高考数学异构异模复习第四章三角函数4.4.1正余弦定理撬题理27
- 格式:doc
- 大小:69.50 KB
- 文档页数:3
1.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 为( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .不能确定答案 C解析 由正弦定理可把不等式转化为a 2+b 2<c 2.又cos C =a 2+b 2-c 22ab<0,所以三角形为钝角三角形.2.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.点击观看解答视频答案 1解析 由sin B =12得B =π6或5π6,因为C =π6,所以B ≠5π6,所以B =π6,于是A =2π3.由正弦定理,得3sin2π3=b12,所以b =1.3.在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________. 答案 (6-2,6+2)解析 如图,作△PBC ,使∠B =∠C =75°,BC =2,作直线AD 分别交线段PB 、PC 于A 、D 两点(不与端点重合),且使∠BAD =75°,则四边形ABCD 就是符合题意的四边形.过C 作AD 的平行线交PB 于点Q ,在△PBC 中,过P 作BC 的垂线交BC 于点E ,则PB =BEcos75°=6+2;在△QBC 中,由余弦定理QB 2=BC 2+QC 2-2QC ·BC ·cos30°=8-43=(6-2)2,故QB =6-2,所以AB 的取值范围是(6-2,6+2).4.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为________.点击观看解答视频答案 8解析 由cos A =-14得sin A =154,所以△ABC 的面积为12bc sin A =12bc ×154=315,解得bc =24,又b -c =2,所以a 2=b 2+c 2-2bc cos A =(b -c )2+2bc -2bc cos A =22+2×24-2×24×⎝ ⎛⎭⎪⎫-14=64,故a =8. 5.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________.答案3解析 因为a =2,所以(2+b )(sin A -sin B )=(c -b )sin C 可化为(a +b )(sin A -sin B )=(c -b )sin C ,由正弦定理可得(a +b )·(a -b )=(c -b )c ,即b 2+c 2-a 2=bc ,由余弦定理可得cos A =b 2+c 2-a 22bc =bc 2bc =12,又0<A <π,故A =π3,因为cos A =12=b 2+c 2-42bc ≥2bc -42bc,所以bc ≤4,当且仅当b =c 时取等号.由三角形面积公式知S △ABC =12bc sin A =12bc ·32=34bc ≤3,故△ABC 面积的最大值为 3.6.在△ABC 中,a =3,b =6,∠A =2π3,则∠B =________.答案π4解析 由正弦定理a sin A =b sin B ,得3sin2π3=6sin B ⇒sin B =22,因为a >b ,所以∠B =π4.7.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知b -c =14a,2sin B =3sin C ,则cos A 的值为________.答案 -14解析 由2sin B =3sin C ,结合正弦定理得2b =3c , 又b -c =14a ,所以b =32c ,a =2c .由余弦定理得cos A =b 2+c 2-a22bc=⎝ ⎛⎭⎪⎫32c 2+c 2-c22×32c ×c =-14.8.△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍. (1)求sin ∠B sin ∠C ;(2)若AD =1,DC =22,求BD 和AC 的长. 解 (1)S △ABD =12AB ·AD sin ∠BAD ,S △ADC =12AC ·AD sin ∠CAD .因为S △ABD =2S △ADC ,∠BAD =∠CAD ,所以AB =2AC , 由正弦定理可得sin ∠B sin ∠C =AC AB =12.(2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2. 在△ABD 和△ADC 中,由余弦定理知,AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB , AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC .故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6. 由(1)知AB =2AC ,所以AC =1.。
§4.8正弦定理、余弦定理考试要求1.掌握正弦定理、余弦定理及其变形.2.理解三角形的面积公式并能应用.3.能利用正弦定理、余弦定理解决一些简单的三角形度量问题.知识梳理1.正弦定理、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则定理正弦定理余弦定理内容a sin A =bsinB =c sin C=2R a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ;(2)sin A =a 2R,sin B =b 2R ,sin C =c 2R;(3)a ∶b ∶c =sin A ∶sin B ∶sin Ccos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab 2.三角形解的判断A 为锐角A 为钝角或直角图形关系式a =b sin A b sin A <a <b a ≥b a >b 解的个数一解两解一解一解3.三角形中常用的面积公式(1)S =12ah a (h a 表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).常用结论在△ABC 中,常有以下结论:(1)∠A +∠B +∠C =π.(2)任意两边之和大于第三边,任意两边之差小于第三边.(3)a >b ⇔A >B ⇔sin A >sin B ,cos A <cos B .(4)sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sin A +B 2=cos C2;cos A +B 2=sin C 2.(5)三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B .(6)三角形中的面积S =12(a +b +c 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)三角形中三边之比等于相应的三个内角之比.(×)(2)在△ABC 中,若sin A >sin B ,则A >B .(√)(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.(×)(4)当b 2+c 2-a 2>0时,△ABC 为锐角三角形.(×)教材改编题1.在△ABC 中,AB =5,AC =3,BC =7,则∠BAC 等于()A.π6B.π3C.2π3D.5π6答案C解析在△ABC 中,设AB =c =5,AC =b =3,BC =a =7,由余弦定理得cos ∠BAC =b 2+c 2-a 22bc =9+25-4930=-12,因为∠BAC 为△ABC 的内角,所以∠BAC =2π3.2.记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为4,a =2,B =30°,则c 等于()A .8B .4C .833D .433答案A解析由S △ABC =12ac sin B =12×2c ×12=4,得c =8.3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知B =30°,b =2,c =2,则C =.