源:1. 投影片或黑板,用于展示射影定理的图示和实例。
2. 练习题,用于巩固学生的理解和应用能力。
教学建议:1. 在讲解射影定理时,尽量用图示和实例来说明,让学生更容易理解和接受。
2. 在应用实例中,鼓励学生步骤性地解题,注意运用射影定理的正确性。
3. 在课后,鼓励学生在生活中尝试运用射影定理,增强对数学知识的认识和兴趣。
射影定理结论射影定理(ProjectiveTheorem)是一种数学定理,它以简洁的方式描述了空间中的点、线和平面的关系。
它揭示了空间中某个点会在线或平面上给出对应的点,也就是说,它提出了射影映射这一结果。
这个定理是著名的法国数学家宗撰写的,他于1822年在他的著作《试论平面曲线理论》中提出了射影定理。
射影定理的结论如下:空间中的任意一点都可以在其他点、线或平面上项给出对应的点,这种对应的点即射影映射(Projection Mapping)。
射影映射有着多种应用。
首先,在从一维空间到二维空间之间的映射过程中,它广泛地用于平面绘图,其中每个像素点都可以进行射影映射。
此外,在从二维空间到三维空间间的映射中,它也可以被用于立体化模型绘制。
在三维空间绘制模型的时候,点和线的对应关系可以很容易地通过射影定理得出。
此外,即使是在从多维空间到多维空间之间的映射过程中,也可以使用射影定理,这种映射也可以应用于复杂的物理过程,例如粒子发射过程。
射影定理的另一个重要优势在于它能够提供一种数学工具,可以用于探究空间中相互关联的点对象,而不需要考虑它们之间的相对位置。
例如,假设有一条直线,它分割开空间中的两个物体,这时,只要通过使用射影定理,就可以轻松地获得物体之间的关联性,而不需要考虑它们的相对位置。
射影定理也能够用来解释很多不同的科学过程,因为它能够提供一种数学方法来分析这些过程中的物理变化。
例如,它可以分析视角变换的物理过程,也能够解释空间中的光的反射和折射过程。
最后,它也可以用于研究立体视觉的结构,这种结构通常是非常复杂的,尤其是在实践活动中。
综上所述,射影定理是一种数学定理,它以简洁的方式描述了空间中的点、线和平面的关系,它提出了平面投影映射这一结果,它能够广泛地用于从一维空间到多维空间之间的映射,能够用于研究物理过程和立体视觉结构。
相似中的“射影定理”1. 射影定理直角三角形射影定理(又叫欧几里德(Euclid )定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
如图,Rt △ABC 中,∠BAC =90°,AD 是斜边BC 上的高,则有射影定理如下: (1)2AD BD DC =⋅ (2)2AB BD BC =⋅ (3)2AC CD BC =⋅△ABC∽△ABD∽△DAC注意:(1)在Rt △ABC 中,A D 为斜边BC 上的高,图中共有6条线段:AC 、BC 、CD 、AD 、DB 、AB ,已知任意两条,便可求出其余四条;(2)射影定理的每个乘积式中含三条线段,若已知两条线段,可求第三条; (3)平方项一定是两相似三角形的公共边。
2. 定理推论在△ABC 中,D 是BC 边上的一点,且满足BAD C ∠=∠,则有2AB BD BC =⋅。
△ABD∽△CBA例题1 已知CD 是△ABC 的高,DE ⊥CA ,DF ⊥CB ,求证:△CEF ∽△CBA 。
解析:根据△CDE ∽△CAD 和△CDB ∽△CFD 得2CD CE CA =和2CD CF CB =⋅利用等量代换和变形,即可证明△CEF ∽△CBA 。
答案:证明:在Rt △ADC 中,由射影定律得,2CD CE CA =⋅, 在Rt △BCD 中,2CD CF CB =⋅ ∴CE CA CF CB ⋅=⋅ ∴CE CFCB CA=∵ECF BCA ∠=∠ ∴△CEF ∽△CBA点拨:本题主要考察了相似三角形的基本模型射影定理的应用。
做题时要善于发现相似,找出等量关系,进行适当的变形。
