电力电子报告
- 格式:docx
- 大小:483.02 KB
- 文档页数:18
电力电子技术实验报告全一、实验目的本次电力电子技术实验旨在加深学生对电力电子器件工作原理的理解,掌握其基本应用和设计方法,提高学生的动手能力和解决实际问题的能力。
二、实验原理电力电子技术是利用电子器件对电能进行高效转换和控制的技术。
通过电力电子器件,可以实现电能的变换、分配和控制,广泛应用于工业、交通、能源等领域。
常见的电力电子器件包括二极管、晶闸管、IGBT等。
三、实验设备和材料1. 电力电子实验台2. 晶闸管、IGBT等电力电子器件3. 电阻、电容、电感等基本电子元件4. 示波器、万用表等测量仪器5. 连接线、焊锡等辅助材料四、实验内容1. 晶闸管触发电路的搭建与测试2. 单相桥式整流电路的设计和测试3. 三相桥式整流电路的设计与测试4. PWM控制技术在电能转换中的应用5. IGBT驱动电路的设计与测试五、实验步骤1. 根据实验要求,设计电路图,并选择合适的电力电子器件和电子元件。
2. 在实验台上搭建电路,注意器件的连接方式和电路的布局。
3. 使用示波器和万用表等测量仪器,对电路进行测试,记录实验数据。
4. 分析实验数据,验证电路设计的正确性和性能指标。
5. 根据实验结果,调整电路参数,优化电路性能。
六、实验结果与分析通过本次实验,我们成功搭建了晶闸管触发电路、单相桥式整流电路、三相桥式整流电路,并对PWM控制技术在电能转换中的应用进行了测试。
实验结果表明,所设计的电路能够满足预期的性能要求,验证了电力电子器件在电能转换和控制方面的重要作用。
七、实验总结通过本次电力电子技术实验,我们不仅加深了对电力电子器件工作原理的理解,而且提高了实践操作能力和问题解决能力。
实验过程中,我们学会了如何设计电路、选择合适的器件和元件,以及如何使用测量仪器进行测试和数据分析。
这些技能对于我们未来的学习和工作都具有重要意义。
八、实验心得在本次实验中,我们体会到了理论与实践相结合的重要性。
通过亲自动手搭建电路,我们更加深刻地理解了电力电子技术的原理和应用。
电力电子技术实验报告总结电力电子技术作为一门重要的电气工程学科分支,在现代工业和生活中有着广泛的应用。
通过一系列的电力电子技术实验,我不仅加深了对理论知识的理解,还提高了自己的实践操作能力和解决问题的能力。
以下是我对这些实验的总结。
一、实验目的和要求电力电子技术实验的主要目的是让我们熟悉各种电力电子器件的特性和工作原理,掌握基本电力电子电路的分析、设计和调试方法。
同时,培养我们的实验技能、数据处理能力和创新思维。
在实验过程中,我们被要求严格遵守实验室的安全规则,正确使用实验仪器设备,认真观察实验现象,准确记录实验数据,并对实验结果进行分析和总结。
二、实验设备和仪器实验所用到的设备和仪器包括示波器、信号发生器、万用表、电力电子实验箱等。
其中,示波器用于观测电路中的电压和电流波形,信号发生器用于产生各种控制信号,万用表用于测量电路中的电压、电流和电阻等参数,电力电子实验箱则集成了各种电力电子器件和电路模块,方便我们进行实验操作。
三、实验内容(一)单相半波可控整流电路实验在这个实验中,我们研究了单相半波可控整流电路在不同控制角下的输出电压和电流特性。
通过改变触发角,观察输出电压的平均值和有效值的变化,并与理论计算值进行对比。
同时,还分析了负载性质(电阻性负载、电感性负载)对电路工作性能的影响。
(二)单相桥式全控整流电路实验单相桥式全控整流电路是一种常见的整流电路结构。
在实验中,我们深入了解了其工作原理和特性。
通过调节触发角,观察输出电压和电流的波形,并计算输出电压的平均值和有效值。
此外,还研究了电路的有源逆变工作状态,以及逆变失败的原因和预防措施。
(三)三相桥式全控整流电路实验三相桥式全控整流电路是大功率整流装置中常用的电路拓扑。
通过这个实验,我们掌握了三相电路的工作原理和调试方法。
观察了不同控制角下的输出电压和电流波形,分析了三相电源的相序对电路工作的影响,并研究了电路在电阻性负载和电感性负载下的性能差异。
一、实习背景随着科技的不断发展,电力电子技术在各个领域的应用越来越广泛。
为了更好地了解电力电子技术在实际生产中的应用,提高自己的实践能力,我于xx年xx月xx日至xx年xx月xx月在xx公司进行了为期一个月的电力电子实习。
在此期间,我学习了电力电子技术的基本原理、应用及实验方法,对电力电子技术在工业、交通、家电等领域的应用有了更深入的认识。
二、实习内容1. 电力电子技术基本原理学习实习期间,我首先学习了电力电子技术的基本原理,包括电力电子器件、电力电子电路、电力电子变换器等。
通过学习,我对电力电子技术的基本概念、工作原理及发展趋势有了较为全面的了解。
2. 电力电子器件实验在实验过程中,我熟悉了电力电子器件的测试方法,包括二极管、晶体管、功率MOSFET等。
通过实验,我掌握了电力电子器件的导通、关断特性,以及在不同电路中的应用。
3. 电力电子电路实验在电力电子电路实验中,我学习了单相交流电源、逆变器、斩波器、整流器等电路的设计与调试。
通过实验,我掌握了电力电子电路的基本设计方法,能够根据实际需求设计出满足要求的电力电子电路。
4. 电力电子变换器实验在电力电子变换器实验中,我学习了开关电源、变频器等变换器的设计与调试。
通过实验,我了解了电力电子变换器的工作原理,掌握了变换器的设计方法。
5. 电力电子技术在实际应用中的探讨实习期间,我还对电力电子技术在工业、交通、家电等领域的应用进行了探讨。
通过查阅资料、与工程师交流,我对电力电子技术在实际应用中的问题及解决方案有了更深入的认识。
三、实习收获1. 理论与实践相结合通过这次实习,我深刻体会到理论与实践相结合的重要性。
在实习过程中,我将所学的理论知识应用于实际操作中,使我对电力电子技术有了更深入的理解。
2. 提高动手能力在实验过程中,我学会了使用各种实验设备,提高了自己的动手能力。
同时,通过解决实验中出现的问题,锻炼了自己的分析问题和解决问题的能力。
3. 增强团队协作能力实习期间,我与同学们共同完成实验任务,互相学习、互相帮助。