答案45°或135°解析由正弦定理得sin C =c sin B b =2sin 30°2=22,因为c >b ,B =30°,所以C =45°或C =135°.题型一利用正弦定理、余弦定理解三角形例1(12分)(2022·新高考全国Ⅰ)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos A1+sin A=sin 2B1+cos 2B.(1)若C =2π3,求B ;[切入点:二倍角公式化简](2)求a 2+b 2c2的最小值.[关键点:找到角B 与角C ,A 的关系]思维升华解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式,则考虑用正弦定理,以上特征都不明显时,则要考虑两个定理都有可能用到.跟踪训练1(2022·全国乙卷)记△ABC的内角A,B,C的对边分别为a,b,c,已知sin C sin(A -B)=sin B sin(C-A).(1)证明:2a2=b2+c2;(2)若a=5,cos A=2531,求△ABC的周长.(1)证明方法一由sin C sin(A-B)=sin B sin(C-A),可得sin C sin A cos B-sin C cos A sin B=sin B sin C cos A-sin B cos C sin A,结合正弦定理asin A=bsin B=csin C可得ac cos B-bc cos A=bc cos A-ab cos C,即ac cos B+ab cos C=2bc cos A(*).由余弦定理可得ac cos B=a2+c2-b22,ab cos C=a2+b2-c22,2bc cos A=b2+c2-a2,将上述三式代入(*)式整理,得2a2=b2+c2.方法二因为A+B+C=π,所以sin C sin(A-B)=sin(A+B)sin(A-B)=sin2A cos2B-cos2A sin2B=sin2A(1-sin2B)-(1-sin2A)sin2B=sin2A-sin2B,同理有sin B sin(C-A)=sin(C+A)sin(C-A)=sin2C-sin2A.又sin C sin(A-B)=sin B sin(C-A),所以sin2A-sin2B=sin2C-sin2A,即2sin2A=sin2B+sin2C,故由正弦定理可得2a2=b2+c2.(2)解由(1)及a2=b2+c2-2bc cos A得,a2=2bc cos A,所以2bc=31.因为b2+c2=2a2=50,所以(b+c)2=b2+c2+2bc=81,得b+c=9,所以△ABC的周长l=a+b+c=14.题型二正弦定理、余弦定理的简单应用命题点1三角形的形状判断例2(1)在△ABC中,角A,B,C所对的边分别是a,b,c,若c-a cos B=(2a-b)cos A,则△ABC的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形答案D解析因为c-a cos B=(2a-b)cos A,C=π-(A+B),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A ,所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A ,所以cos A (sin B -sin A )=0,所以cos A =0或sin B =sin A ,所以A =π2或B =A 或B =π-A (舍去),所以△ABC 为等腰三角形或直角三角形.(2)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,c -a 2c =sin 2B2,则△ABC 的形状为()A .直角三角形B .等边三角形C .等腰三角形或直角三角形D .等腰直角三角形答案A解析由cos B =1-2sin 2B2,得sin 2B 2=1-cos B2,所以c -a 2c =1-cos B 2,即cos B =a c .方法一由余弦定理得a 2+c 2-b 22ac=ac ,即a 2+c 2-b 2=2a 2,所以a 2+b 2=c 2.所以△ABC 为直角三角形,但无法判断两直角边是否相等.方法二由正弦定理得cos B =sin A sin C,又sin A =sin(B +C )=sin B cos C +cos B sin C ,所以cos B sin C =sin B cos C +cos B sin C ,即sin B cos C =0,又sin B ≠0,所以cos C =0,又角C 为△ABC 的内角,所以C =π2,所以△ABC 为直角三角形,但无法判断两直角边是否相等.延伸探究将本例(2)中的条件“c -a 2c=sin 2B 2”改为“sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ”,试判断△ABC 的形状.解因为sin A sin B =a c ,所以由正弦定理得a b =ac,所以b =c .又(b +c +a )(b +c -a )=3bc ,所以b 2+c 2-a 2=bc ,所以由余弦定理得cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形.思维升华判断三角形形状的两种思路(1)化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.(2)化角:通过三角恒等变换,得出内角的关系,从而判断三角形的形状.此时要注意应用A +B +C =π这个结论.命题点2三角形的面积例3(2022·浙江)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知4a =5c ,cos C =35.(1)求sin A 的值;(2)若b =11,求△ABC 的面积.解(1)由正弦定理a sin A =c sin C,得sin A =a ·sin Cc.因为cos C =35,所以sin C =45,又a c =54,所以sin A =5sin C 4=55(2)由(1)知sin A =55,因为a =5c 4<c ,所以0<A <π2,所以cos A =255,所以sin B =sin(A +C )=sin A cos C +sin C cos A =55×35+45×255=11525.因为b sin B =csin C,即1111525=c 45,所以c =45,所以S △ABC =12bc sin A =12×11×45×55=22.思维升华三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.命题点3与平面几何有关的问题例4(2023·厦门模拟)如图,已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,b (1+cosC )=3c sin ∠ABC 且△ABC 的外接圆面积为49π3.(1)求边c 的长;(2)若a =5,延长CB 至M ,使得cos ∠AMC =217,求BM .解(1)设△ABC 的外接圆半径为R ,由题意πR 2=49π3,解得R =733.由题意及正弦定理可得sin ∠ABC (1+cos C )=3sin C sin ∠ABC ,因为sin ∠ABC ≠0,所以1+cos C =3sin C ,即1,因为0<C <π,所以C -π6∈-π6,C -π6=π6,即C =π3.故c =2R sin C =2×733×32=7.(2)因为a =5,c =7,C =π3,故cos C =12=25+b 2-492×5×b ,得b 2-5b -24=0,解得b =8(b =-3舍去).在△ABC 中,由余弦定理可得cos ∠ABC =52+72-822×5×7=17,所以sin ∠ABC =437.由cos ∠AMC =217得sin ∠AMC =277.