例题2 已知:如图,AB 为⊙O 的直径,AC 为弦,CD ⊥AB 于D 。
若AE =AC ,BE 交⊙O 于点F ,连接CF 、DE 。
求证:(1)2•AE AD AB = (2)ACF AED ∠=∠解析:(1)根据AE =AC ,可以把结论转化为证明2•AC AD AB =,只需连接BC ,证明△ACD ∽△ABC 即可。
射影定理巧妙记忆
射影定理是在线性代数中非常重要的定理,可以帮助我们理解向量空间中向量之间的关系。
为了帮助大家更好地记忆射影定理,建议采用以下方法:
1. 了解射影定理的数学定义和含义:射影定理指出,一个向量可以被分解为它在一个子空间上的投影和在该子空间的正交补空间上的投影之和。
这个定理可以帮助我们更好地理解线性代数中的向量空间,以及它们之间的关系。
2. 熟记射影定理的公式:射影定理的公式可以写成P = A(A^TA)^(-1)A^T,其中P 表示向量在子空间上的投影,A 表示子空间的基向量或者列向量,A^T 表示A 的转置,而(A^TA)^(-1) 表示A^TA 的逆。
熟记这个公式可以帮助我们更方便地使用射影定理。
3. 利用实际例子加深记忆:结合实际例子可以更加深刻地理解和记忆射影定理。
例如,在三维向量空间中,一个向量可以被分解成在一个平面上的投影和在该平面的法向量上的投影之和,我们可以通过画图或者实际计算,来加深对于射影定理的记忆。
4. 多做练习:多做一些相关的练习和题目可以帮助我们更好地理解和记忆射影定理。
同时也可以加深对于线性代数中其他概念的理解,从而更好地掌握这门学科。
总之,射影定理是线性代数中非常重要的定理,需要我们认真学习和掌握。
通过采用上述方法,可以帮助我们更好地记忆和理解射影定理,从而更加轻松地应对相关考试和课程。
直角三角形射影定理公式数学是一门纯粹而优美的学问,而在数学中有一条定理——直角三角形射影定理公式,更是演绎了数学的优美。
一、介绍定理公式直角三角形射影定理公式是数学中的一条重要定理,它表明在任意一个直角三角形中,直角边上的高的平方,等于另外两条边上的射影的乘积之和。
即a²=h²+b²或b²=h²+a²。
定理公式是在研究直角三角形的性质时得出的,它适用于所有的直角三角形,因此具有很高的适用性和普遍性。
二、定理公式的用处直角三角形射影定理公式在数学中有着广泛的应用,它不仅能够用于计算直角三角形的各项性质,还能用于解决实际问题。
例如,在建筑施工中,如果要决定某栋建筑物的高度,可以使用直角三角形射影定理公式计算出楼房斜角的长度,从而进一步确定楼房的高度。
在地图制作中,也可以使用直角三角形射影定理公式来计算出两点之间的航程和方向。
此外,在航天、航海、导弹攻击等领域,也可以用到直角三角形射影定理公式,用来计算出太空船、船只、导弹等在航行过程中的位置和方向。
三、推导定理公式关于直角三角形射影定理公式的推导方法有多种,其中最常用的一种是勾股定理的应用。
勾股定理表明:在任意一个直角三角形中,两个直角边的平方之和等于斜边的平方。
即a²+b²=c²。
根据勾股定理,我们可以将斜边c分解成直角边a和直角边b的射影之和。
并且,直角边a和直角边b与斜边c之间的夹角为90度,则可得出:c = h + mc = n + k将以上两式代入勾股定理公式a²+b²=c²中,得到:a² + b² = (h + m)² + n²a² + b² = (n + k)² + m²进行简单的变换和化简,可得:b² = h² + a²因此,我们利用勾股定理和几何图形的推导,得出了直角三角形射影定理公式。
专项32 相似三角形-射影定理综合应用(2种类型) 一、射影定理 直角三角形斜边上的高是它分斜边所得两条线段的比例中项;且每条直角边都是它在斜边上的射影和斜边的比例中项。
如图(1):Rt△ABC中,若CD为高,则有CD2=BD•AD、BC2=BD•AB或AC2=AD•AB。
