2.第2课时胡 匀变速直线运动的应用技巧
- 格式:ppt
- 大小:2.34 MB
- 文档页数:64
第二讲 匀变速直线运动的四个基本公式考点梳理1、 匀变速直线运动(匀加速、匀减速)的基本公式;速度(时间)公式位移(时间)公式速度—位移公式平均速度位移公式(注意:匀变速、正负号、知三求一)2、初速度为零时:3、知三求一(1)已知v o 、v 、a ,求t 。
解:(2)已知v o 、t 、a ,求x 。
解:(3)已知v o 、v 、x ,求t 。
解:(4)已知v o 、v 、a ,求x 。
解:例题分析【例1】(2009年江苏物理)如图所示,以8m /s 匀速行驶的汽车即将通过路口,绿灯还有2 s 将熄灭,此时汽车距离停车线18m 。
该车加速时最大加速度大小为2m /s 2,减速时最大加速度大小为5m /s 2。
此路段允许行驶的最大速度为12.5m /s ,下列说法中正确的有( )A .如果立即做匀加速运动,在绿灯熄灭前汽车可能通过停车线B .如果立即做匀加速运动,在绿灯熄灭前通过停车线汽车一定超速C .如果立即做匀减速运动,在绿灯熄灭前汽车一定不能通过停车线D .如果距停车线5m 处减速,汽车能停在停车线处【例2】(2014·上海卷)如图,两光滑斜面在B 处链接,小球由A 处静止释放,经过B 、C 两点时速度大小分别为3m/s 和4m/s ,AB=BC 。
设球经过B 点前后的速度大小不变,则球在AB 、BC 段的加速度大小之比为 ,球由A 运动到C 的过程中平均速率为 m/s 。
【例3】一辆汽车刹车前的速度为90km/h ,刹车获得的加速度大小为,求:(1)汽车刹车开始后10s 内滑行的距离x(2)从开始刹车到汽车位移为30m 时所经历的时间t .(3)汽车静止前1s 内滑行的距离x ′.-1O B v 0 Cat练习1、一物体在水平面上做匀变速直线运动,其位移与时间的关系是s=24t-6t2,则它的位移为零和速度为零的时刻分别是()A.16s和4s B.2s和4s C.4s和6s D.4s和2s2、(2013高考广东理综第13题)某航母跑道长为200m,飞机在航母上滑行的最大加速度为6m/s2,起飞需要的最低速度为50m/s.那么,飞机在滑行前,需要借助弹射系统获得的最小初速度为()A .5m/sB .10m/sC .15m/s D.20m/s3、(06四川卷)2006年我国自行研制的“枭龙”战机04架在四川某地试飞成功。
匀变速直线运动的公式及其应用方法一、匀变速直线运动的速度公式设物体在t时刻的速度为v,t时刻的位移为s,则匀变速直线运动的速度公式可以表示为:v = v₀ + at其中,v₀是初始速度,a是加速度。
二、匀变速直线运动的位移公式设物体在t时刻的位移为s,则匀变速直线运动的位移公式可以表示为:s = s₀ + v₀t + 1/2at²其中,s₀是初始位移。
三、利用速度公式求物体的位移考虑一个物体从t₁时刻到t₂时刻的运动过程。
根据速度公式可知:v₂=v₁+a(t₂-t₁)将该等式两边积分得:∫v₂ dt = ∫(v₁ + a(t₂ - t₁)) dt即:s₂-s₁=v₁(t₂-t₁)+1/2a(t₂-t₁)²可见,通过速度公式和积分可求得物体在t₁到t₂时刻的位移。
四、利用位移公式求物体的速度当物体的初速度v₀、加速度a和位移s已知时,我们可以从位移公式中解出t,再代入速度公式中可以求得物体在任意时刻的速度。
五、匀变速直线运动的应用方法1.求解物体的时间、速度和位移关系:通过速度公式和位移公式,可以求解物体在任意时刻的速度和位移,并了解物体在不同时间段的运动情况。
2.物体的竖直自由落体运动:自由落体运动是一种匀变速直线运动,其中加速度为重力加速度g,可以利用匀变速直线运动的公式求解自由落体运动的速度和位移。
3.汽车加速度和制动距离计算:通过测量汽车的加速时间和制动距离,可以利用匀变速直线运动的公式反推汽车的加速度。
4.抛体运动的分析:抛体运动是一种由初速度引起的匀变速直线运动,可以利用匀变速直线运动的公式求解抛体运动中的速度和位移等参数。
5.跳伞运动的分析:跳伞运动是一种由初速度引起的匀变速直线运动,可以应用匀变速直线运动的公式分析跳伞运动中的速度、位移和时间等参数。
综上所述,匀变速直线运动的公式和应用方法对于研究运动物体的速度、位移和时间等参数具有重要意义,它在物理学和工程学等领域有着广泛的应用。
一、匀变速直线运动的公式匀变速直线运动的加速度a 是恒定的. 反之也成立. 加速度方向与初速度方向相同的匀变速直线运运称为匀加速直线运动; 加速度的方向与初速度方向相反叫匀减速直线运动.如果以初速度v 0的方向为正方向,则在匀减速直线运动中,加速度应加一负号表示。
1. 基本规律: (公式)(1) 速度公式: v t = v 0 + a t 或:a =tv v t 0-. (图象为一直线,纵轴截距等于初速度大小) 平均速度: 2v v v t +== X/ t (前一式子只适用于匀变速直线运动,它是指平均速度,不是速度的平均值;后一式子对任何变速运动均适用。
(2) 位移公式: x = v 0t +21at 2注:在v -t 图象中,由v - t 直线与两坐标轴所围的面积等于质点在时间t 内运动的位移(3). 速度、加速度和位移的关系式: as v v t 2202=-说明: 以上各矢量均自带符号,与正方向相同时取正,相反取负.在牵涉各量有不同方向时,一定要先规定正方向. 如果物体做匀加速直线运动时加速度取正值的话,则匀减速直线运动时加速度就取负值代入公式运算. 对做匀减速直线运动的情况,一般要先判断物体经历多少时间停止下来,然后才能进行有关计算.否则可能解出的结果不符合题意.【例】一个质点先以加速度a 1从静止开始做匀加速直线运动,经时间t ,突然加速度变为反方向,且大小也发生改变,再经相同时间,质点恰好回到原出发点。
试分析两段时间内的加速度大小关系,以及两段时间的末速度大小关系。