一、实习时间2023年6月1日至2023年6月30日二、实习地点XX电力电子实验室三、指导老师XX老师四、实习目的本次电力电子实习的主要目的是通过实际操作,加深对电力电子技术的理解,提高动手实践能力,培养独立解决问题的能力。
同时,通过实习,了解电力电子技术在现代工业中的应用,为今后的学习和工作打下坚实基础。
五、实习内容1. 电力电子器件的认识与使用在实习过程中,我们首先学习了电力电子器件的基本知识,包括二极管、晶体管、可控硅等。
通过实际操作,掌握了这些器件的使用方法,了解了它们在电路中的作用。
2. 电力电子电路的组装与调试在老师的指导下,我们组装了几个典型的电力电子电路,如整流电路、逆变电路、斩波电路等。
在组装过程中,我们学习了电路图的阅读、元器件的焊接、电路的调试等技能。
3. 电力电子技术的应用研究在实习后期,我们针对一个具体的应用案例进行了研究,即利用电力电子技术实现交流电源的稳定输出。
通过对电路的设计、仿真、实验验证,掌握了电力电子技术在实际工程中的应用。
六、实习心得与体会1. 实践是检验真理的唯一标准。
在这次实习中,我深刻体会到了这一点。
虽然在学校学习了大量的理论知识,但实际操作过程中遇到的问题让我更加明白了理论与实践相结合的重要性。
2. 动手能力是关键。
在组装电路的过程中,我发现自己的动手能力还有待提高。
通过不断尝试和总结,我逐渐掌握了电路的组装技巧,提高了自己的动手能力。
3. 团队合作精神不可或缺。
在实习过程中,我们经常需要互相协作,共同解决问题。
这使我明白了团队合作精神的重要性,也使我更加珍惜与同学们的友谊。
4. 电力电子技术在现代社会中的应用越来越广泛。
通过这次实习,我对电力电子技术在工业、交通、能源等领域的应用有了更深入的了解,为今后的学习和工作指明了方向。
七、总结本次电力电子实习让我受益匪浅。
在实习过程中,我不仅掌握了电力电子技术的基本知识和实践技能,还培养了独立解决问题的能力和团队合作精神。
电力电子实验报告电力电子实验报告引言:电力电子是现代电气工程领域中重要的研究方向之一,它涉及到电力的转换、控制和调节等方面。
本次实验旨在通过实际操作,加深对电力电子原理的理解,并掌握电力电子器件的使用和调试技巧。
一、实验目的本次实验的主要目的是通过搭建电力电子系统,实现对交流电的变换、控制和调节,掌握电力电子器件的使用和调试技巧,加深对电力电子原理的理解。
二、实验装置与方法实验装置包括交流电源、电力电子器件(如整流器、逆变器等)、控制电路以及负载等。
实验方法主要是通过搭建电路,调试参数和观察输出结果,来验证电力电子原理。
三、实验内容1. 整流器实验通过搭建单相半波整流电路,将交流电转换为直流电。
调节输入电压和负载电阻,观察输出的直流电压波形和电压波动情况,并记录实验数据。
2. 逆变器实验通过搭建单相半桥逆变电路,将直流电转换为交流电。
调节输入电压和负载电阻,观察输出的交流电压波形和电压波动情况,并记录实验数据。
3. DC-DC变换器实验通过搭建DC-DC变换电路,将直流电转换为不同电压的直流电。
调节输入电压和负载电阻,观察输出的直流电压波形和电压波动情况,并记录实验数据。
4. AC-DC变换器实验通过搭建AC-DC变换电路,将交流电转换为直流电。
调节输入电压和负载电阻,观察输出的直流电压波形和电压波动情况,并记录实验数据。
四、实验结果与分析在整流器实验中,通过调节输入电压和负载电阻,可以得到稳定的直流输出电压。
而在逆变器实验中,通过调节输入电压和负载电阻,可以得到稳定的交流输出电压。
在DC-DC变换器和AC-DC变换器实验中,通过调节输入电压和负载电阻,可以得到不同电压的直流输出。
实验结果表明,电力电子器件能够有效地实现对电能的变换、控制和调节。
通过调整电路参数,可以实现不同电压、频率和波形的输出。
这为电力系统的稳定运行和能源的高效利用提供了技术支持。
五、实验总结通过本次实验,我深入了解了电力电子的基本原理和应用。
电力电子技术实验实验报告一、实验目的电力电子技术实验是电气工程及其自动化专业的重要实践环节,通过实验,我们旨在深入理解电力电子器件的工作原理、特性以及电力电子电路的构成和工作过程。
具体目的包括:1、熟悉各类电力电子器件的特性和参数测试方法。
2、掌握基本电力电子电路的工作原理、分析方法和调试技巧。
3、培养实际动手能力和解决问题的能力,提高对电力电子技术在实际应用中的认识。
二、实验设备本次实验所使用的主要设备包括:1、电力电子实验台:提供电源、控制电路和测量仪表等。
2、示波器:用于观测电路中的电压、电流波形。
3、万用表:测量电路中的电压、电流、电阻等参数。
4、电力电子器件模块:如晶闸管、IGBT 等。
三、实验内容1、晶闸管特性测试(1)导通特性测试将晶闸管接入实验电路,逐渐增加阳极电压,观察并记录晶闸管导通时的电压和电流值。
(2)关断特性测试在晶闸管导通后,减小阳极电流至维持电流以下,观察并记录晶闸管关断时的电压和电流变化。
2、单相半波可控整流电路实验(1)搭建电路按照电路图连接好单相半波可控整流电路,包括电源、晶闸管、负载电阻等。
(2)调节触发角通过改变触发电路的参数,调节晶闸管的触发角,观察输出电压的变化。
(3)测量输出电压和电流使用示波器和万用表测量不同触发角下的输出电压和电流值,并记录数据。
3、三相桥式全控整流电路实验(1)电路连接仔细连接三相桥式全控整流电路,确保连接正确无误。
(2)触发脉冲调试调整触发脉冲的相位和宽度,保证晶闸管的正确导通和关断。
(3)性能测试测量不同负载条件下的输出电压、电流和功率因数等参数。
四、实验步骤1、实验前准备(1)熟悉实验设备的使用方法和注意事项。
(2)预习实验内容,理解实验原理和电路图。
2、进行实验(1)按照实验内容的要求,依次进行各项实验。
(2)在实验过程中,认真观察实验现象,准确记录实验数据。
3、实验结束(1)关闭实验设备的电源。
(2)整理实验仪器和设备,保持实验台的整洁。