(证明略)二、变式推广 1.逆用 如图(1):若△ABC中,CD为高,且有DC2=BD•AD或AC2=AD•AB或BC2=BD•AB,则有∠DCB=∠A或∠ACD=∠B,均可等到△ABC为直角三角形。
2.一般化,若△ABC不为直角三角形,当点D满足一定条件时,类似地仍有部分结论成立。
(后文简称:射影定理变式(2)) 如图(2):△ABC中,D为AB上一点,若∠CDB=∠ACB,或∠DCB=∠A,则有△CDB∽△ACB,可得BC2=BD•AB;反之,若△ABC中,D为AB上一点,且有BC2=BD•AB,则有△CDB∽△ACB,可得到∠CDB=∠ACB,或∠DCB=∠A。
【类型1:直角三角形中射影定理】【典例1】(2021秋•南京期末)如图,在Rt△ABC中,∠ACB=90°,点D在AB上,且=.(1)求证△ACD∽△ABC;(2)若AD=3,BD=2,求CD的长.【解答】(1)证明:∵=,∠A=∠A,∴△ACD∽△ABC;(2)解:∵△ACD∽△ABC,∴∠ACD=∠B,∵∠ACB=90°,∴∠A+∠B=90°,∴∠A+∠ACD=90°,∴∠ADC=90°,∴∠ADC=∠BDC,∵∠ACD=∠B,∴△ACD∽△CBD,∴=,∴=,∴CD=.【变式1-1】(2022•义乌市校级开学)如图,在△ABC中,∠ACB=90°,CD⊥AB,若AD=4,BD=8,则CD的长为( )A.4B.4C.4D.【答案】A【解答】解:∵∠ACB=90°,∴∠A+∠B=90°,∵CD⊥AB,∴∠DCB+∠B=90°,∴∠A=∠DCB,∵∠ADC=∠CDB=90°,∴△ADC∽△CDB,∴=,即=,解得:CD=4,故选:A.【变式1-2】(2021秋•漳州期末)如图,在Rt△ABC中,∠BAC=90°,AD⊥BC,垂足为D,AD=3,CD=4,则BD的长为( )A.B.C.D.2【答案】A【解答】解:∵∠BAC=90°,∴∠B+∠C=90°,∵AD⊥BC,∴∠DAC+∠C=90°,∠ADB=∠ADC=90°,∴∠B=∠DAC,∴△BDA∽△ADC,∴=,∵AD=3,CD=4,∴=,解得:BD=,故选:A.【变式1-3】(2020秋•梁平区期末)如图,Rt△ABC中,∠ACB=90°,CD⊥AB于点D,下列结论中错误的是( )A.AC2=AD•AB B.CD2=CA•CB C.CD2=AD•DB D.BC2=BD•BA 【答案】B【解答】解:∵∠ACB=90°,CD⊥AB于点D,∴AC2=AD•AB,CD2=DA•DB,BC2=BD•BA.故选:B.【变式1-4】(2015•黄冈中学自主招生)将沿弦BC折叠,交直径AB于点D,若AD=4,DB=5,则BC的长是( )A.3B.8C.D.2【答案】A【解答】解:连接CA、CD;根据折叠的性质,知所对的圆周角等于∠CBD,又∵所对的圆周角是∠CBA,∵∠CBD=∠CBA,∴AC=CD(相等的圆周角所对的弦相等);∴△CAD是等腰三角形;过C作CE⊥AB于E.∵AD=4,则AE=DE=2;∴BE=BD+DE=7;在Rt△ACB中,CE⊥AB,根据射影定理,得:BC2=BE•AB=7×9=63;故BC=3.故选:A.【类型2:非直角三角形中射影定理】【典例2】如图,已知∠A=70°,∠APC=65°,AC2=AP•AB,则∠B的度数为( )A.45°B.50°C.55°D.60°【答案】A【解答】解:∵∠A=70°,∠APC=65°,∴∠ACP=180°﹣70°﹣65°=45°.∵AC2=AP•AB,∴=.∵∠B=∠B,∴△BAC∽△CPA.∴∠B=∠ACP=45°.故选:A.【变式2-1】如图,在△ABC中,点D在边AB上,若∠ACD=∠B,AD=3,BD=4,则AC的长为( )A.2B.C.5D.2【答案】B【解答】解:∵∠ACD=∠B,∠A=∠A,∴△ADC∽△ACB,∴,∵AD=3,BD=4,∴AB=AD+BD=3+4=7,∴,∴AC=或﹣(舍去),故选:B.【变式2-2】如图,在△ABC中,点D在AB边上,∠ABC=∠ACD.