2. 推论公式:(1) 2v v v t += = v t 2 (匀变速直线运动某段过程的平均速度等于这段过程初速度与末速度之和的一半,也等于这段过程中间时刻的瞬时速度) (2) x =v 0+v t 2·t (仅适用匀变速直线运动)(3) v s 2=√v 02+v t22(匀变速直线运动某段过程中间位置的瞬时速度等于这段过程初速度平方与末速度平方之和的一半)(4)v s2>v t2(图像法和公式法两种证明)(5)∆x=aT2 (匀变速运动中,任意连续相等的两段时间T内位移之差为定值)x m-x n=(m-n)aT2 (逐差法)【例1】.一颗子弹水平射入静止在光滑水平面上的木块中. 已知子弹的初速度为v0, 射入木块深度为L后与木块相对静止,以共同速度v 运动,求子弹从进入木块到与木块相对静止的过程中,木块滑行的距离.【例2】. 羚羊从静止开始奔跑,经过50m距离加速到最大速度25m/s,并能维持一段较长时间;猎豹从静止开始奔跑经过60m的距离能加速到最大速度30m/s,以后只能维持这个速度4.0s.设猎豹距离羚羊x m时开始攻击,羚羊在猎豹开始攻击后1.0s才开始奔跑,假定羚羊和猎豹加速阶段分别做匀加速运动,且均沿同一直线索奔跑.求:⑴猎豹要在其最大速度减速前追到羚羊,x值应在什么范围? ⑵猎豹要在其加速阶段追上羚羊, x 值应在什么范围?【例3】. 两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度为v0.若前车突然以恒定的加速度刹车,在它刚停住后,后车以前车刹车时的加速度开始刹车. 已知前车在刹车过程中行驶的距离为s ,若要保证两车在上述情况中不相撞,则两车在匀速行驶时保持的距离至少为()A. s ;B. 2s ;C. 3s ; D 4s .3.初速度为零的匀加速直线运动的比例规律:(一)从静止开始连续相等时间T分段(1)1T末, 2T末, 3T末, … n T末瞬时速度之比为:v1∶v2∶v3∶…:∶v n = 1∶2 ∶3 ∶…∶n .(2) 1T内, 2T内, 3T内,… n T内位移之比为:s1∶s2∶ s3∶…∶s n = 12∶ 22∶32∶…∶n2 .(3)第一个T 内, 第二个T 内, 第三个T 内, …, 第n 个T 内位移之比为. s Ⅰ∶s Ⅱ∶s Ⅲ∶…s N = 1∶3∶5 ∶… ∶(2n -1).(二)从静止开始连续相等位移S 分段(1)1S 末, 2S 末, 3S 末, … n S 末瞬时速度之比为:v 1 ∶v 2∶ v 3 ∶…:∶v n = √1∶√2 ∶√3 ∶… ∶√n .(2) 1S 内, 2S 内, 3S 内, … n S 内时间之比为:t 1 ∶t 2 ∶ t 3 ∶… t n = √1∶√2 ∶√3 ∶… ∶√n .(3)第一个S 内, 第二个S 内, 第三个S 内, …, 第n 个S 内时间之比为. t Ⅰ ∶t Ⅱ ∶t Ⅲ ∶ … ∶ t N ∶:)23(:)12--… ∶ (1--n n ).【例1】. 三块完全相同的木块固定在地板上. 一初速度为v 0的子弹水平射穿第三块木板后速度恰好为零. 设子弹在三块木板中的加速度相同,求子弹分别通过三块木板的时间之比.【例2】. 一质点由A 点出发沿直线AB 运动,行程的第一部分是加速度为a 1的匀加速运动,接着做加速度为a 2的匀减速运动,到达B 点时恰好速度减为零. 若AB 间总长度为S ,试求质点从A 到B 所用的时间 t. 【例3】.已知O 、A 、B 、C 为同一直线上的四点。
课时2 匀变速直线运动规律的应用1.匀变速直线运动的基本规律(1)匀变速直线运动就是加速度不变的直线运动,当v与a方向相同时,物体做加速直线运动;当v与a方向相反时,物体做减速直线运动;物体的速度变大变小与a是否变化无关,由它们之间的方向关系决定。
(2)基本运动规律①速度与时间关系公式v=v0+at。
②位移与时间关系公式x=v0t+at2。
③位移与速度关系公式2ax=v2-。
2.匀变速直线运动的常用推论(1)中间时刻的瞬时速度=(v+v0)。
(2)中间位置的瞬时速度=。
(3)连续相等时间内相邻的位移之差相等,即Δx=x2-x1=x3-x2=x4-x3=…=aT2。
3.初速度为零的匀加速直线运动比例式(1)1T末、2T末、3T末、…、nT末的瞬时速度之比v1∶v2∶v3∶…∶v n=1∶2∶3∶…∶n。
(2)1T内、2T内、3T内、…、nT内的位移之比x1∶x2∶x3∶…∶x n=12∶22∶32∶…∶n2。
(3)第一个T内、第二个T内、第三个T内、…、第n个T内的位移之比Δx1∶Δx2∶Δx3∶…∶Δx n=1∶3∶5∶…∶(2n-1)。
(4)通过连续相等的位移所用时间之比t1∶t2∶t3∶…∶t n=1∶(-1)∶(-)∶…∶(-)。
4.自由落体运动和竖直上抛运动的规律(1)自由落体运动①速度公式:v=gt。
②位移公式:x=gt2。
③位移—速度公式:2gx=v2。
(2)竖直上抛运动①速度公式:v=v0-gt。
②位移公式:x=v0t-gt2。
③位移—速度公式:-2gx=v2-。
④上升的最大高度:h=。
⑤上升到最大高度用时:t=。
1.(2019安徽安庆市第二中学开学摸底)质点做直线运动的位移x与时间t的关系为x=5t+t2(各物理量均采用国际单位),则该质点()。
A.第1s内的位移是5mB.前2s内的平均速度是6m/sC.任意相邻的1s内位移差都是1mD.任意1s内的速度增量都是2m/s答案 D2.(2019湖南长沙1月月考)物体做匀加速直线运动,相继经过两段距离为16m的路程,第一段用时4s,第二段用时2s,则物体的加速度是()。