实验一:单相半波可控整流电路的仿真一、实验名称:单相半波可控整流电路的仿真二、实验原理:在大功率的电力电子电路中广泛采用可控整流电路对输出电压进行控制和调整,以满足各种功率较大的用电器对电源的要求。
可控整流电路最常用的控制器件是晶闸管,因为晶闸管性能可靠、价格低廉、控制电路简单。
整流电路按负载的不同可以分为带电阻负载和带阻感负载两种情况。
在生产实践中,更常见的是后者,即既有电感又有电阻,若负载中感抗ωL>>电阻R时,负载主要呈现为电感,成为电感负载。
三、仿真电路图各项参数为:图中V3 为220V, 50Hz 的正弦交流电源,X1 为晶闸管,V2 为晶闸管的触发脉冲信号源。
触发脉冲的幅度为-10V(对门、阴极间而言是+10V),脉冲宽度为0.lms,上升、下降时间均为1us,周期等于输入电源V3 的周期(20ms)。
电组R=2Ω,电感L取6.5mH。
四、波形图分析:电压波形图:现象:电压有跳变!上面是电阻电压,下面是电感电压。
相加大概为110V 左右,实验时占空比是50%,正好是110V。
电压突变是晶闸管由断态转向触发时所致。
电感两端的电压电流波形图:现象:上面是电感电流,下面是电感电压。
电压跳变是电流过0点时,晶闸管由断态触发开通时,由于电感L作用使电流不能突变。
电感很大的时候会没有跳变或跳变很小。
电阻电压电流波形图:结论:有跳变,电流从正向负跳变时候跳变要剧烈一点。
五、心得体会:通过本次实验基本上学会了此软件的基本用法。
同时仿真了单相半波可控整流电路,验证了晶闸管的作用及观察到其对电路的影响。
实验二:三相半波可控整流电路的仿真刘峻玮222007322042015 工程技术学院自动化1班一、实验名称:三相半波可控整流电路的仿真二、实验原理:当整流负载容量很大时,或要求直流电压脉动较小时,应采用三相整流电流,其交流侧由三相电源供电。
三相可控整流电路中,最基本的是三相电路可控整流电路,应用最为广泛的是三相桥式全控整流电路以及双反星形可控整流电路等等,均可在三相半波的基础上分析。
为了提高自己的实践能力,深入了解电力电子技术,我参加了为期一个月的电力电子实习。
实习期间,我深入了解了电力电子技术的应用,掌握了电力电子设备的基本操作和维护方法,以下是实习总结。
二、实习目的1. 了解电力电子技术的应用领域和发展趋势。
2. 掌握电力电子设备的基本操作和维护方法。
3. 培养自己的动手能力和团队协作精神。
三、实习内容1. 电力电子技术概述在实习的第一周,我学习了电力电子技术的基本概念、发展历程和应用领域。
通过学习,我了解到电力电子技术是电力系统的重要组成部分,广泛应用于电能变换、控制、保护等领域。
2. 电力电子设备操作实习期间,我参与了电力电子设备的安装、调试和维护工作。
具体内容包括:(1)电力电子设备的安装:学习电力电子设备的安装步骤、注意事项和操作方法。
(2)电力电子设备的调试:掌握电力电子设备的调试流程、参数设置和调试技巧。
(3)电力电子设备的维护:了解电力电子设备的日常维护、故障排查和预防性维护。
3. 电力电子设备故障分析在实习过程中,我学会了如何分析电力电子设备的故障原因,并采取相应的措施进行处理。
具体包括:(1)设备故障现象的观察和记录。
(2)故障原因的分析和判断。
(3)故障处理方案的设计和实施。
1. 理论知识与实践相结合通过实习,我深刻体会到理论知识与实践操作的重要性。
在实习过程中,我将所学知识运用到实际工作中,提高了自己的动手能力。
2. 掌握电力电子设备的基本操作和维护方法实习期间,我掌握了电力电子设备的基本操作和维护方法,为今后从事相关工作奠定了基础。
3. 培养了团队协作精神在实习过程中,我与团队成员共同完成任务,培养了团队协作精神。
4. 提高了沟通能力在实习过程中,我学会了与同事、师傅和领导进行有效沟通,提高了自己的沟通能力。
五、实习感悟1. 电力电子技术的重要性电力电子技术在现代社会中具有广泛的应用,对电力系统的安全、稳定和高效运行具有重要意义。
2. 严谨的工作态度在电力电子领域,严谨的工作态度至关重要。
电力电子技术实验报告电力电子技术实验报告引言电力电子技术是现代电力系统中不可或缺的一部分。
通过电力电子技术,我们可以实现电能的高效转换、传输和控制,提高能源利用效率,减少能源浪费。
本实验报告旨在介绍电力电子技术的基本原理和实验结果,以及对现代电力系统的应用。
一、整流电路实验整流电路是电力电子技术中最基本的电路之一。
通过整流电路,我们可以将交流电转换为直流电,以满足不同电器设备的电源要求。
在实验中,我们使用了半波和全波整流电路进行测试。
半波整流电路通过单个二极管将交流电信号的负半周去除,只保留正半周。
实验中,我们使用了一个变压器将220V的交流电降压为12V,然后通过一个二极管进行半波整流。
实验结果显示,输出电压为正半周的峰值。
全波整流电路通过两个二极管将交流电信号的负半周转换为正半周,实现了更高的电压转换效率。
实验中,我们使用了一个中心引线变压器将220V的交流电降压为12V,然后通过两个二极管进行全波整流。
实验结果显示,输出电压为正半周的峰值,且相较于半波整流电路,输出电压更加稳定。
二、逆变电路实验逆变电路是电力电子技术中另一个重要的电路。
通过逆变电路,我们可以将直流电转换为交流电,以满足不同电器设备的电源要求。
在实验中,我们使用了单相逆变电路和三相逆变电路进行测试。
单相逆变电路通过一个开关管和一个滤波电感将直流电转换为交流电。
实验中,我们使用了一个12V的直流电源,通过一个开关管和一个滤波电感进行逆变。
实验结果显示,输出电压为交流电信号,频率与输入直流电源的频率相同。
三相逆变电路是现代电力系统中常用的逆变电路。
它通过三个开关管和三个滤波电感将直流电转换为三相交流电。
实验中,我们使用了一个12V的直流电源,通过三个开关管和三个滤波电感进行逆变。
实验结果显示,输出电压为三相交流电信号,频率与输入直流电源的频率相同。
三、PWM调制实验PWM调制是电力电子技术中常用的一种调制方式。
通过改变脉冲宽度的方式,可以实现对输出电压的精确控制。
电力电子调研报告1. 研究背景电力电子是一门应用电子学的分支,主要研究电力的变换、传递和控制等技术。