故sin∠BAM=sin(∠ABC-∠AMC)=sin∠ABC cos∠AMC-cos∠ABC sin∠AMC=107 49,在△ABM中,由正弦定理可得BMsin∠BAM=ABsin∠AMB,则BM=7277×10749=5.思维升华在平面几何图形中研究或求与角有关的长度、角度、面积的最值、优化设计等问题时,通常是转化到三角形中,利用正、余弦定理通过运算的方法加以解决.在解决某些具体问题时,常先引入变量,如边长、角度等,然后把要解三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,再解方程即可.若研究最值,常使用函数思想.跟踪训练2(1)(多选)(2023·合肥模拟)已知△ABC的内角A,B,C所对的边分别为a,b,c,下列四个命题中正确的是()A.若a cos A=b cos B,则△ABC一定是等腰三角形B.若b cos C+c cos B=b,则△ABC是等腰三角形C.若acos A=bcos B=ccos C,则△ABC一定是等边三角形D.若B=60°,b2=ac,则△ABC是直角三角形答案BC解析对于A,若a cos A=b cos B,则由正弦定理得sin A cos A=sin B cos B,∴sin2A=sin2B,则2A=2B或2A+2B=180°,即A=B或A+B=90°,则△ABC为等腰三角形或直角三角形,故A错误;对于B,若b cos C+c cos B=b,则由正弦定理得sin B cos C+sin C cos B=sin(B+C)=sin A=sin B,即A=B,则△ABC是等腰三角形,故B正确;对于C,若acos A=bcos B=ccos C,则由正弦定理得sin Acos A=sin Bcos B=sin Ccos C,则tan A=tan B=tan C,即A=B=C,即△ABC是等边三角形,故C正确;对于D,由于B=60°,b2=ac,由余弦定理可得b2=ac=a2+c2-ac,可得(a-c)2=0,解得a=c,可得A=C=B,故△ABC是等边三角形,故D错误.(2)在①b2+2ac=a2+c2;②cos B=b cos A;③sin B+cos B=2这三个条件中任选一个填在下面的横线中,并解决该问题.已知△ABC的内角A,B,C的对边分别为a,b,c,,A=π3,b=2,求△ABC的面积.解若选①,则由b2+2ac=a2+c2,得2ac=a2+c2-b2.由余弦定理得cos B =a 2+c 2-b 22ac =2ac 2ac =22.因为B ∈(0,π),所以B =π4.由正弦定理得a sin A =b sin B,即asin π3=2sin π4,解得a = 3.因为C =π-A -B =π-π3-π4=5π12,所以sin C =sin 5π12==sin π6cos π4+cos π6sin π4=6+24,所以S △ABC =12ab sin C =12×3×2×6+24=3+34.若选②,因为cos B =b cos A ,A =π3,b =2,所以cos B =b cos A =2cos π3=22.因为B ∈(0,π),所以B =π4.由正弦定理得a sin A =b sin B,即asin π3=2sin π4,解得a = 3.因为C =π-A -B =π-π3-π4=5π12,所以sin C =sin 5π12==sin π6cos π4+cos π6sin π4=6+24,所以S △ABC =12ab sin C =12×3×2×6+24=3+34.若选③,则由sin B +cos B =2,得2sin =2,所以 1.因为B ∈(0,π),所以B +π4∈所以B +π4=π2,所以B =π4.由正弦定理得a sin A =bsin B,即asin π3=2sin π4,解得a = 3.因为C =π-A -B =π-π3-π4=5π12,所以sin C =sin 5π12==sin π6cos π4+cos π6sin π4=6+24,所以S △ABC =12ab sin C =12×3×2×6+24=3+34.(3)(2022·重庆八中模拟)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,在①c (sin A -sin C )=(a -b )(sin A +sin B );②2b cos A +a =2c ;③233ac sin B =a 2+c 2-b 2三个条件中任选一个,补充在下面问题中,并解答.①若,求角B 的大小;②求sin A +sin C 的取值范围;③如图所示,当sin A +sin C 取得最大值时,若在△ABC 所在平面内取一点D (D 与B 在AC 两侧),使得线段DC =2,DA =1,求△BCD 面积的最大值.解①若选①,因为c (sin A -sin C )=(a -b )(sin A +sin B ),由正弦定理得c (a -c )=(a -b )(a +b ),整理得a 2+c 2-b 2=ac ,所以cos B =a 2+c 2-b 22ac =ac 2ac =12,又0<B <π,所以B =π3.若选②,因为2b cos A +a =2c ,由余弦定理得2b ·b 2+c 2-a 22bc +a =2c ,化简得,a 2+c 2-b 2=ac ,所以cos B =a 2+c 2-b 22ac =ac 2ac =12,又0<B <π,所以B =π3.若选③,因为233ac sin B =a 2+c 2-b 2,由余弦定理得233ac sin B =2ac cos B ,化简得tan B =3,又0<B <π,所以B =π3.②由①得,A +C =2π3,则0<A <2π3,sin A +sin C =sin A +=32sin A +32cos A =3sin 又π6<A +π6<5π6,所以12<sin 1,则sin A +sin C ,3.③当sin A +sin C 取得最大值时,A +π6=π2,解得A =π3,又B =π3,所以△ABC 为等边三角形,令∠ACD =θ,∠ADC =α,AB =AC =BC =a ,则由正弦定理可得a sin α=1sin θ,所以sin α=a sin θ.又由余弦定理得,a 2=22+12-2×2×1×cos α,所以a 2cos 2θ=a 2-a 2sin 2θ=cos 2α-4cos α+4,所以a cos θ=2-cos α.S △BCD =12×a ×=32a cos θ+12a sin θ=32(2-cos α)+12sin α=3+≤3+1,当且仅当α=∠ADC =5π6时等号成立,所以△BCD 面积的最大值为3+1.课时精练1.在△ABC 中,C =60°,a +2b =8,sin A =6sin B ,则c 等于()A.35B.31C .6D .5答案B解析因为sin A =6sin B ,则由正弦定理得a =6b ,又a +2b =8,所以a =6,b =1,因为C =60°,所以由余弦定理c 2=a 2+b 2-2ab cos C ,即c 2=62+12-2×6×1×12,解得c =31.2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若(a +b )(sin A -sin B )=(b +c )sin C ,a =7,则△ABC 外接圆的直径为()A .14B .7C.733D.1433答案D 解析已知(a +b )(sin A -sin B )=(b +c )sin C ,由正弦定理可得(a +b )(a -b )=(b +c )c ,化简得b 2+c 2-a 2=-bc ,所以cos A =b 2+c 2-a 22bc =-bc 2bc=-12,又因为A ∈(0,π),所以A =2π3,所以sin A =sin2π3=32,设△ABC 外接圆的半径为R ,由正弦定理可得2R =asin A =732=1433,所以△ABC 外接圆的直径为1433.3.