第2讲 匀变速直线运动的规律及应用知识一 匀变速直线运动的规律1.匀变速直线运动(1)概念:沿着一条直线运动,且加速度不变的运动. (2)分类①匀加速直线运动,a 与v 0同向. ②匀减速直线运动,a 与v 0反向. 2.匀变速直线运动的规律 (1)速度公式:v =v 0+at . (2)位移公式:x =v 0t +12at 2.(3)位移速度关系式:v 2-v 20=2ax . 3.匀变速直线运动的两个重要推论(1)物体在一段时刻内的平均速度等于这段时刻中间时刻的瞬时速度,还等于初、末时刻速度矢量和的一半,即:v =v t 2=v 0+v2.(2)任意两个持续相等的时刻距离T 内的位移之差为一恒量,即:Δx =x 2-x 1=x 3-x 2=…=x n -x n -1=aT 2. 4.初速度为零的匀变速直线运动的四个重要推论 (1)1T 末、2T 末、3T 末、……瞬时速度的比:v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n(2)1T 内、2T 内、3T 内……位移的比:x 1∶x 2∶x 3∶…∶x n =12∶22∶32∶…∶n 2(3)第一个T 内、第二个T 内、第三个T 内……位移的比:x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶x n =1∶3∶5∶…∶(2n -1) (4)从静止开始通过持续相等的位移别离所历时刻的比:t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶…∶(n -n -1)如下图的是一个水平运动球的频闪照片.要估量其运动的加速度,你需要照片提供哪些信息?同时你还需要做哪些测量?[提示] 照片要提供频闪时刻距离或频闪频率,图片与实物比例,还要测量相邻小球距离.知识二 自由落体运动和竖直上抛运动自由 落体(1)速度公式:v =gt(2)位移公式:h =12gt 2(3)速度—位移关系式:v 2=2gh 竖直 上抛(4)速度公式:v =v 0-gt (5)位移公式:h =v 0t -12gt 2(6)速度—位移关系式:v 2-v 20=-2gh (7)上升的最大高度:H =v 202g(8)上升到最大高度的时间:t =v 0g(1)(2)竖直上抛运动是匀变速直线运动.(√) (3)竖直上抛运动上升至最高点的时刻为v 0g.(√)1.(多项选择)做匀减速直线运动的质点,它的加速度大小为a ,初速度大小为v 0,通过时刻t 速度减小到零,那么它在这段时刻内的位移大小可用以下哪些式子表示( )A .v 0t +12at 2B .v 0t C.v 0t2D.12at 2 【解析】 质点做匀减速直线运动,加速度为-a ,位移为v 0t -12at 2,A 、B 错;平均速度大小为v 02,位移大小为v 02·t ,C 对;匀减速到零的直线运动可借助反向的初速度为零的匀加速直线运动来计算,位移大小为12at 2,D 对.【答案】 CD2.一个小石子从离地某一高度处由静止自由落下,某摄影爱好者恰好拍到了它下落的一段轨迹AB .该爱好者用直尺量出轨迹的长度,如图1-2-1所示.已知曝光时刻为11 000s ,那么小石子的起点离A 点约为( )图1-2-1 A .6.5 m B .10 m C .20 mD .45 m【解析】 因曝光时刻极短,故AB 段可看做匀速直线运动,小石子抵达A 点时的速度为v A =x t=0.0211 000m/s=20 m/s ,h =v 2A 2g =2022×10m =20 m.【答案】 C3.蹦床运动要求运动员在一张绷紧的弹性网上蹦起、腾空并做空中运动.为了测量运动员跃起的高度,训练时可在弹性网上安装压力传感器,利用传感器记录弹性网所受的压力,并在运算机上作出压力—时刻图象,假设作出的图象如图1-2-2所示.设运动员在空中运动时可视为质点,那么运动员跃起的最大高度是(g 取10 m/s 2)( )图1-2-2 A .1.8 m B .3.6 m C .5.0 mD .7.2 m【解析】 从题目中的F -t 图象中能够看出,运动员离开弹性网后腾空的时刻为t 1=2.0 s ,那么运动员上升到最大高度所用的时刻为t 2=1.0 s ,因此上升的最大高度h =12gt 22=5.0 m ,选项C 正确. 【答案】 C4.(2020·天津高考)质点做直线运动的位移x 与时刻t 的关系为x =5t +t 2(各物理量均采纳国际单位制单位),那么该质点( )A .第1 s 内的位移是5 mB .前2 s 内的平均速度是6 m/sC .任意相邻的1 s 内位移差都是1 mD .任意1 s 内的速度增量都是2 m/s【解析】 由匀变速直线运动的位移公式x =v 0t +12at 2,对照题给关系式可得v 0=5 m/s ,a =2 m/s 2.那么第1 s 内的位移是6 m ,A 错;前2 s 内的平均速度是v =x 2t=5×2+222m/s =7 m/s ,B 错;Δx =aT 2=2 m ,C 错;任意1 s 内速度增量Δv =at = 2 m/s ,D 对.【答案】 D5.(2021·广东高考)某航母跑道长200 m ,飞机在航母上滑行的最大加速度为6 m/s 2,起飞需要的最低速度为50 m/s.那么,飞机在滑行前,需要借助弹射系统取得的最小初速度为( )A .5 m/sB .10 m/sC .15 m/sD .20 m/s【解析】 飞机在滑行进程中,做匀加速直线运动,依照速度与位移的关系v 2-v 20=2ax 解决问题. 由题知,v =50 m/s ,a =6 m/s 2,x =200 m ,依照v 2-v 20=2ax 得飞机取得的最小速度v 0=v 2-2ax =502-2×6×200 m/s =10 m/s.应选项B 正确. 【答案】 B考点一 [04] 匀变速直线运动规律的应用一、解题的大体思路 画过程示意图→判断运动性质→选取正方向→选用公式列方程→解方程并加以讨论二、对匀变速直线运动规律的两点说明1.