它在现代电力系统中具有重要的地位和作用。
本调研报告旨在调查电力电子的应用领域、技术发展和未来趋势等方面的情况。
2. 电力电子的应用领域电力电子广泛应用于电力系统、工业和交通等领域。
在电力系统中,电力电子设备可以实现电能的调整、变换和传输,提高能源利用效率。
在工业领域,电力电子设备可应用于电动机驱动、变频调速和电力负载控制等方面。
在交通领域,电力电子技术为电动汽车、高速铁路和电力船舶等提供了重要支持。
3. 电力电子相关技术发展电力电子技术经过多年的发展已取得了显著的进步。
一方面,功率器件技术得到了快速发展,如IGBT(绝缘栅双极型晶体管)和SiC(碳化硅)功率器件等。
这些功率器件具有高效率、高可靠性和高功率密度等特点。
另一方面,控制技术也得到了提高,如PWM(脉宽调制)技术和模糊控制技术等。
这些控制技术能够实现对电力电子设备的精确控制和调节。
4. 电力电子的市场前景随着新能源的不断开发利用和电动化的发展,电力电子市场呈现出良好的前景。
特别是在可再生能源领域,电力电子设备可实现对太阳能和风能等能源的有效转换和集成。
此外,电动汽车的兴起也带动了电力电子设备的需求。
预计未来的电力电子市场将继续保持增长态势。
5. 电力电子的挑战和未来发展趋势尽管电力电子技术取得了重大突破,但仍存在一些挑战。
其中,功率损耗和散热问题是亟待解决的关键问题。
为了进一步提高电力电子设备的能效和可靠性,需要开展更多的研究工作。
未来的发展趋势包括高压、高功率和高可靠性等方面的要求,同时需要关注环境友好型的设计和制造。
总结:电力电子作为一门应用电子学的分支,在现代电力系统和工业领域中具有重要地位和作用。
随着技术的不断进步和市场的需求增加,电力电子的应用领域和技术发展都将面临新的机遇和挑战。
我们需要持续关注电力电子领域的研究进展和市场动态,为其未来的发展和应用做好充分准备。
一、实验目的1. 熟悉电力电子实验的基本流程和操作规范。
2. 掌握电力电子器件的工作原理和特性。
3. 了解电力电子电路的设计与调试方法。
4. 培养实际动手能力和团队协作精神。
二、实验内容1. 电力电子器件实验(1)实验原理:通过实验观察电力电子器件(如二极管、晶闸管、GTR、MOSFET 等)在电路中的工作状态和特性。
(2)实验步骤:a. 根据实验要求,搭建实验电路。
b. 测量并记录器件的静态特性,如正向导通电压、反向阻断电压、开通和关断时间等。
c. 通过实验观察器件在不同工作状态下的表现。
2. 电力电子电路实验(1)实验原理:通过实验了解电力电子电路(如整流电路、逆变电路、变频电路等)的工作原理和特性。
(2)实验步骤:a. 根据实验要求,搭建实验电路。
b. 测量并记录电路的静态特性,如输出电压、电流、功率等。
c. 通过实验观察电路在不同工作状态下的表现。
3. 电力电子电路控制实验(1)实验原理:通过实验了解电力电子电路的控制方法,如PWM控制、斩波控制等。
(2)实验步骤:a. 根据实验要求,搭建实验电路。
b. 利用控制信号对电力电子器件进行控制,观察控制效果。
c. 分析控制信号的时序和波形,优化控制策略。
三、实验结果与分析1. 电力电子器件实验结果与分析(1)实验结果:通过实验观察,二极管、晶闸管、GTR、MOSFET等器件在电路中的工作状态和特性符合理论分析。
(2)实验分析:实验结果验证了电力电子器件的基本特性和工作原理。
2. 电力电子电路实验结果与分析(1)实验结果:通过实验观察,整流电路、逆变电路、变频电路等电力电子电路在不同工作状态下的表现符合理论分析。
(2)实验分析:实验结果验证了电力电子电路的基本工作原理和特性。
3. 电力电子电路控制实验结果与分析(1)实验结果:通过实验观察,利用PWM控制、斩波控制等控制方法对电力电子器件进行控制,实现了电路的稳定运行。
(2)实验分析:实验结果验证了电力电子电路控制方法的有效性。
电力电子实验报告一、实验目的本实验旨在通过搭建电力电子电路和测量电路参数,深入理解电力电子的基本原理和应用。
二、实验装置与仪器1. 稳压直流电源2. 功率电子器件(如二极管、晶闸管、MOS管等)3. 示波器4. 变压器5. 整流电路、逆变电路等电力电子实验电路板6. 电阻、电容、电感等元件7. 其他必要的实验器材和配件三、实验内容1. 实验一:整流器的实验a. 搭建并测量单相半波和全波整流电路的输出电压波形、输出电压和电流的平均值、有效值等参数。
b. 分析和比较两种整流电路的性能差异,并讨论其应用特点和限制。
2. 实验二:逆变器的实验a. 搭建并测量单相半桥和全桥逆变电路的输出电压波形、输出电压和电流的平均值、有效值等参数。
b. 分析和比较两种逆变电路的性能差异,并讨论其应用特点和限制。
3. 实验三:电力电子开关功率调节实验a. 搭建开关转换器或斩波电路实验电路,测量不同调节方式下的输出电压、电流和效率等参数。
b. 讨论开关功率调节的优缺点,以及不同调节方式的适用场景。
4. 实验四:PWM调制电路的实验a. 搭建简单的PWM调制电路,测量输出电压的调节范围、带宽等参数。
b. 分析PWM调制电路的工作原理和调节性能,探讨其在电力电子中的应用前景。
5. 实验五:电力电子控制系统的实验a. 搭建基于微控制器的电力电子控制系统,实现对某一电力电子器件的自动控制。
b. 测试并分析控制系统的稳定性、响应速度等性能指标,并讨论控制系统的设计考虑因素。
四、实验步骤与结果根据实验内容,按照以下步骤进行实验并记录实验结果:1. 记录实验所使用的电路和元件的连接方式和参数设置。
2. 使用示波器等仪器测量电路各个节点的电压和电流,并记录数据。
3. 分析实验结果,计算输出电压的平均值、有效值、波形畸变率等参数。
4. 对比实验数据,进行数据处理和性能比较。
5. 撰写实验结果报告并进行讨论。
五、实验结果分析根据实验结果,对各个实验内容进行数据分析和讨论,包括:1. 整流电路的性能比较:比较半波和全波整流电路的输出电压波形、平均值、有效值等参数,分析其差异和应用场景。