(2022·北京模拟)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若3a sin B =b cos A ,且b =23,c =2,则a 的值为()A .27B .2C .23-2D .1答案B解析由已知及正弦定理得,3sin A sin B =sin B cos A 且sin B ≠0,可得tan A =33,又0<A <π,所以A =π6,又b =23,c =2,所以由余弦定理a 2=b 2+c 2-2bc cos A =16-12=4,解得a =2.4.(2023·枣庄模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,A =60°,b =1,S △ABC =3,则a +b +csin A +sin B +sin C等于()A.2393B.2633C.833D .23答案A解析由三角形的面积公式可得S △ABC =12bc sin A =34c =3,解得c =4,由余弦定理可得a =b 2+c 2-2bc cos A =13,设△ABC 的外接圆半径为r ,由正弦定理得a sin A =b sin B =csin C=2r ,所以a +b +c sin A +sin B +sin C =2r (sin A +sin B +sin C )sin A +sin B +sin C=2r =asin A =1332=2393.5.(2023·马鞍山模拟)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin B +sin C )2=sin 2A +(2-2)sin B sin C ,2sin A -2sin B =0,则sin C 等于()A.12B.32C.6-24 D.6+24答案C解析在△ABC 中,由(sin B +sin C )2=sin 2A +(2-2)sin B sin C 及正弦定理得(b +c )2=a 2+(2-2)bc ,即b 2+c 2-a 2=-2bc ,由余弦定理得cos A =b 2+c 2-a 22bc=-22,而0°<A <180°,解得A =135°,由2sin A -2sin B =0得sin B =22sin A =12,显然0°<B <90°,则B =30°,C =15°,所以sin C =sin(60°-45°)=sin 60°cos 45°-cos 60°sin 45°=6-24.6.(2023·衡阳模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos B (a cos C +c cos A )=b ,lg sin C =12lg 3-lg 2,则△ABC 的形状为()A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形答案C解析∵2cos B (a cos C +c cos A )=b ,∴根据正弦定理得,2cos B (sin A cos C +cos A sin C )=sin B ,∴2cos B sin(A +C )=sin B ,∴2cos B sin(π-B )=sin B ,即2cos B sin B =sin B ,∵B ∈(0,π),∴sin B ≠0,∴cos B =12,∴B =π3.∵lg sin C =12lg 3-lg 2,∴lg sin C =lg32,∴sin C =32,∵C ∈(0,π),∴C =π3或2π3,∵B =π3,∴C ≠2π3,∴C =π3,∴A =B =C =π3,即△ABC 为等边三角形.7.(2022·全国甲卷)已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当ACAB取得最小值时,BD =.答案3-1解析设BD =k (k >0),则CD =2k .根据题意作出大致图形,如图.在△ABD 中,由余弦定理得AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB =22+k 2-2×2k k 2+2k +4.在△ACD 中,由余弦定理得AC 2=AD 2+CD 2-2AD ·CD cos ∠ADC =22+(2k )2-2×2×2k ·12=4k 2-4k +4,则AC 2AB 2=4k 2-4k +4k 2+2k +4=4(k 2+2k +4)-12k -12k 2+2k +4=4-12(k +1)k 2+2k +4=4-12(k +1)(k +1)2+3=4-12k +1+3k +1.∵k +1+3k +1≥23(当且仅当k +1=3k +1,即k =3-1时等号成立),∴AC 2AB 2≥4-1223=4-23=(3-1)2,∴当ACAB取得最小值3-1时,BD =k =3-1.8.(2023·宜春模拟)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b sin C +c sin B =4a sinB sinC ,b 2+c 2-a 2=8,则△ABC 的面积为.答案233解析∵b sin C +c sin B =4a sin B sin C ,sin B sin C >0,结合正弦定理可得sin B sin C +sin C sin B =4sin A sin B sin C ,∴sin A =12,∵b 2+c 2-a 2=8,结合余弦定理a 2=b 2+c 2-2bc cos A ,可得2bc cos A =8,∴A 为锐角,且cos A =32,从而求得bc =833,∴△ABC 的面积为S =12bc sin A =12×833×12=233.9.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b cos C =(2a -c )cos B .(1)求B ;(2)若b =3,sin C =2sin A ,求△ABC 的面积.解(1)由正弦定理,得sin B cos C =2sin A cos B -cos B sin C ,即sin B cos C +cos B sin C =2sin A cos B ,∴sin(B +C )=2sin A cos B ,∴sin A =2sin A cos B ,又∵sin A ≠0,∴cos B =12,∵B 为三角形内角,∴B =π3.(2)∵sin C =2sin A ,∴由正弦定理得c =2a ,∴由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+4a 2-2a 2=9,即3a 2=9,∴a =3,c =23,∴△ABC 的面积为S =12ac sin B =12×3×23×32=332.10.(2023·湖州模拟)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,已知3b a sin B .(1)求角A 的大小;(2)若b ,a ,c 成等比数列,判断△ABC 的形状.解(1)∵3b a sin B ,由诱导公式得3b cos A =a sin B ,由正弦定理得3sin B cos A =sin A sin B ,∵sin B ≠0,∴3cos A =sin A ,即tan A =3,∵A ∈(0,π),∴A =π3.(2)∵b ,a ,c 成等比数列,∴a 2=bc ,由余弦定理得cos A =b 2+c 2-a 22bc =b 2+c 2-bc 2bc=12,即b 2+c 2-bc =bc ,∴(b -c )2=0,∴b =c ,又由(1)知A =π3,∴△ABC 为等边三角形.11.(多选)对于△ABC ,有如下判断,其中正确的是()A .若cos A =cosB ,则△ABC 为等腰三角形B .若A >B ,则sin A >sin BC .若a =8,c =10,B =60°,则符合条件的△ABC 有两个D .若sin 2A +sin 2B <sin 2C ,则△ABC 是钝角三角形答案ABD解析对于A ,若cos A =cos B ,则A =B ,所以△ABC 为等腰三角形,故A 正确;对于B ,若A >B ,则a >b ,由正弦定理a sin A =b sin B=2R ,得2R sin A >2R sin B ,即sin A >sin B 成立,故B 正确;对于C ,由余弦定理可得b =82+102-2×8×10×12=84,只有一解,故C 错误;对于D ,若sin 2A +sin 2B <sin 2C ,则根据正弦定理得a 2+b 2<c 2,cos C =a 2+b 2-c 22ab <0,所以C为钝角,所以△ABC 是钝角三角形,故D 正确.12.