(1)求证:△ABC∽△ACD;(2)若AD=2,AB=6.求AC的长.【解答】(1)证明:∵∠ABC=∠ACD,∠A=∠A,∴△ABC∽△ACD;(2)解:∵△ABC∽△ACD,∴,∴AC2=2×6=12,∴AC=2.【典例3】如图,在△ABC中,∠A=90°,点D、E分别在AC、BC边上,BD=CD=2DE,且∠C+∠CDE=45°,若AD=6,则BC的长为 .【答案】8【解答】解:∵∠A=90°,∴∠ABD+∠ADB=90°,∵BD=CD,∴∠DBC=∠C,∴∠ADB=∠DBC+∠C=2∠C,∵∠C+∠CDE=45°∴2∠C+∠CDE=90°,∴∠ADB+∠CDE=90°,∴∠BDE=90°,作DF⊥BC于F,如图所示:则BF=CF,△DEF∽△BED∽△BDF,∴===,设EF=x,则DF=2x,BF=CF=4x,∴BC=8x,DE=x,∴CD=BD=2x,AC=6+2x,∵∠DFC=∠A=90°,∠C=∠C,∴△CDF∽△CBA,∴=,即=,解得:x=,∴BC=8;故答案为:8.【变式3】如图,在锐角△ABC中,BD⊥AC于D,DE⊥BC于E,AB=14,AD=4,BE:EC=9:2,则CD= .【答案】2【解答】解:∵BD⊥AC,∴∠ADB=90°,∴BD2=AB2﹣AD2=142﹣42=180,设BE=9x,EC=2x,∵DE⊥BC,∴BD2=BE•BC,即180=9x(9x+2x),解得x2=,∵CD2=CE•CB=2x•11x=22×=40,∴CD=2.1.(2022秋•义乌市月考)如图,小明在A时测得某树的影长为3m,B时又测得该树的影长为2m,若两次日照的光线互相垂直,则树的高度为( )m.A.B.C.6D.【答案】B【解答】解:根据题意,作△EFC,树高为CD,且∠ECF=90°,ED=2m,FD=3m;∵∠E+∠F=90°,∠E+∠ECD=90°,∴∠ECD=∠F,∴△EDC∽△CDF,∴=,即DC2=ED•FD=2×3=6,解得CD=m.故选:B.2.(2012•麻城市校级自主招生)如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于点E,且DE∥BC.已知AE=2,AC=3,BC=6,则⊙O的半径是( )A.3B.4C.4D.2【答案】D【解答】解:延长EC交圆于点F,连接DF.则根据90°的圆周角所对的弦是直径,得DF是直径.∵DE∥BC,∴△ADE∽△ABC.∴.则DE=4.在直角△ADF中,根据射影定理,得EF==4.根据勾股定理,得DF==4,则圆的半径是2.故选:D.3.(2022春•周村区期末)如图,在△ABC中,∠BAC=90°,AD⊥BC于D,BD=3,CD=12,则AD的长为 .【答案】6【解答】解:∵∠BAC=90°,AD⊥BC,∴AD2=CD•BD=36,∴AD=6,故答案为:6.4.(2021春•汉阴县期中)如图所示,在矩形ABCD中,AE⊥BD于点E,对角线AC,BD 交于O,且BE:ED=1:3,AD=6cm,则AE= cm.【答案】3【解答】解:设BE=x,因为BE:ED=1:3,故ED=3x,根据射影定理,AD2=3x (3x+x),即36=12x2,x2=3;由AE2=BE•ED,AE2=x•3x;即AE2=3x2=3×3=9;AE=3.5.(2022•武汉模拟)在矩形ABCD中,BE⊥AC交AD于点E,G为垂足.若CG=CD=1,则AC的长是 .【答案】【解答】解:∵四边形ABCD是矩形,∴AB=CD=1,∠ABC=90°,∵BE⊥AC,∴∠AGB=90°=∠ABC,∵∠BAG=∠CAB,∴△ABG∽△ACB,∴=,∴AG•AC=AB2(射影定理),即(AC﹣1)•AC=12,解得:AC=或AC=(不合题意舍去),即AC的长为,故答案为:.6.(2021秋•滦州市期中)已知关于x的方程x2﹣2(a+b)x+c2+2ab=0有两个相等的实数根,其中a、b、c为△ABC的三边长.