一、实习概述实习时间:2023年6月1日至2023年6月30日实习地点:XX电力电子实验室指导老师:XX教授二、实习目的本次实习旨在使我对电力电子技术有更深入的理解和实践,提高我的动手能力和解决实际问题的能力。
通过实习,我希望达到以下目标:1. 熟悉电力电子技术的相关理论知识和实验技能。
2. 掌握电力电子设备的安装、调试和维护方法。
3. 培养团队合作精神,提高沟通协调能力。
4. 增强对电力电子行业发展的认识。
三、实习内容1. 电力电子基础知识学习在实习初期,我们首先学习了电力电子技术的基本概念、工作原理和分类。
通过课堂讲解和实验演示,我们对电力电子器件(如二极管、晶闸管、MOSFET等)的结构、特性和应用有了初步的了解。
2. 电力电子实验操作在实验环节,我们进行了以下实验操作:(1)电力电子电路搭建与调试:我们根据实验指导书,搭建了整流电路、逆变电路、变频电路等电力电子电路,并对电路进行了调试,使其满足设计要求。
(2)电力电子设备操作:我们学习了电力电子设备的操作方法,包括整流器、逆变器、变频器等设备的启动、运行、停止和故障排除。
(3)电力电子参数测量:我们使用示波器、万用表等仪器,对电力电子电路和设备进行了参数测量,包括电压、电流、频率、功率等。
3. 电力电子项目实践在实习中期,我们参与了电力电子项目实践,具体内容如下:(1)设计并搭建了一个小型变频调速系统,实现了电机转速的调节。
(2)对变频调速系统进行了性能测试,包括效率、稳定性、可靠性等方面的测试。
(3)针对测试中发现的问题,对系统进行了优化改进。
4. 电力电子行业调研在实习后期,我们对电力电子行业进行了调研,了解了行业发展趋势、关键技术、市场需求等信息。
四、实习收获1. 理论知识与实践相结合通过本次实习,我深刻体会到理论知识与实践操作的重要性。
只有将理论知识与实际操作相结合,才能更好地掌握电力电子技术。
2. 动手能力和解决问题的能力得到提高在实验和项目实践中,我学会了如何使用各种仪器设备,如何分析问题、解决问题,提高了我的动手能力和解决问题的能力。
电力电子实验报告仿真电力电子是关于电力系统中的电力变换和控制的一门学科,它主要应用于电力系统中的功率调节、电能质量控制和电能传输等方面。
在电力电子实验中,我们通过仿真软件对电力电子器件和系统进行建模、仿真和分析。
下面是一份关于电力电子实验仿真的报告,旨在介绍电力电子的基本原理、实验内容和结果分析。
实验名称:电力电子的仿真实验实验目的:通过仿真软件对电力电子器件和系统进行建模、仿真和分析,学习电力电子的基本原理和应用。
实验装置和器件:电力电子仿真软件、开关管、二极管、滤波电容、电源、负载等。
实验原理:电力电子是利用电子器件来对电能进行变换和控制的学科,其主要包括开关电源、直流调速、电能质量控制等方面。
在本实验中,我们将模拟建立电力电子器件和系统的模型,并通过仿真软件进行仿真和分析。
实验步骤:1.模拟建立电力电子器件和系统的模型。
根据实验要求,选择适当的电力电子器件和系统,建立相应的电路模型。
2.进行仿真实验。
在模拟建立模型后,通过仿真软件对电路进行仿真实验,记录下相关的参数和波形。
3.分析实验结果。
根据仿真结果,分析电路的性能和特点,探讨电力电子器件和系统的优化方案。
实验结果和分析:在本次实验中,我们选择了一个开关电源电路进行仿真实验。
通过调节电源和负载的参数,我们得到了不同工作状态下的电压、电流和功率波形。
根据仿真结果,我们可以看到开关电源具有宽的输入电压范围,输出电压稳定,响应速度快等特点。
同时,我们还发现,在输入电压变化较大时,开关电源的输出电压仍能保持稳定,表明开关电源具有良好的稳压性能。
结论:通过本次仿真实验,我们进一步了解了电力电子的基本原理和应用,学会了使用仿真软件进行电力电子器件和系统的建模、仿真和分析。
同时,通过对开关电源电路的仿真实验,我们验证了开关电源具有宽输入电压范围、稳压性好的优点。
实验心得:电力电子实验是电力专业中重要的实践环节,通过仿真实验,我们更深入地理解了电力电子的工作原理和特点。
电力电子技术实践报告一、引言电力电子技术在现代电力系统中起着至关重要的作用。
通过对电力电子器件和系统的实践应用,我们能够更好地理解电力电子技术的工作原理和应用领域。
本报告将详细介绍我们在电力电子技术实践中所进行的实验和取得的成果。
二、实验目的本次实践旨在通过对电力电子器件的实验应用,掌握电力电子技术在能量转换和电力控制中的应用原理和方法。
具体目标如下:1. 理解电力电子器件的基本原理和特性。
2. 学习电力电子器件的实验测量方法和参数计算。
3. 掌握电力电子器件的性能评估和使用技巧。
4. 通过实验应用,培养综合运用电力电子技术的能力。
三、实验内容在本次实验中,我们主要进行了以下几项内容的实践应用:1. 单相电压源逆变技术实验通过搭建电压源逆变电路,实现对直流电源的逆变,将直流电压转换为交流电压输出。
在实验过程中,我们观察了逆变电路的波形和电压的变化,计算了逆变电路的效率。
2. 三相桥式整流实验通过搭建三相桥式整流电路,将交流电源转换成直流输出。
我们对整流电路的输出电压和电流进行了测量,并计算了电路的整流效率。
同时,利用示波器观察了电路波形的变化,并对整流电路的性能进行了评估。
3. 交流调压换流器实验通过搭建交流调压换流器电路,实现对输入电压的调整和输出电压的换流。
我们准确测量了电路的输入和输出参数,并对电路的控制方法和性能进行了研究和分析。
四、实验结果与讨论我们通过以上三个实验的实践应用,详细记录并分析了实验结果。
在单相电压源逆变技术实验中,我们观察到逆变电路的波形和电压变化较为稳定,且逆变电路的效率较高。
在三相桥式整流实验中,我们得到了较为稳定的直流输出,并计算出整流电路的效率较高。
在交流调压换流器实验中,我们成功实现了输入电压的调整和输出电压的换流,并对电路的控制方法和性能进行了分析。
五、结论通过本次电力电子技术实践,我们深入了解了电力电子器件和系统的工作原理和应用方法。
实验结果表明,我们成功地掌握了电力电子技术的实验测量方法和参数计算,增强了我们的实践能力和综合运用能力。
一、实验目的1. 熟悉电力电子器件的基本特性和工作原理。