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,sin A sin B sin C =18,△ABC 的面积为2,则下列选项错误的是()A .abc =162B .若a =2,则A =π3C .△ABC 外接圆的半径R =22D ≥32sin C 答案B解析由题可得12ab sin C =2,则sin C =4ab,代入sin A sin B sin C =18,得4sin A sin B ab =18,即R 2=8,即R =22,C 正确;abc =8R 3sin A sin B sin C =1282×18=162,A 正确;若a =2,则sin A =a 2R =242=14,此时A ≠π3,B 错误;因为sin A >0,sin B >0,所以(sin A +sin B )2≥4sin A sin B ,所以(sin A +sin B )2(sin A sin B )2≥4sin A sin B ,由sin A sin B sin C =18,得4sin A sin B=32sin C ,所以(sin A +sin B )2(sin A sin B )2≥32sin C ,即≥32sin C ,D 正确.13.(2023·嘉兴模拟)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知c sin A =3a cos C ,c =23,ab =8,则a +b 的值是.答案6解析∵c sin A =3a cos C ,根据正弦定理得sin C sin A =3sin A cos C ,∵sin A ≠0,故tan C =3,∵C ∈(0,π),∴C =π3,再由余弦定理得cos C =a 2+b 2-c 22ab =(a +b )2-2ab -c 22ab =12,代入c =23,ab =8,得a +b =6.14.在△ABC 中,已知AB =4,AC =7,BC 边的中线AD =72,那么BC =.答案9解析在△ABD 中,结合余弦定理得cos ∠ADB =BD 2+AD 2-AB 22BD ·AD,在△ACD 中,结合余弦定理得cos ∠ADC =CD 2+AD 2-AC 22CD ·AD,由题意知BD =CD ,∠ADB +∠ADC =π,所以cos ∠ADB +cos ∠ADC =0,所以BD 2+AD 2-AB 22BD ·AD +CD 2+AD 2-AC 22CD ·AD =0,2×72CD 2×72CD 0,解得CD =92,所以BC =9.15.(多选)(2023·珠海模拟)已知△ABC 满足sin A ∶sin B ∶sin C =2∶3∶7,且△ABC 的面积S △ABC =332,则下列命题正确的是()A .△ABC 的周长为5+7B .△ABC 的三个内角A ,B ,C 满足关系A +B =2C C .△ABC 的外接圆半径为2213D .△ABC 的中线CD 的长为192答案ABD解析因为△ABC 满足sin A ∶sin B ∶sin C =2∶3∶7,所以a ∶b ∶c =2∶3∶7,设a =2t ,b =3t ,c =7t ,t >0,利用余弦定理cos C =a 2+b 2-c 22ab =4t 2+9t 2-7t 212t 2=12,由于C ∈(0,π),所以C =π3.对于A ,因为S △ABC =332,所以12ab sin C =12·2t ·3t ·32=332,解得t =1.所以a =2,b =3,c =7,所以△ABC 的周长为5+7,故A 正确;对于B ,因为C =π3,所以A +B =2π3,故A +B =2C ,故B 正确;对于C ,利用正弦定理c sin C =732=2213=2R ,解得R =213,所以△ABC 的外接圆半径为213,故C 错误;对于D ,如图所示,在△ABC 中,利用正弦定理732=2sin A ,解得sin A =217,又a <c ,所以cos A =277,在△ACD 中,利用余弦定理CD 2=AC 2+AD 2-2AC ·AD ·cos A =9+74-2×3×72×277=194,解得CD =192,故D 正确.16.如图,△ABC 的内角A ,B ,C 的对边分别是a ,b ,c .已知a 2+c 2=b 2+ac ,则B =.若线段AC 的垂直平分线交AC 于点D ,交AB 于点E ,且BC =4,DE = 6.则△BCE 的面积为.答案π323解析在△ABC 中,由余弦定理知cos B =a 2+c 2-b 22ac,而a 2+c 2=b 2+ac ,∴cos B =12,又0<B <π,则B =π3,在△BCE 中,设∠CEB =θ,则CE sin π3=BC sin θ,可得CE =23sin θ,又AC 的垂直平分线交AC 于点D ,交AB 于点E ,则∠ECA =∠EAC =θ2,∴sin θ2=DE CE =2sin θ2,可得cos θ2=22,而0<θ<π,故θ2=π4,即θ=π2.∴CE =23,BE =2,故△BCE 的面积为12·CE ·BE =23.。
2018高考数学异构异模复习考案 第四章 三角函数 4.2.1 三角函数的图象及变换撬题 理1.要得到函数y =sin ⎝ ⎛⎭⎪⎫4x -π3的图象,只需将函数y =sin4x 的图象( ) A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位答案 B解析 y =sin ⎝ ⎛⎭⎪⎫4x -π3=sin ⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫x -π12,故要将函数y =sin4x 的图象向右平移π12个单位.故选B.2.下列函数中,最小正周期为π且图象关于原点对称的函数是( ) A .y =cos ⎝ ⎛⎭⎪⎫2x +π2 B .y =sin ⎝ ⎛⎭⎪⎫2x +π2 C .y =sin2x +cos2x D .y =sin x +cos x 答案 A解析 采用验证法.由y =cos ⎝ ⎛⎭⎪⎫2x +π2=-sin2x ,可知该函数的最小正周期为π且为奇函数,故选A.3.将函数f (x )=sin2x 的图象向右平移φ⎝ ⎛⎭⎪⎫0<φ<π2个单位后得到函数g (x )的图象.若对满足|f (x 1)-g (x 2)|=2的x 1,x 2,有|x 1-x 2|min =π3,则φ=( )A.5π12B.π3C.π4D.π6答案 D解析 由已知得g (x )=sin(2x -2φ),满足|f (x 1)-g (x 2)|=2,不妨设此时y =f (x )和y =g (x )分别取得最大值与最小值,又|x 1-x 2|min =π3,令2x 1=π2,2x 2-2φ=-π2,此时|x 1-x 2|=⎪⎪⎪⎪⎪⎪π2-φ=π3,又0<φ<π2,故φ=π6,选D.4.已知函数f (x )=A sin(ωx +φ)(A ,ω,φ均为正的常数)的最小正周期为π,当x =2π3时,函数f (x )取得最小值,则下列结论正确的是( ) A .f (2)<f (-2)<f (0) B .f (0)<f (2)<f (-2) C .f (-2)<f (0)<f (2) D .f (2)<f (0)<f (-2) 答案 A解析 由最小正周期为π,可得ω=2,又x =2π3时,函数f (x )取得最小值,故可令φ=π6,得函数f (x )=A sin ⎝ ⎛⎭⎪⎫2x +π6,即f (0)=A sin π6,f (2)=A sin ⎝⎛⎭⎪⎫4+π6,f (-2)=A sin ⎝⎛⎭⎪⎫-4+π6,由正弦函数易得f (0)>f (-2)>f (2).故选A.5.若将函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是________.答案3π8解析 把函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4的图象向右平移φ个单位,得到f (x )=sin ⎣⎢⎡⎦⎥⎤x -φ+π4 =sin ⎝⎛⎭⎪⎫2x -2φ+π4的图象. 