(1)试判断△ABC的形状,并说明理由;(2)若CD是AB边上的高,AC=2,AD=1,求BD的长.【解答】解:(1)∵两根相等,∴可得:4(a+b)2﹣4(c2+2ab)=0,∴a2+b2=c2,∴△ABC是直角三角形;(2)由(1)可得:AC2=AD×AB,∵AC=2,AD=1,∴AB=4,∴BD=AB﹣AD=3.7.如图,点D在△ABC的边BC上,∠ADC+∠BAC=180°,AB=4,BC=8,求BD的长.【解答】解:∵∠ADC+∠BAC=180°,∠ADC+∠ADB=180°,∴∠ADB=∠BAC,又∵∠B=∠B,∴△BAD∽△BCA,∴=,∴BA2=BD•BC,∵AB=4,BC=8,∴BD=2.即AC⋅CF=CB⋅DF.8.(盐城校级模拟)【问题情境】如图1,Rt△ABC中,∠ACB=90°,CD⊥AB,我们可以利用△ABC与△ACD相似证明AC2=AD•AB,这个结论我们称之为射影定理,试证明这个定理;【结论运用】如图2,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E 在CD上,过点C作CF⊥BE,垂足为F,连接OF,(1)试利用射影定理证明△BOF∽△BED;(2)若DE=2CE,求OF的长.【解答】【问题情境】证明:如图1,∵CD⊥AB,∴∠ADC=90°,而∠CAD=∠BAC,∴Rt△ACD∽Rt△ABC,∴AC:AB=AD:AC,∴AC2=AD•AB;【结论运用】(1)证明:如图2,∵四边形ABCD为正方形,∴OC⊥BO,∠BCD=90°,∴BC2=BO•BD,∵CF⊥BE,∴BC2=BF•BE,∴BO•BD=BF•BE,即=,而∠OBF=∠EBD,∴△BOF∽△BED;(2)方法一:∵BC=CD=6,而DE=2CE,∴DE=4,CE=2,在Rt△BCE中,BE==2,在Rt△OBC中,OB=BC=3,∵△BOF∽△BED,∴=,即=,∴OF=.方法二:将△OFC绕O顺时针旋转90度得到△OGB,如图3,由△BOF∽△BED得到∠OFB=45°,∴∠OGB=∠OFC=45°+90°=135°,∵OG=OF,∴△OGF为等腰直角三角形,∴∠OGF=45°,∴G点在BE上,∵BG=CF=,∴GF=,∴OF=GF=.。
证明射影定理射影定理(Projection Theorem)是线性代数中的重要定理,它指出了一组向量之间的线性关系或映射关系。
它指出,如果一组特定的矢量组已经被定义,则任何一个向量可以表示为这组矢量的线性组合;而任何一个向量都可以被投影到这组向量所确定的一维线性空间中。
射影定理可以解释为,如果两个空间上的向量v和w,当w取正则任意值时,都可以用此定理表达v的线性组合:v=w1+w2+w3+ ···根据此定理,用一个向量表示另一个向量,就必须知道两个向量的维数相同,并确定它们在某一维度上的对应,才能采取预先构建的线性表达式。
因此,可以把线性代数的射影定理理解为一种空间向量彼此之间的关系。
由于它在空间上提供了一些线性映射关系,因此我们可以用它来描述和理解向量的组合。
这种关系的重要性体现在它能够以线性表达式形式将一个向量准确地映射到另一个向量,用它来发现和探索现实世界中向量之间的关系,为各种计算机程序提供有用的解决方案以及诸多其他用途。
射影定理具有重要的应用价值,在最优化计算、分类学习和多元时延预测等数学场景中发挥了重要作用。
在材料科学中,射影定理可以用来对液相反应和表面物理力进行分析;在机器学习中,可以用来解决高维数据的压缩和可视化;在信息融合技术中,可以用来加速信号数据的传播;而在数据挖掘,计算机视觉和自然语言处理等领域,则可以利用射影定理进行特征提取和参数优化。
综上所述,射影定理是线性代数中的一种重要定理,它定义了一组向量之间的线性映射关系。
可以说,它具有极高的理论价值和应用价值,可以用来描述、表达、分析和优化线性系统中的向量。