2. 掌握电力电子电路的组成和功能。
3. 了解电力电子电路在实际应用中的工作情况。
4. 培养动手实践能力和分析问题、解决问题的能力。
二、实验器材1. 电力电子实验箱2. 万用表3. 示波器4. 信号发生器5. 晶闸管6. 二极管7. 电阻8. 电容9. 电感10. 连接线三、实验内容及步骤1. 电力电子器件特性实验(1)晶闸管导通特性实验:观察晶闸管在不同触发角下的导通情况,分析其导通特性。
(2)二极管反向恢复特性实验:测量二极管在反向电压作用下的恢复时间,分析其反向恢复特性。
2. 电力电子电路实验(1)单相半波可控整流电路实验:观察电路在不同触发角下的输出电压波形,分析其整流效果。
(2)三相半波可控整流电路实验:观察电路在不同触发角下的输出电压波形,分析其整流效果。
(3)单相桥式全控整流电路实验:观察电路在不同触发角下的输出电压波形,分析其整流效果。
(4)三相桥式全控整流电路实验:观察电路在不同触发角下的输出电压波形,分析其整流效果。
3. 电力电子电路应用实验(1)交流调压电路实验:观察电路在不同输入电压下的输出电压,分析其调压效果。
(2)直流稳压电路实验:观察电路在不同输入电压下的输出电压,分析其稳压效果。
四、实验结果与分析1. 晶闸管导通特性实验通过实验,观察到晶闸管在触发角为0°时导通,随着触发角的增大,导通时间逐渐缩短。
这说明晶闸管的导通特性受触发角的影响。
2. 二极管反向恢复特性实验通过实验,测量出二极管在反向电压作用下的恢复时间为5μs。
这说明二极管的反向恢复特性对电路的开关速度有一定影响。
3. 电力电子电路实验(1)单相半波可控整流电路实验通过实验,观察到电路在触发角为0°时输出电压最高,随着触发角的增大,输出电压逐渐降低。
这说明触发角对整流效果有较大影响。
(2)三相半波可控整流电路实验通过实验,观察到电路在触发角为0°时输出电压最高,随着触发角的增大,输出电压逐渐降低。
电力电子技术实践报告引言随着现代科技的不断发展,电力电子技术在各个领域中的应用越来越广泛。
本文将结合个人的实践经验,对电力电子技术的实践应用进行探讨和分析。
一、电力电子技术的基本原理电力电子技术是将电子技术应用于电力系统中的一门学科。
它通过使用电子器件和控制技术,可以将电力从一种形式转换为另一种形式。
电力电子技术的核心在于斩波控制技术,即通过控制电压和电流的开关状态,实现对电力的调整和控制。
二、电力电子技术在电力系统中的应用1. 可以利用交流-直流变换器将交流电转换为直流电,实现对输电线路的监控和控制。
这样做可以减少能量损耗,提高电力的传输效率。
2. 由于电力系统中常常需要将直流电转换为交流电进行利用,所以可以使用直流-交流逆变器实现这一过程。
逆变器可以将稳定的直流电转换为可用于家庭和工业设备的交流电。
3. 在可再生能源系统中,电力电子技术也起到了至关重要的作用。
例如,太阳能电池板和风力发电机产生的直流电,需要通过电力电子技术进行转换,才能满足电力系统的需求。
4. 电力电子技术还在电动车领域得到了广泛应用。
电动车的电机需要通过变频器进行控制,而变频器正是利用了电力电子技术实现的。
这样可以实现电动车的动力输出调节,提高能源利用率。
三、个人实践经验作为一名电力电子技术的研究者,我在实践过程中遇到了许多问题和挑战。
例如,在设计斩波控制器时,需要考虑到开关器件的特性,以确保控制的准确性和稳定性。
另外,在使用逆变器将直流电转换为交流电时,需要注意输出电流和电压的波形质量,以避免对各类电气设备产生不良影响。
此外,在太阳能发电系统的设计中,我还遇到了输电线路的电阻问题。
为了提高系统的发电效率,我采用了电力电子技术中的斩波调制技术,将输电线路的电阻降低到最低。
四、电力电子技术的发展前景随着可再生能源和电动车市场的迅速发展,电力电子技术的应用前景非常广阔。
同时,随着半导体技术的不断进步,电力电子器件的性能也在不断提高,这为电力电子技术的应用提供了更大的空间。
一、实习背景随着科技的飞速发展,电力电子技术在工农业生产、国防、交通、能源和人民生活的各个领域得到了广泛应用。
为了使同学们更好地了解和掌握电力电子技术,提高动手能力和实际操作技能,我们班级组织了一次电力电子实训实习。
二、实习目的1. 熟悉电力电子技术的基本原理和常用元器件;2. 掌握电力电子电路的设计、安装和调试方法;3. 提高动手能力和实际操作技能;4. 培养团队合作精神和创新意识。
三、实习内容1. 电力电子器件的认识与选用实习过程中,我们首先学习了电力电子器件的基本原理和特点,如二极管、晶闸管、MOSFET、IGBT等。
通过实验,我们掌握了器件的选用方法和注意事项,为后续电路设计奠定了基础。
2. 电力电子电路的设计与安装在老师的指导下,我们学习了电力电子电路的设计方法,包括电路拓扑、元件选择、参数计算等。
然后,我们根据所学知识,设计并安装了以下电路:(1)单相半波整流电路:将交流电转换为直流电,实现电压的初步稳定。
(2)三相半波整流电路:提高整流电路的输出电压和电流,满足更大功率负载的需求。
(3)有源逆变电路:将直流电转换为交流电,实现电能的逆向传输。
(4)交流调压电路:调节交流电压的大小,满足不同负载的需求。
3. 电力电子电路的调试与测试在安装完成后,我们对电路进行了调试和测试,确保电路性能达到预期要求。
主要测试内容包括:(1)输出电压和电流的稳定性:通过调整电路参数,使输出电压和电流保持稳定。
(2)电路的响应速度:测试电路对输入信号的变化的响应速度,确保电路的实时性。
(3)电路的功率损耗:测试电路在工作过程中的功率损耗,提高电路的效率。
四、实习总结1. 通过本次实习,我们掌握了电力电子技术的基本原理和常用元器件,为今后从事相关工作打下了基础。
2. 实践操作能力的提高:在实习过程中,我们学会了电路设计、安装、调试和测试,提高了动手能力和实际操作技能。
3. 团队合作精神的培养:在实习过程中,我们相互协作,共同解决问题,培养了团队合作精神。
电力电子调查报告电力电子调查报告一、引言电力电子技术是指利用电子器件和电子技术对电力进行控制和转换的一门学科。