正、负号的规定:直线运动中能够用正、负号表示矢量的方向,一样情形下,咱们规定初速度的方向为正方向,与初速度同向的物理量取正值,反向的物理量取负值,当v 0=0时,一样以a 的方向为正方向.2.物体先做匀减速直线运动,速度减为零后又反向做匀加速直线运动,全程加速度不变,能够将全程看做匀减速直线运动,应用大体公式求解.——————[1个示范例] ——————(2021·四川高考)近来,我国多个城市开始重点治理“中国式过马路”行为.每一年全国由于行人不遵守交通规那么而引发的交通事故上万起,死亡上千人.只有科学设置交通管制,人人遵守交通规那么,才能保证行人的生命平安.如图1-2-3所示,停车线AB与前方斑马线边界CD间的距离为23 m.质量8 t、车长7 m的卡车以54 km/h的速度向北匀速行驶,当车前端刚驶过停车线AB,该车前方的机动车交通信号灯由绿灯变黄灯.图1-2-3(1)假设现在前方C处人行横道路边等待的行人就抢先过马路,卡车司机发觉行人,当即制动,卡车受到的阻力为3×104 N.求卡车的制动距离;(2)假设人人遵守交通规那么,该车将不受阻碍地驶过前方斑马线边界CD.为确保行人平安,D处人行横道信号灯应该在南北向机动车信号灯变黄灯后至少多久变成绿灯?【审题指导】此题以生活中“过马路”为背景考查运动学大体规律的应用,求解的关键在于:(1)中卡车抵达前方C处人行横道时,速度恰好减为零;(2)中要明确卡车不受阻碍的距离所对应的时刻为黄灯闪烁时刻.【解析】此题运用动能定明白得答较简单,也可依照卡车刹车做匀减速直线运动,应用牛顿第二定律和运动学公式解决问题.已知卡车质量m=8 t=8×103 kg、初速度v0=54 km/h=15 m/s.(1)从制动到停止,已知卡车所受阻力f=-3×104 N,a=fm设卡车的制动距离为s1,有0-v20=2as1①代入数据解得s1=30 m②(2)已知车长l=7 m,AB与CD的距离为s0=23 m.设卡车驶过的距离为s2,D处人行横道信号灯至少需要通过时刻Δt后变成绿灯,有s2=s0+l③s2=v0Δt④联立③④式,代入数据解得Δt=2 s.【答案】(1)30 m (2)2 s解匀变速直线运动应注意的问题(1)若是一个物体的运动包括几个时期,就要分段分析,各段交接处的速度往往是联系各段的纽带.(2)描述匀变速直线运动的大体物理量涉及v0、v、a、x、t五个量,每一个大体公式中都涉及四个量,选择公式时必然要注意分析已知量和待求量,依照所涉及的物理量选择适合的公式求解,会使问题简化.(3)关于刹车类问题,当车速度为零时,停止运动,其加速度也突变成零.求解此类问题应先判定车停下所历时刻,再选择适合公式求解.——————[1个预测例]——————一物体由静止开始沿滑腻斜面做匀加速直线运动,从斜面顶端运动6秒抵达斜面底端,已知斜面长为18米,那么(1)物体在第3秒内的位移多大?(2)前3秒内的位移多大?【解析】(1)第1 s,第2 s,第3 s……第6 s内的位移之比为1∶3∶5∶7∶9∶11,因此第3秒内的位移xⅢ=51+3+5+7+9+11×18 m=2.5 m,(2)将6 s的时刻分成2个3 s,前3 s内的位移x3=11+3×18 m=4.5 m.【答案】(1)2.5 m (2)4.5 m考点二[05] 自由落体和竖直上抛运动一、自由落体运动自由落体运动是初速度为零,加速度为g的匀加速直线运动,因此一切匀加速直线运动的公式均适用于自由落体运动.专门是初速度为零的匀加速直线运动的比例关系式,在自由落体运动中应用更频繁.二、竖直上抛运动1.重要特性图1-2-4(1)对称性:如图1-2-4所示,物体以初速度v0竖直上抛,A、B为途中的任意两点,C为最高点,那么:①时刻对称性:物体上升进程中从A→C所历时刻t AC和下降进程中从C→A所历时刻t CA相等,同理有t AB =t BA.②速度对称性:物体上升进程通过A点的速度与下降进程通过A点的速度大小相等.(2)多解性:在竖直上抛运动中,当物体通过抛出点上方某一名置时,可能处于上升时期,也可能处于下落时期,因此这种问题可能造成时刻多解或速度多解,也可能造成路程多解.2.处置方式(1)分段处置:①上升时期做匀减速直线运动;下降时期做自由落体运动. ②几个特点物理量:上升高度h =v 202g上升时刻T =v 0g,运动时刻t =2v 0g落地速度v =-v 0. (2)全程处置①初速度为v 0(设为正方向),加速度a =-g 的匀变速直线运动. ②运动规律:v =v 0-gt ,h =v 0t -12gt 2,v 2-v 20=-2gh .——————[1个示范例] ——————(多项选择)在塔顶上将一物体竖直向上抛出,抛出点为A ,物体上升的最大高度为20 m ,不计空气阻力,设塔足够高,那么物体位移大小为10 m 时,物体通过的路程可能为( )A .10 mB .20 mC .30 mD .50 m【解析】物体在塔顶上的A 点抛出,位移大小为10 m 的位置有两处,如下图,一处在A 点之上,另一处在A 点之下,在A 点之上时,通过位移为10 m 处又有上升和下降两种进程,上升通过时,物体的路程s 1等于位移x 1的大小,即s 1=x 1=10 m ;下降通过时,路程s 2=2H -x 1=2×20 m-10 m =30 m ,在A 点之下时,通过的路程s 3=2H +x 2=2×20 m+10 m =50 m .故A 、C 、D 正确.【答案】 ACD——————[1个预测例]——————甲球从离地面H 高处从静止开始自由下落,同时使乙球从甲球的正下方地面处做竖直上抛运动.欲使乙球上升到H n处与甲球相撞,那么乙球上抛的初速度应为( )A.gH2B.ngH2n -1C.n -1gH2nD.ngH2n +1【审题指导】 (1)分析甲、乙各自运动规律.(2)充分利用相遇条件. 【解析】 方式一 解析法 由竖直上抛运动规律知H n=v 0t -12gt 2,由自由落体运动规律知H -H n =12gt 2,联立可得t =Hv 0,v 0=ngH2n -1,B 对.