由于f (x )=sin ⎝ ⎛⎭⎪⎫2x -2φ+π4的图象关于y 轴对称,所以-2φ+π4=k π+π2,k ∈Z .即φ=-k π2-π8,k ∈Z . 当k =-1时,φ的最小正值是3π8.6.某同学用“五点法”画函数f (x )=A sin(ωx +φ)( ω>0,|φ|<π2)在某一个周期内的图象时,列表并填入了部分数据,如下表:(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝⎛⎭⎪⎫5π12,0,求θ的最小值.解 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数表达式为f (x )=5sin ⎝ ⎛⎭⎪⎫2x -π6. (2)由(1)知f (x )=5sin ⎝ ⎛⎭⎪⎫2x -π6, 得g (x )=5sin ⎝⎛⎭⎪⎫2x +2θ-π6. 因为y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +2θ-π6=k π,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝⎛⎭⎪⎫5π12,0成中心对称,令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z . 由θ>0可知,当k =1时,θ取得最小值π6.。
课时跟踪检测(二十七) 正弦定理和余弦定理一、题点全面练1.在△ABC中,角A,B,C的对边分别为a,b,c,若错误!=错误!,则B的大小为()A.30°B.45°C.60° D.90°解析:选B 由正弦定理知,sin Asin A=cos Bsin B,∴sin B=cos B,∴B=45°.2.在△ABC中,角A,B,C的对边分别为a,b,c,若A=错误!,错误!=2sin A sin B,且b=6,则c=( )A.2 B.3C.4 D.6解析:选C 由余弦定理得a2=b2+c2-2bc×12=b2+c2-bc,又错误!=2sin A sin B,由正弦定理可得错误!=错误!,即a2+b2-4c2=0,则b2+c2-bc+b2-4c2=0。
又b=6,∴c2+2c-24=0,解得c=4(负值舍去),故选C。
3.(2019·安徽江南十校联考)在△ABC中,角A,B,C所对的边分别为a,b,c,且b2=ac,a2+bc=c2+ac,则错误!的值为()A.错误! B.错误!C.2 D.错误!解析:选D 由b2=ac,a2+bc=c2+ac,得b2+c2-a2=bc,∴cos A=错误!=错误!,则sin A=错误!。
由b2=ac,得sin2B=sin A sin C,∴sin Csin2B=错误!,∴错误!=错误!=错误!=错误!.4.在△ABC中,角A,B,C的对边分别为a,b,c,若错误!=错误!,(b+c+a)(b+c-a)=3bc,则△ABC的形状为()A.直角三角形B.等腰非等边三角形C.等边三角形D.钝角三角形解析:选C ∵sin Asin B=错误!,∴错误!=错误!,∴b=c.又(b+c+a)(b+c-a)=3bc,∴b2+c2-a2=bc,∴cos A=错误!=错误!=错误!。
∵A∈(0,π),∴A=错误!,∴△ABC是等边三角形.5.(2019·四平质检)在△ABC中,已知a,b,c分别为角A,B,C的对边且∠A=60°,若S△ABC=错误!且2sin B=3sin C,则△ABC的周长等于( )A.5+7 B.12C.10+错误!D.5+2错误!解析:选A 在△ABC中,∠A=60°.∵2sin B=3sin C,∴由正弦定理可得2b=3c,再由S△ABC=错误!=错误!bc·sin A,可得bc=6,∴b=3,c=2.由余弦定理可得a2=b2+c2-2bc·cos A=7,∴a=错误!,故△ABC的周长为a+b+c=5+错误!,故选A.6.(2019·太原模拟)在△ABC中,AB=2,AC=3,∠BAC=90°,点D在AB上,点E在CD上,且∠ACB=∠DBE=∠DEB,则CD =________。
………………………………………………………………………………………………时间:45分钟 基础组1.[2016·冀州中学期中]已知角α的终边过点P (-a ,-3a ),a ≠0,则sin α=( )A.31010或1010B.31010C.1010或-1010D.31010或-31010 答案D解析 当a >0时,角α的终边过点(-1,-3),利用三角函数的定义可得sin α=-31010;当a <0时,角α的终边过点(1,3),利用三角函数的定义可得sin α=31010.故选D.2.[2016·衡水中学仿真]若sin α+cos α=713(0<α<π),则tan α等于( )点击观看解答视频A .-13B.125 C .-125D.13 答案C解析 由sin α+cos α=713,两边平方得1+2sin αcos α=49169,∴2sin αcos α=-120169, 又2sin αcos α<0,0<α<π. ∴π2<α<π.∴sin α-cos α>0.∵(sin α-cos α)2=1-2sin αcos α=289169, ∴sin α-cos α=1713. 由⎩⎪⎨⎪⎧sin α+cos α=713,sin α-cos α=1713,得⎩⎪⎨⎪⎧sin α=1213,cos α=-513,∴tan α=-125.3.[2016·枣强中学预测]设集合M ={ x | x =k2·180°+45°,k ∈Z },N =⎩⎨⎧x ⎪⎪x =k 4·180°+45°,k ∈Z⎭⎬⎫,那么( ) A .M =N B .M ⊆N C .N ⊆M D .M ∩N =∅ 答案B解析 M =⎩⎨⎧⎭⎬⎫x | x =k 2·180°+45°,k ∈Z =⎩⎨⎧x | x =2k 4·⎭⎬⎫ 180°+45°,k ∈Z ,故当集合N 中的k 为偶数时,M =N ,当k 为奇数时,在集合M 中不存在,故M ⊆N .4.[2016·冀州中学一轮检测]已知角θ的顶点在坐标原点,始边与x 轴非负半轴重合,终边在直线2x -y =0上,则sin ⎝ ⎛⎭⎪⎫3π2+θ+cos (π-θ)sin ⎝ ⎛⎭⎪⎫π2-θ-sin (π-θ)=( )A .-2B .2C .0 D.23 答案B解析 由角θ的终边在直线2x -y =0上,可得tan θ=2,原式=-cos θ-cos θcos θ-sin θ=-21-tan θ=2.5.[2016·武邑中学一轮检测]已知sin α-cos α=2,α∈(0,π),则tan α=( )A .-1B .-22 C.22D .1 答案A解析 解法一:由sin α-cos α=2sin ⎝ ⎛⎭⎪⎫α-π4=2, α∈(0,π),解得α=3π4,∴tan α=tan 3π4=-1.解法二:由sin α-cos α=2及sin 2α+cos 2α=1,得(sin α-cos α)2=1-2sin αcos α=2,即2sin αcos α=-1<0,故tan α<0,且2sin αcos α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α=-1,解得tan α=-1(正值舍). 6.[2016·武邑中学月考]已知角x 的终边上一点的坐标为⎝⎛⎭⎪⎫sin 5π6,cos 5π6,则角x 的最小正值为( )A.5π6B.5π3C.11π6D.2π3 答案B解析 ∵sin 5π6=12,cos 5π6=-32,∴角x 的终边经过点⎝ ⎛⎭⎪⎫12,-32,tan x =-3,∴x =2k π+53π,k ∈Z ,∴角x 的最小正值为5π3.7.[2016·衡水中学热身]已知函数f (x )=sin x -cos x ,且f ′(x )=2f (x ),则tan2x 的值是( )点击观看解答视频A .-43B.43 C .-34D.34 答案C解析 因为f (x )=sin x -cos x ,所以f ′(x )=cos x +sin x ,于是有cos x +sin x =2(sin x -cos x ),整理得sin x =3cos x ,所以tan x =3,因此tan2x =2tan x 1-tan 2x =2×31-32=-34,故选C. 8.