它在现代社会中扮演着重要的角色,涉及到电力系统、工业控制、交通运输、能源转换等多个领域。
本篇文章将对电力电子技术的应用和发展进行调查和分析。
二、电力电子技术的应用领域1. 电力系统电力电子技术在电力系统中的应用非常广泛。
例如,静止无功补偿(SVC)和静止同步补偿器(STATCOM)等电力电子装置可以用于提高电力系统的稳定性和可靠性。
此外,柔性交流输电系统(FACTS)也是电力电子技术的重要应用,它可以通过控制电力系统的电压和电流来提高输电效率。
2. 工业控制电力电子技术在工业控制中的应用也非常广泛。
例如,变频器可以用于调节电机的转速,实现对生产过程的精确控制。
另外,电力电子技术还可以用于电力质量控制,提高工业设备的运行效率和可靠性。
3. 交通运输电力电子技术在交通运输领域的应用也日益增多。
例如,电动汽车和混合动力汽车中的电力电子装置可以实现对电池的充放电控制,提高汽车的能源利用效率。
此外,高速铁路和轨道交通系统中的牵引变流器也是电力电子技术的重要应用。
4. 能源转换电力电子技术在能源转换领域的应用也非常重要。
例如,太阳能光伏发电系统和风力发电系统中的逆变器可以将直流电转换为交流电,实现对电力的有效利用。
此外,电力电子技术还可以用于能量存储系统,例如电池和超级电容器等。
三、电力电子技术的发展趋势1. 高效能源转换随着能源资源的日益紧缺,提高能源的利用效率成为当务之急。
电力电子技术可以通过高效能源转换实现对能源的有效利用,例如采用新型的功率半导体器件和拓扑结构,减小能量损耗,提高能源转换效率。
2. 多能源互联随着可再生能源的快速发展,多能源互联成为未来能源系统的发展趋势。
电力电子技术可以实现不同能源之间的互联和协调,提高能源系统的可靠性和稳定性。
3. 智能化控制随着信息技术的快速发展,智能化控制成为电力电子技术的重要发展方向。
辽宁科技大学课程名称:三项桥式全控整流的性能研究院系:电子与信息工程学院班级:电气13-1学号:120133103069姓名:张浩时间:2015年12月15日摘要:对于广泛使用的三相桥式整流电容滤波电路,在直流侧接入电抗器是提高电路输入功率因数降低谐波电流的有效方法。
通过分析得出了电路各项输入指标与参数间的理论关系式,为电路分析设计提供了有效的工具。
仿真与实验证明了结论的正确性。
利用MATLAB7.0 的Simulink 的电力系统仿真模型进行可控整流电路的仿真研究,给出三相桥式全控整流电路的理论分析波形图,用MATLAB 命令语言验证了理论分析,并提供该电路的MATLAB 的仿真模型图,得到仿真波形图。
关键词:三相桥式全控整流;触发角;电阻负载;仿真模型图1、概述随着社会生产和科学技术的发展,整流电路在自动控制系统、测量系统和发电机励磁系统等领域的应用日益广泛。
常用的三相整流电路有三相桥式不可控整流电路、三相桥式半控整流电路和三相桥式全控整流电路。
三相全控整流电路的整流负载容量较大,输出直流电压脉动较小,是目前应用最为广泛的整流电路。
它是由半波整流电路发展而来的。
由一组共阴极的三相半波可控整流电路和一组共阳极接法的晶闸管串联而成。
六个晶闸管分别由按一定规律的脉冲触发导通,来实现对三相交流电的整流,当改变晶闸管的触发角时,相应的输出电压平均值也会改变,从而得到不同的输出。
由于整流电路涉及到交流信号、直流信号以及触发信号,同时包含晶闸管、电容、电感、电阻等多种元件,采用常规电路分析方法显得相当繁琐,高压情况下实验也难顺利进行。
Matlab提供的可视化仿真工具Simulink可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强,进一步省去了编程的步骤。
本文利用Simulink对三相桥式全控整流电路进行建模,对不同控制角、桥故障情况下进行了仿真分析,既进一步加深了三相桥式全控整流电路的理论,同时也为现代电力电子实验教学奠定良好的实验基础。
整流电路是电力电子中出现最早的一种形式,它将交流电转变为直流电,电路形式十分广泛。
三相桥式全控整流电路以及三相桥式全控逆变电路在现代电力电子技术中具有很重要的作用和很广泛的应用。
这里结合全控整流电路以及全控逆变电路理论基础,采用Matlab的仿真工具Simulink对三相桥式全控整流电路和三相桥式全控逆变电路进行仿真,对输出参数进行仿真及验证,进一步了解三相桥式全控整流电路和三相桥式全控逆变电路的工作原理。
2、原理一般变压器一次侧接成三角型,二次侧接成星型,晶闸管分共阴极和共阳极。
一般1、3、5为共阴极,2、4、6为共阳极。
(1)2管同时通形成供电回路,其中共阴极组和共阳极组各1,且不能为同1相器件。
(2)对触发脉冲的要求:1)按VT1-VT2-VT3-VT4-VT5-VT6的顺序,相位依次差60︒。
2)共阴极组VT1、VT3、VT5的脉冲依次差120︒,共阳极组VT4、VT6 、VT2也依次差120︒。
3)同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相差180︒。
(3)Ud一周期脉动6次,每次脉动的波形都一样,故该电路为6脉波整流电路。
(4)需保证同时导通的2个晶闸管均有脉冲,可采用两种方法:一种是宽脉冲触发一种是双脉冲触发(常用)(5)晶闸管承受的电压波形与三相半波时相同,晶闸管承受最大正、反向电压的关系也相同。
三相桥式全控整流电路实质上是三相半波共阴极组与共阳极组整流电路的串联。
在任何时刻都必须有两个晶闸管导通才能形成导电回路,其中一个晶闸管是共阴极组的,另一个晶闸管是共阳组的。
6 个晶闸管导通的顺序是按 VT6 –VT1 → VT1 –VT2 → VT2 –VT3 → VT3 –VT4 → VT4 –VT5 → VT5 –VT6 依此循环,每隔60 °有一个晶闸管换相。
为了保证在任何时刻都必须有两个晶闸管导通,采用了双脉冲触发电路,在一个周期内对每个晶闸管连续触发两次,两次脉冲前沿的间隔为60 °。
三相桥式全控整流电路用作有源逆变时,就成为三相桥式逆变电路。