方式二 相对运动法以自由下落的甲球为参考系,那么乙球将向上做匀速运动,设乙球抛出时的初速度为v 0,那么从抛出到两球相遇的时刻为t =H v 0,在这段时刻内对甲球有:n -1H n =12gt 2,联立得v 0=ngH2n -1,B 对.方式三 图象法取向上为正方向,作出两球的v -t 图象,那么两图线平行,由图线所围面积的意义知v 0t =H ,而H -H n =12gt 2,因此v 0=ngH2n -1,B 对.【答案】 B巧解匀变速直线运动问题的六种方式运动学问题的求解一样有多种方式,除直接应用公式外,还有如下方式: 一、平均速度法概念式v =xt 对任何性质的运动都适用,而v =12(v 0+v )适用于匀变速直线运动.二、中间时刻速度法利用“任一时刻t ,中间时刻的瞬时速度等于这段时刻t 内的平均速度”,即v t2=v ,适用于任何一个匀变速直线运动,有些题目应用它能够幸免常规解法顶用位移公式列出的含有t 2的复杂式子,从而简化解题进程,提高解题速度.三、比例法关于初速度为零的匀加速直线运动与末速度为零的匀减速直线运动,可利用初速度为零的匀加速直线运动的重要特点的比例关系,用比例法求解.四、逆向思维法把运动进程的“末态”作为“初态”的反向研究问题的方式,一样用于末态已知的情形. 五、图象法应用v -t 图象,能够使比较复杂的问题变得形象、直观和简单,尤其是用图象定性分析,可躲开繁杂的计算,快速得出答案.六、推论法在匀变速直线运动中,两个持续相等的时刻T 内的位移之差为一恒量,即Δx =x n +1-x n =aT 2,假设显现相等的时刻距离问题,应优先考虑用Δx =aT 2求解.——————[1个示范例] —————— 图1-2-5物体以必然的初速度v 0冲上固定的滑腻斜面,抵达斜面最高点C 时速度恰为零,如图1-2-5所示.已知物体第一次运动到斜面长度3/4处的B 点时,所历时刻为t ,求物体从B 滑到C 所用的时刻.【标准解答】 解法一 比例法关于初速度为0的匀加速直线运动,通过持续相等的各段位移所用的时刻之比t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶…∶(n -n -1)现将整个斜面分成相等的四段,如下图.设通过BC 段的时刻为t x ,那么通过BD 、DE 、EA 的时刻别离为:t BD =(2-1)t x ,t DE =(3-2)t x ,t EA =(2-3)t x ,又t BD +t DE +t EA =t ,得t x =t . 解法二 平均速度法利用教材中的推论:中间时刻的瞬时速度等于这段位移的平均速度.v AC =v 0+v 2=v 0+02=v 02,又v 20=2ax AC① v 2B =2ax BC ②x BC =14x AC ③由①②③解得:v B =v 02.能够看出v B 正好等于AC 段的平均速度,因此B 点是中间时刻的位置. 因此有t BC =t .【答案】 t—————————————[1个方式练]——————从斜面上某一名置,每隔0.1 s 释放一个小球,在持续释放几颗小球后,对在斜面上转动的小球拍下照片,如图1-2-6所示,测得x AB =15 cm ,x BC =20 cm ,求:图1-2-6(1)小球的加速度大小; (2)拍照时B 球的速度大小; (3)拍照时x CD 的大小.【解析】 (1)由a =Δx t 2得小球的加速度a =x BC -x ABt2=5 m/s 2 (2)B 点的速度等于AC 段上的平均速度,即v B =x AC2t=1.75 m/s(3)由相邻相等时刻内的位移差恒定,即x CD -x BC =x BC -x AB ,因此x CD =2x BC -x AB =0.25 m 【答案】 (1)5 m/s 2 (2)1.75 m/s (3)0.25 m⊙考查自由落体运动1.(2020·重庆高考)某人估测一竖直枯井深度,从井口静止释放一石头并开始计时,经2 s 听到石头落底声,由此可知井深约为(不计声音传播时刻,重力加速度g 取10 m/s 2)( )A .10 mB .20 mC .30 mD .40 m【解析】 从井口由静止释放,石头做自由落体运动,由运动学公式h =12gt 2可得h =12×10×22 m =20 m. 【答案】 B⊙匀变速直线运动规律的一样应用2.(多项选择)滑腻的斜面长为L ,一物体自斜面顶端由静止开始匀加速滑至底端,所经历的时刻为t ,那么以下说法正确的选项是( )A .物体运动全程的平均速度为L tB .物体在t2时的瞬时速度为2LtC .物体运动到斜面中点时的瞬时速度为2LtD .物体从极点运动到斜面中点所需的时刻为22t【解析】 由平均速度的概念可知A 对;在匀变速运动中,全程的平均速度等于中间时刻的瞬时速度,即物体在t 2时的瞬时速度为L t ,B 错;由L =12at 2得a =2Lt2,v =2a L 2=2L t ,C 对;由L 2=12at 21得t 1=22t ,D 对.【答案】 ACD 3.图1-2-7如图1-2-7所示,一小球别离以不同的初速度,从滑腻斜面的底端A 点向上做直线运动,所能抵达的最高点位置别离为a 、b 、c ,它们距斜面底端A 点的距离别离为s 1、s 2、s 3,对应抵达最高点的时刻别离为t 1、t 2、t 3,那么以下关系正确的选项是( )A.s 1t 1=s 2t 2=s 3t 3B.s 3t 3>s 2t 2>s 1t 1C.s 1t 21=s 2t 22=s 3t 23D.s 1t 21>s 2t 22>s 3t 23【解析】 利用逆向思维,将小球的运动看做沿斜面向下的初速度为零的匀加速直线运动,由v =x t知选项A 、B 表达的是平均速度,由题意可知抵达a 点的小球初速度最大,由v =v 0+v t2可知该小球在此进程中的平均速度最大,A 、B 错;由x =12at 2知选项C 、D 表达的是加速度的一半,由受力情形可知三个进程的加速度相等,C 对、D 错.