[2016·衡水二中期中]已知sin(π-α)=log 814,且α∈⎝⎛⎭⎪⎫-π2,0,则tan(2π-α)的值为( )A .-255 B.255 C .±255 D.52 答案B解析 sin(π-α)=sin α=log 814=-23,又因为α∈⎝ ⎛⎭⎪⎫-π2,0,则cos α=1-sin 2α=53,所以tan(2π-α)=tan(-α)=-tan α=-sin αcos α=255.9.[2016·武邑中学预测]在三角形ABC 中,若sin A +cos A =15,则tan A =( )A.34B .-43 C .-34D .±43 答案B解析 解法一:因为sin A +cos A =15,所以(sin A +cos A )2=⎝ ⎛⎭⎪⎫152,所以1+2sin A cos A =125,所以sin A cos A =-1225.又A ∈(0,π),所以sin A >0,cos A <0.因为sin A +cos A =15,sin A cos A =-1225,所以sin A ,cos A 是一元二次方程x 2-15x -1225=0的两个根,解方程得sin A =45,cos A =-35,所以tan A =-43.故选B. 解法二:由解法一,得sin A >0,cos A <0,又sin A +cos A =15>0,所以|sin A |>|cos A |,所以π2<A <3π4,所以tan A <-1,故选B.10.[2016·枣强中学模拟]已知α为第二象限角,则cos α1+tan 2α+sin α1+1tan 2α=________.答案0解析 原式=cos αsin 2α+cos 2αcos 2α+sin αsin 2α+cos 2αsin 2α=cos α1|cos α|+sin α1|sin α|,因为α是第二象限角,所以sin α>0,cos α<0,所以cos α1|cos α|+sin α1|sin α|=-1+1=0,即原式等于0.11.[2016·武邑中学猜题]设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos ⎝ ⎛⎭⎪⎫3π2+α-sin 2⎝ ⎛⎭⎪⎫π2+α⎝ ⎛⎭⎪⎫sin α≠-12,则f ⎝ ⎛⎭⎪⎫-23π6=________.点击观看解答视频答案 3解析 ∵f (α)=(-2sin α)(-cos α)+cos α1+sin 2α+sin α-cos 2α =2sin αcos α+cos α2sin 2α+sin α=cos α(1+2sin α)sin α(1+2sin α)=1tan α, ∴f ⎝ ⎛⎭⎪⎫-23π6=1tan ⎝⎛⎭⎪⎫-23π6=1tan ⎝⎛⎭⎪⎫-4π+π6 =1tan π6= 3. 能力组12.[2016·冀州中学仿真]已知扇形的面积为3π16,半径为1,则该扇形的圆心角的弧度数是( )A.3π16B.3π8C.3π4D.3π2 答案B解析 S 扇=12|α|r 2=12|α|×1=3π16,所以|α|=3π8.13.[2016·武邑中学预测]已知sin(3π-α)=-2sin ⎝⎛⎭⎪⎫π2+α,则sin αcos α等于( )A .-25B.25 C.25或-25D .-15 答案A解析 因为sin(3π-α)=sin(π-α)=-2sin ⎝ ⎛⎭⎪⎫π2+α, 所以sin α=-2cos α,所以tan α=-2, 所以sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1=-25. 14.[2016·衡水二中模拟]已知α∈(0,π)且sin α+cos α=m (0<m <1),则cos α-sin α的值( )A .为正B .为负C .为零D .为正或负 答案B解析 若0<α<π2,如图所示,在单位圆中,P (cos α,sin α),OM =cos α,MP =sin α,所以sin α+cos α=MP +OM >OP =1.若α=π2,则sin α+cos α=1.由已知0<m <1,故α∈⎝ ⎛⎭⎪⎫π2,π,所以cos α-sin α<0,故选B.15.[2016·枣强中学期末]△ABC是锐角三角形,若角θ终边上一点P的坐标为(sin A-cos B,cos A-sin C),则sinθ|sinθ|+cosθ|cosθ|+tanθ|tanθ|的值是()A.1 B.-1C.3 D.4答案B解析因为△ABC是锐角三角形,所以A+B>90°,即A>90°-B,则sin A>sin(90°-B)=cos B,sin A-cos B>0,同理cos A-sin C<0,所以点P在第四象限,sinθ|sinθ|+cosθ|cosθ|+tanθ|tanθ|=-1+1-1=-1,故选B.。
2018高考数学异构异模复习考案 第四章 三角函数 4.4.2 解三角形及其综合应用撬题 理1.钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5 B. 5 C .2 D .1答案 B解析 由题意知S △ABC =12AB ·BC ·sin B ,即12=12×1×2sin B ,解得sin B =22. ∴B =45°或B =135°.当B =45°时,AC 2=AB 2+BC 2-2AB ·BC ·cos B =12+(2)2-2×1×2×22=1. 此时AC 2+AB 2=BC 2,△ABC 为直角三角形,不符合题意;当B =135°时,AC 2=AB 2+BC 2-2AB ·BC ·cos B =12+(2)2-2×1×2×⎝ ⎛⎭⎪⎫-22=5,解得AC = 5.符合题意.故选B.2.已知△ABC 的内角A ,B ,C 满足sin2A +sin(A -B +C )=sin(C -A -B )+12,面积S 满足1≤S ≤2,记a ,b ,c 分别为A ,B ,C 所对的边,则下列不等式一定成立的是( )A .bc (b +c )>8B .ab (a +b )>16 2C .6≤abc ≤12D .12≤abc ≤24 答案 A解析 由sin2A +sin(A -B +C )=sin(C -A -B )+12得,sin2A +sin[A -(B -C )]+sin[A +(B-C )]=12,所以sin2A +2sin A cos(B -C )=12.所以2sin A [cos A +cos(B -C )]=12,所以2sin A [cos(π-(B +C ))+cos(B -C )]=12,所以2sin A [-cos(B +C )+cos(B -C )]=12,即得sin A sin B sin C =18.根据三角形面积公式S =12ab sin C ,①S =12ac sin B ,② S =12bc sin A ,③因为1≤S ≤2,所以1≤S 3≤8.将①②③式相乘得1≤S 3=18a 2b 2c 2sin A sin B sin C ≤8,即64≤a 2b 2c 2≤512,所以8≤abc ≤162,故排除C ,D 选项,而根据三角形两边之和大于第三边,故b +c >a ,得bc (b +c )>8一定成立,而a +b >c ,ab (a +b )也大于8,而不一定大于162,故选A.3.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且C =π3,a +b =λ,若△ABC面积的最大值为93,则λ的值为( )A .8B .12C .16D .21答案 B解析 S △ABC =12ab sin C =34ab ≤34·⎝ ⎛⎭⎪⎫a +b 22=316λ2=93,当且仅当a =b 时取“=”,解得λ=12.4.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m.答案 100 6解析 依题意,∠BAC =30°,∠ABC =105°.在△ABC 中,由∠ABC +∠BAC +∠ACB =180°,所以∠ACB =45°,因为AB =600 m ,由正弦定理可得600sin45°=BCsin30°,即BC =300 2 m .