由整流状态转换到逆变状态必须同时具备两个条件:一定要有直流电动势源,其极性须和晶闸管的导通方向一致,其值应稍大于变流器直流侧的平均电压;其次要求晶闸管的 a >90 °,使 U d 为负值。
所谓逆变,就是要求把负载(电机)吸收的直流电能转变为交流电能反馈回电网。
三相桥式有源逆变电路实质上是三相桥式可控整流电路工作的一个特定状态,三相桥式逆变。
要使整流电路工作于逆变状态,必须有两个条件:(1)变流器的输出Ud能够改变极性。
因为晶闸管的单向导电性,电流Id不能改变方向,为了实现有源逆变,必须去改变Ud 的电极性。
只要使变流器的控制角α>90°即可。
(2)必须要有外接的直流电源E,并且直流电源E也要可以改变极性,并且|E|>|Ud|。
上述条件必须同时满足,才能实现有源逆变。
三相桥式全控整流电路用作有源逆变时,就成为三相桥式逆变电路。
由整流状态转换到逆变状态必须同时具备两个条件:一定要有直流电动势源,其极性须和晶闸管的导通方向一致,其值应稍大于变流器直流侧的平均电压;其次要求晶闸管的 a >90 °,使 U d 为负值KP1KP3KP5图1 三相桥式全控整流电路u gu gu gu gu2u图2 三相桥式整流电路的触发脉冲在第(1)段期间,a相电压最高,而共阴极组的晶闸管KP1被触发导通,b相电位最低,所以供阳极组的晶闸管KP6被触发导通。
这时电流由a相经KP1流向负载,再经KP6流入b相。
变压器a、b两相工作,共阴极组的a相电流为正,共阳极组的b相电流为负。
加在负载上的整流电压为Ud=Ua-Ub=Uab经过60°后进入第(2)段时期。
这时a相电位仍然最高,晶闸管KPl继续导通,但是c相电位却变成最低,当经过自然换相点时触发c相晶闸管KP2,电流即从b相换到c相,KP6承受反向电压而关断。
这时电流由a相流出经KPl、负载、KP2流回电源c相。
变压器a、c两相工作。
这时a相电流为正,c相电流为负。
在负载上的电压为Ud=Ua-Uc=Uac再经过60°,进入第(3)段时期。
这时b相电位最高,共阴极组在经过自然换相点时,触发导通晶闸管KP3,电流即从a相换到b相,c相晶闸管KP2因电位仍然最低而继续导通。
此时变压器bc两相工作,在负载上的电压为Ud=Ub-Uc=Ubc3、实验线路和参数设置实验仿真模型如下:对于晶闸管两端的电压、电流波形,我们观察VT1、VT2、VT3、VT4、VT5、VT6中的一个即可,在该模型中我观察的是VT1的电压、电流波形。
设置模型参数:(1) 交流电压源U2,电压为141V ,频率为50Hz ,初始相位角0°。
参数设置框如下:Continuouspowerguiv+-Voltage Measurement3v+-Voltage Measurement2v+-Voltage Measurement1v+-Voltage MeasurementgakThyristor V6gakThyristor V5gakThyristor V4gakThyristor V3gakThyristor V2gmakThyristor V1+Series RLC BranchScopePulseGenerator V6PulseGenerator V5PulseGenerator V4PulseGenerator V3PulseGenerator V2PulseGenerator V1i +-Current MeasurementAC Voltage Source CAC Voltage Source BAC Voltage Source A这是A相的电压,B、C相分别在Phaes设置240°和120°。
(2)这是A相的电压,B、C相分别在Phaes设置:VT1~VT6的参数设置是一样的。
(3)负载的参数设置:我们的负载是RL型的,所以在Branch type这栏选择的是RL,且RL 的值设定如上图:(4)本电路中晶闸管的触发采用简单的脉冲触发器(Pulse Generator)来产生,脉冲发生器的脉冲周期Τ必须和交流电源u2同步。
晶闸管的控制角α以脉冲的延迟时间t来表示,t=αΤ/360°,其中,α为控制角,Τ=1/f,f为交流电源频率。
本仿真电路在α=0°、30°、60°、90°、120°时的脉冲发生器参数(5)示波器参数设置将示波器的记录时间为1秒,页面应该是设置为白色或者浅色背景色(底色),黑色或者深色前景色(画笔颜色)。
并将示波器的数据记录点改成53069,如下图:4.过程及波形实验步骤:在实验模型在SIMULINK内搭建完成后,并且把每个模块的实验参数设置完成后。
在本仿真电路中,将仿真时间设为0.2s,在参数设置完毕后即可开始仿真。
在菜单Simulation下选择Start,或者直接点击工具栏上的运行仿真立即开始,在屏幕下方的状态栏上可以看到仿真的进程。
若要中途停止仿真可以选择Stop,在仿真计算完成后即可以通过示波器来观察仿真的结果。
实验结果:(1)当触发角a为0°时,三相电源电压、晶闸管两端电压、负载电流、负载电压波形如下图所示(2)当触发角a为30°时,三相电源电压、晶闸管两端电压、负载电流、负载电压波形如下图所示(3)当触发角a为60°时,三相电源电压、晶闸管两端电压、负载电流、负载电压波形如图下图所示(4)当触发角a为90°时,三相电源电压、晶闸管两端电压、负载电流、负载电压波形如下图所示(5)当触发角a为120°时,三相电源电压、晶闸管两端电压、负载电流、负载电压波形如图下图所示5、分析和讨论5.1、波形分析1.当触发角小于60°时,整流输出电压波形与纯阻性负载时基本相同,所不同的是,阻感性负载直流侧电流由于有电感的滤波作用而不会发生急剧的变化,输出波形较为平稳。
2.当触发角大于等于60°小于90°时,由于电感的作用,延长了管子的导通时间,使Ud波形出现负值,而不会出现断续,所以直流侧输出电压会减小,但是由于正面积仍然大于负面积,这时直流平均电压仍为正值。
3.触发角大于90°时,由于Id太小,晶闸管无法再导通,输出几乎为0。
工作在整流状态,晶闸管所承受的电压主要为反向阻断电压。
移相范围为0°~90°。