【答案】 C ⊙竖直上抛问题4.(多项选择)(2021·长沙雅礼中学模拟)某物体以30 m/s 的初速度竖直上抛,不计空气阻力,g 取10 m/s 2.那么5 s 内物体的( )A .路程为65 mB .位移大小为25 m ,方向向上C .速度改变量的大小为10 m/sD .平均速度大小为13 m/s ,方向向上 【解析】 上升时刻t 1=v 0g=3010 s =3 s ,上升位移为h 1=v 202g =3022×10m =45 m ,自由落体时刻t 2=2 s ,下降高度为h 2=12gt 22=12×10×22 m =20 m ,故5 s 内的路程为s =h 1+h 2=65 m ,故A 正确;现在位移为h =h 1-h 2=25 m ,方向竖直向上,故B 正确;现在速度大小为v =gt =10×2 m/s=20 m/s ,方向竖直向下,因此速度的改变量Δv =-20 m/s -30 m/s =-50 m/s ,故C 错;平均速度为v =x t=ht 1+t 2=253+2m/s =5m/s ,故D 错.【答案】 AB ⊙刹车问题5.一辆车正以20.0 m/s 的速度向前行驶.突然,司机看到一个小孩站在路上.她花了0.80 s 的时刻才反映过来,并当即踩下刹车,使车以7.0 m/s 2的加速度慢慢减慢车速.车在停止前还会前进多远?【解析】 0.80 s 反映时刻内,车匀速运动x 1=v 0·t =16 m.刹车进程为匀减速,a =-7.0 m/s 2. 由v 2-v 20=2ax ,得 x 2=-v 202a ≈28.6 m因此车在停止前还会前进x =x 1+x 2=44.6 m【答案】 44.6 m 即v n =x n +x n +12T,如图1-4-1所示.3.求加速度(1)“逐差法”求加速度,即a 1=x 4-x 13T 2,a 2=x 5-x 23T 2,a 3=x 6-x 33T 2,然后取平均值,即a =a 1+a 2+a 33,如此使所给数据全数取得利用,以提高准确性.(2)“图象法”求加速度,即由“平均速度法”求出多个点的速度,画出v -t 图,直线的斜率即为加速度. 实验器材与装置 图1-4-21.打点计时器的作用计时仪器,每隔0.02 s 打一次点. 2.打点计时器的工作条件(1)电磁打点计时器:6 V 以下交流电源. (2)电火花计时器:220 V 交流电源. 3.纸带上点的意义(1)表示和纸带相连的物体在不同时刻的位置.(2)通过研究纸带上各点之间的距离,能够判定物体的运动情形. 实验进程把一端附有滑轮的长木板平放在实验桌上,并使滑轮伸出桌面;把打点计时器固定在长木板上远离滑轮的一端,连接好电路;把一条细绳拴在小车上,使细绳跨过滑轮,下边挂上适合的钩码;接通电源,然后放开小车,让小车拖着纸带运动,随后当即关闭电源;重复实验取得多条纸带.纸带处置从几条纸带当选择一条比较理想的纸带,舍掉开始一些比较密集的点,在后面便于测量的地址找一个开始点,以后依次每五个点取一个计数点,确信好计数始点,并标明0、一、二、3、4…测量各计数点到0点的距离d ,计算出相邻的计数点之间的距离x 1、x 2、x 3…求出各计数点的速度v n ,由v n 数据作出v -t 图象.注意事项1.平行:纸带、细绳要和长木板平行.2.靠近:释放小车前,应使小车停在靠近打点计时器的位置.3.一先一后:实验时应先接通电源,后释放小车;实验后先断开电源,后取下纸带. 4.避免碰撞:在抵达长木板结尾前应让小车停止运动,避免钩码落地,小车与滑轮碰撞.5.减小误差:小车另一端挂的钩码个数要适当,幸免速度过大而使纸带上打的点太少,或速度过小,使纸带上打的点过于密集.6.准确作图:在座标纸上,纵、横轴选取适合的单位,认真描点连线,不能连成折线,应作一条直线,让各点尽可能落到这条直线上,落不到直线上的各点应均匀散布在直线的双侧.误差与改良钩码带动小车做加速运动时,因受摩擦等各方面的阻碍,致使小车加速度不恒定,即小车不能真正做匀加速直线运动.因此,可用阻力小的气垫导轨替代长木板,用频闪照相或光电计时的方法替代打点计时器,可幸免由于电源频率不稳固,造成相邻两点间的时刻距离不完全相等,提高实验的精准度.考点一 实验原理与操作在做“研究匀变速直线运动”的实验时,为了能够较准确地测出加速度,将你以为正确的选项前面的字母填在横线上:________.A .把附有滑轮的长木板放在实验桌上,并使滑轮伸出桌面B .把打点计时器固定在长木板上没有滑轮的一端,连接好电路C .再把一条细绳拴在小车上,细绳跨过滑轮,下边挂上适合的钩码,每次必需由静止释放小车D .把纸带穿过打点计时器,并把它的一端固定在小车的后面E .把小车停在靠近打点计时器处,接通直流电源后,放开小车,让小车拖着纸带运动,打点计时器就在纸带上打下一系列的点,换上新纸带,重复三次F .从三条纸带当选择一条比较理想的纸带,舍掉开头比较密集的点,在后边便于测量的地址找一个开始点,并把每打五个点的时刻作为时刻单位.在选好的开始点下面记作0,往后第五个点作为计数点1,依此标出计数点二、3、4、五、6,并测算出相邻两点间的距离G .依照公式a 1=x 4-x 13T 2,a 2=x 5-x 23T 2,a 3=x 6-x 33T 2,及a =a 1+a 2+a 33求出a【解析】 在实验中尽可能地保证小车做匀变速直线运动,同时也要求纸带能尽可能地直接反映小车的运动情形,既要减小运动误差也要减小纸带的分析误差.其中E 项中的电源应采纳交流电源,而不是直流电源.【答案】 ABCDFG考点二 纸带的数据处置(2021·浙江高考)如图1-4-3所示,装置甲中挂有小桶的细线绕过定滑轮,固定在小车上;装置乙中橡皮筋的一端固定在导轨的左端,另一端系在小车上.一同窗用装置甲和乙别离进行实验,经正确操作取得两条纸带①和②,纸带上的a 、b 、c …均为打点计时器打出的点.图1-4-3(1)任选一条纸带读出b 、c 两点间距离为________;(2)任选一条纸带求出c 、e 两点间的平均速度大小为________,纸带①和②上c 、e 两点间的平均速度v ①________v②(选填“大于”、“等于”或“小于”);(3)图中________(填选项).A .两条纸带均为用装置甲实验所得B .两条纸带均为用装置乙实验所得C .纸带①为用装置甲实验所得,纸带②为用装置乙实验所得D .纸带①为用装置乙实验所得,纸带②为用装置甲实验所得【解析】 (1)由纸带①可读出b 、c 间距为2.10 cm ,由纸带②读出b 、c 间距为2.40 cm(±0.05 cm,有效数字位数要准确).(2)由v =x t,知t =0.04 s ,x ce =4.52 cm(纸带①)或x ce =5.00 cm(纸带②),代入数据得,vce =1.13 m/s(纸带①)或1.25 m/s(纸带②),v ①<v ②.(3)由纸带①各点间距分析可知,小车做匀加速运动,从纸带②各点间距来看,小车开始做加速运动,一段距离后做匀速运动,故可知纸带①是用装置甲实验所得,纸带②是用装置乙实验所得,选C.【答案】 (1)2.10 cm 或2.40 cm(±0.05 cm,有效数字位数要正确) (2)1.13 m/s 或1.25 m /s(±0.05 m/s,有效数字位数不作要求) 小于 (3)C 考点三 实验改良与创新(2021·山东高考)某同窗利用图1-4-4甲所示的实验装置,探讨物块在水平桌面上的运动规律.物块在重物的牵引下开始运动,重物落地后,物块再运动一段距离停在桌面上(尚未抵达滑轮处).从纸带上便于测量的点开始,每5个点取1个计数点,相邻计数点间的距离如图1-4-4乙所示.打点计时器电源的频率为50 Hz.甲 乙 图1-4-4 (1)通过度析纸带数据,可判定物块在两相邻计数点________________________________________________________________________和________之间某时刻开始减速.(2)计数点5对应的速度大小为________m/s ,计数点6对应的速度大小为________m/s.(保留三位有效数字) (3)物块减速运动进程中加速度的大小为a =________________________________________________________________________m/s 2,假设用ag来计算物块与桌面间的动摩擦因数(g 为重力加速度),那么计算结果比动摩擦因数的真实值________(填“偏大”或“偏小”).【解析】 (1)从计数点1到6相邻的相等时刻内的位移差Δx ≈2.00 cm,在六、7计数点间的位移比五、6之间增加了(12.28-11.01) cm =1.27 cm <2.00 cm ,因此,开始减速的时刻在计数点6和7之间.(2)计数点5对应的速度大小为v 5=x 4+x 52T=9.00+11.01×10-22×0.1m/s =1.00 m/s.计数点4对应的速度大小为v 4=x 3+x 42T=7.01+9.00×10-22×0.1m/s =0.80 m/s.依照v 5=v 4+v 62,得计数点6对应的速度大小为v 6=2v 5-v 4=(2×1.00-0.80) m/s =1.20 m/s.(3)物块在计数点7到11之间做减速运动,依照Δx =aT 2得x 9-x 7=2a 1T 2 x 10-x 8=2a 2T 2故a =a 1+a 22=x 9+x 10-x 8+x 72×2T 2≈-2.00 m/s 2物块做减速运动时受到的阻力包括水平桌面的摩擦阻力和打点计时器对纸带的摩擦阻力,因此依照牛顿第二定律,得μmg +f =ma ,即μ=ma -f mg,因此用μ′=ag计算出的动摩擦因数比μ的真实值偏大.【答案】 (1)6 7 (2)1.00 1.20 (3)2.00 偏大 [高考命题角度分析] 一、此题创新点分析1.真题溯源——本例中的实验器材、实验原理及利用纸带求速度、加速度的方式与教材实验是相同的. 2.创新亮点——本例中因计数点6位于物体从加速到减速转折的边缘,因此计数点6的速度不能采纳求平均速度的方式直接计算,另外本例中还指出了一种测量物体间动摩擦因数的方式.二、本实验的其他改良创新思路 (一)实验器材的创新1.若是提供光电门和刻度尺,咱们能够测出遮光的宽度d ,借助v =dΔt求出物体通过光电门的速度,再由v 22-v 21=2ax, 测出物体的加速度.2.若是提供闪光照相机和刻度尺,咱们能够用途理纸带的方式,求出物体的瞬时速度及物体的加速度. (二)数据处置若是测得物体运动的位移和对应时刻.1.假设初速度为零,那么x =12at 2,因此做出x -t 2图线,图线斜率的2倍即为物体的加速度.2.假设物体的初速度不为零,那么x =v0t +12at2,可得x t =v0+12at ,因此做出xt -t 图线,图线斜率的2倍即为物体的加速度.1在“研究匀变速直线运动”的实验中,利用电磁打点计时器(所用交流电的频率为50 Hz)取得如图1-4-5所示的纸带.图中的点为计数点,相邻两计数点间还有四个点未画出来,以下表述正确的选项是( )图1-4-5A .实验时应先放开纸带再接通电源B .(x 6-x 1)等于(x 2-x 1)的6倍C .从纸带可求出计数点B 对应的速度D .相邻两个计数点间的时刻距离为0.02 s【解析】 中间时刻的瞬时速度等于全程的平均速度,因此v B =x 2+x 32T,C 正确;x 6-x 1=5(x 2-x 1),因此B 错误;相邻计数点间的时刻距离是0.1 s ,D 错误;依如实验要求应该先接通电源再放开纸带,因此A 错误.【答案】 C2.(2020·重庆高考)某同窗用打点计时器测量做匀加速直线运动的物体的加速度,电源频率f =50 Hz ,在纸带上打出的点中,选出零点,每隔4个点取1个计数点,因保留不妥,纸带被污染,如图1-4-6所示,A 、B 、C 、D 是依次排列的4个计数点,仅能读出其中3个计数点到零点的距离:s A =16.6 mm 、s B =126.5 mm 、s D =624.5 mm.图1-4-6假设无法再做实验,可由以上信息推知 (1)相邻两计数点的时刻距离为____s ;(2)打C 点时物体的速度大小为____m/s(取2位有效数字); (3)物体的加速度大小为________(用s A 、s B 、s D 和f 表示).【解析】 (1)打点计时器打出的纸带每隔4个点选择一个计数点,那么相邻两计数点的时刻距离为T =0.1 s. (2)依照BD 间的平均速度等于C 点的瞬时速度得v C =s D -s B2T=2.5 m/s.(3)匀加速运动的位移特点是相邻的相等时刻距离内的位移以aT 2均匀增大,那么有BC =AB +aT 2,CD =BC +aT 2=AB +2aT 2,BD =2AB +3aT 2,T =5f因此a =s D -s B -2×s B -s A3T 2=s D -3s B +2s A f 275.【答案】 (1)0.1 (2)2.5 (3)s D -3s B +2s A f 2753.(2020·广东高考)图1-4-7是“研究匀变速直线运动”实验中取得的一条纸带,O 、A 、B 、C 、D 和E 为纸带上六个计数点.加速度大小用a 表示.图1-4-7(1)OD 间的距离为________cm.(2)图1-4-8是依如实验数据绘出的s -t 2图线(s 为各计数点至同一路点的距离),斜率表示______________,其大小为______m/s 2(保留三位有效数字).图1-4-8【解析】 (1)由题图可知,OD =(22.1-10.0) mm =12.1 mm =1.21 cm(结果在1.18~1.22 cm 均正确).。
匀变速直线运动的规律及其应用匀变速直线运动的规律及应用来自刘老师高中物理微课堂 00:00 17:29一、规律及其来历匀变速直线运动的基本规律有两条。
一是速度随时间变化的规律,二是位移随时间变化的规律。
也可以简称为速度公式、位移公式。
1.速度公式来源于“加速度的定义式”。
2.位移公式来源于v-t图象。
两个基本公式里面涉及五个物理量初速度∨0、末速度∨、加速度a、时间t、位移x。
可以列一个式子“知四求一”,也可以列方程组“知三求二”。
3.将两个基本公式中的时间 t 消去,就得到了速度、位移关系式。
4.将位移公式中的初速度代换掉,就得到了另一种形式的位移公式。
5.将匀变速直线运动的平均速度公式用来求位移,就得到了“用平均速度求位移”的公式说明:基本公式中的∨0、∨、a、x都是矢量,在直线运动中,若规定了正方向,它们都可用带正,负号的代数值表示。
这样就把矢量运算转化为代数运算了。
通常情况下取初速度方向为正方向,凡是与初速度方向相同的物理量为正值,与初速度方向相反的物理量为负值。
二、规律的特点以及如何记忆、应用特点:公式里面涉及五个物理量初速度∨0、末速度∨、加速度a、时间t、位移x。
每个公式由四个物理量构成,缺少一个物理量。
我们做题时,可以分析题目的已知量和未知量分别是哪几个?缺少哪一个?从而快速做出判断,选择哪个公式是最直接、最快捷、最合适的。
如何记:(1)给每个公式都起一个响亮的名字,弄清楚它们的来龙去脉。
然后(2)有事没事的,经常“叫”它,念叨它。
做题的时候、走路的时候、睡觉前等等。
三、例题分析下面我们以图片的形式给出几道题目,一起来分析分析。
汽车在平直公路上以10m/s的速度做匀速直线运动,发现前面有情况而刹车,获得的加速度大小是2m/s2。
则(1)汽车经3s时速度的大小为多少?(2)汽车经5s时速度的大小为多少?(3)车经10s时速度又为多少?分析:已知初速度、加速度、时间,求末速度。
结论:用速度公式。
育繁市保护阳光实验学校第二讲 匀变速直线运动的规律及其运用知识点回忆:一、匀变速直线运动的规律: 〔1〕匀变速直线运动四个根本公式 〔2〕匀变速直线运动中几个常用的结论①Δs=aT 2,即任意相邻相时间内的位移之差相。
可以推广到s m -s n =(m-n)aT 2②202ttv v v +=,某段时间的中间时刻的即时速度于该段时间内的平均速度。
22202t s v v v +=,某段位移的中间位置的即时速度公式〔不于该段位移内的平均速度〕。
可以证明,无论匀加速还是匀减速,都有22s t v v <〔3〕初速度为零〔或末速度为零〕的匀变速直线运动的运动规律:做匀变速直线运动的物体,如果初速度为零,或者末速度为零,那么公式都可简化为:gt v = , 221at s = , as v 22= , t v s 2=以上各式都是单项式,因此可以方便地找到各物理量间的比例关系。
〔4〕初速为零的匀变速直线运动的相关结论:①第1秒末、第2秒末、第3秒末……的瞬时速度之比为1∶2∶3∶----∶ n②前1秒内、前2秒内、前3秒内……的位移之比为1∶4∶9∶……③第1秒内、第2秒内、第3秒内……的位移之比为1∶3∶5∶…… ④前1米、前2米、前3米……所用的时间之比为1∶2∶3∶……⑤第1米、第2米、第3米……所用的时间之比为1∶()12-∶23-∶……对末速为零的匀变速直线运动,可以相的运用这些规律。
〔5〕两个图像 即位移—时间 图像与速度—时间 图像。
研究和处理图像问题,要注意首先看清纵、横轴各表示的意义,采用什么单位,搞清所研究的图像的意义。
〔Ⅰ〕物体的s -t 图像和物体的运动轨迹是根本不同的两个概念。
〔Ⅱ〕假设图像不过原点,有两种情况:①图线在纵轴上的截距表示开始计时时物体的位移不为零〔想对于参考点〕;②图线在横轴上的截距表示物体过一段时间才从参考点出发。
〔Ⅲ〕两图线相交说明两物体相遇,其交点的横坐标表示相遇的时刻,纵坐标表示相遇处对参考点的位移。