在Rt △BCD 中,因为∠CBD =30°,BC =300 2 m ,所以tan30°=CD BC =CD3002,所以CD =100 6 m.5.在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△ABC 的面积为________.答案 16解析 由AB →·AC →=tan A ,可得|AB →||AC →|cos A =tan A . 因为A =π6,所以|AB →||AC →|·32=33,即|AB →||AC →|=23.所以S △ABC =12|AB →||AC →|·sin A =12×23×12=16.6.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,若cos B =45,a =10,△ABC的面积为42,则b +asin A的值等于________.答案 16 2解析 依题意可得sin B =35,又S △ABC =12ac sin B =42,则c =14.故b =a 2+c 2-2ac cos B =62,所以b +a sin A =b +bsin B=16 2.7.甲船在A 处观察乙船,乙船在它的北偏东60°的方向,两船相距a 海里的B 处,乙船正向北行驶,若甲船是乙船速度的3倍,甲船为了尽快追上乙船,则应取北偏东________(填角度)的方向前进.答案 30°解析 设两船在C 处相遇,则由题意∠ABC =180°-60°=120°,且ACBC=3, 由正弦定理得AC BC =sin120°sin ∠BAC =3⇒sin ∠BAC =12. 又0°<∠BAC <60°,所以∠BAC =30°,60°-30°=30°.8.在△ABC 中,已知AB =2,AC =3,A =60°. (1)求BC 的长; (2)求sin2C 的值.解 (1)由余弦定理知,BC 2=AB 2+AC 2-2AB ·AC ·cos A =4+9-2×2×3×12=7,所以BC =7.(2)由正弦定理知,AB sin C =BC sin A ,所以sin C =AB BC ·sin A =2sin60°7=217.因为AB <BC ,所以C 为锐角,则cos C =1-sin 2C =1-37=277. 因此sin2C =2sin C ·cos C =2×217×277=437.9.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A ,且B 为钝角. (1)证明:B -A =π2;(2)求sin A +sin C 的取值范围.解 (1)证明:由a =b tan A 及正弦定理,得sin A cos A =a b =sin Asin B,所以sin B =cos A ,即sin B =sin ⎝ ⎛⎭⎪⎫π2+A . 又B 为钝角,因此π2+A ∈⎝ ⎛⎭⎪⎫π2,π,故B =π2+A ,即B -A =π2.(2)由(1)知,C =π-(A +B )=π-⎝ ⎛⎭⎪⎫2A +π2=π2-2A >0,所以A ∈⎝ ⎛⎭⎪⎫0,π4.于是sin A +sin C =sin A +sin ⎝ ⎛⎭⎪⎫π2-2A =sin A +cos2A =-2sin 2A +sin A +1=-2⎝ ⎛⎭⎪⎫sin A -142+98. 因为0<A <π4,所以0<sin A <22,因此22<-2⎝ ⎛⎭⎪⎫sin A -142+98≤98. 由此可知sin A +sin C 的取值范围是⎝⎛⎦⎥⎤22,98. 10.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知A =π4,b 2-a 2=12c 2.(1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值.解 (1)由b 2-a 2=12c 2及正弦定理得sin 2B -12=12sin 2C ,所以-cos2B =sin 2C .又由A =π4,即B +C =34π,得-cos2B =cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫3π4-C =sin2C =2sin C cos C ,解得tan C =2.(2)由tan C =2,C ∈(0,π)得sin C =255,cos C =55.又因为sin B =sin(A +C )=sin ⎝ ⎛⎭⎪⎫π4+C ,所以sin B =31010.由正弦定理得c =223b ,又因为A =π4,12bc sin A =3,所以bc =62,故b =3.11.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .向量m =(a ,3b )与n =(cos A ,sin B )平行.(1)求A ;(2)若a =7,b =2,求△ABC 的面积. 解 (1)因为m ∥n ,所以a sin B -3b cos A =0, 由正弦定理,得sin A sin B -3sin B cos A =0, 又sin B ≠0,从而tan A =3, 由于0<A <π,所以A =π3.(2)解法一:由余弦定理,得a 2=b 2+c 2-2bc cos A ,及a =7,b =2,A =π3,得7=4+c 2-2c ,即c 2-2c -3=0, 因为c >0,所以c =3.故△ABC 的面积为12bc sin A =332.解法二:由正弦定理,得7sin π3=2sin B ,从而sin B =217,又由a >b ,知A >B ,所以cos B =277.故sin C =sin(A +B )=sin ⎝ ⎛⎭⎪⎫B +π3=sin B cos π3+cos B sin π3=32114.所以△ABC 的面积为12ab sin C =332.12.如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ; (2)求BD ,AC 的长.解 (1)在△ADC 中,因为cos ∠ADC =17,所以sin ∠ADC =437.所以sin ∠BAD =sin(∠ADC -∠B )=sin ∠ADC cos B -cos ∠ADC sin B =437×12-17×32=3314. (2)在△ABD 中,由正弦定理得BD =AB ·sin ∠BADsin ∠ADB =8×3314437=3.在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B =82+52-2×8×5×12=49.所以AC =7.13.设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,A =2B . (1)求a 的值;(2)求sin ⎝ ⎛⎭⎪⎫A +π4的值.解 (1)因为A =2B ,所以sin A =sin2B =2sin B cos B .由正弦定理、余弦定理得a =2b ·a 2+c 2-b 22ac.因为b =3,c =1,所以a 2=12,a =2 3.(2)由余弦定理得cos A =b 2+c 2-a 22bc =9+1-126=-13.由于0<A <π,所以sin A =1-cos 2A=1-19=223.故sin ⎝ ⎛⎭⎪⎫A +π4=sin A cos π4+cos A sin π4=223×22+⎝ ⎛⎭⎪⎫-13×22=4-26. 14.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c .已知BA →·BC →=2,cos B =13,b =3.求: (1)a 和c 的值; (2)cos(B -C )的值.解 (1)由BA →·BC →=2,得c ·a cos B =2.又cos B =13,所以ac =6.由余弦定理,得a 2+c 2=b 2+2ac cos B . 又b =3,所以a 2+c 2=9+2×2=13.解⎩⎨⎧ac =6,a 2+c 2=13,得a =2,c =3或a =3,c =2.因为a >c ,所以a =3,c =2.(2)在△ABC 中,sin B =1-cos 2B =1-⎝ ⎛⎭⎪⎫132=223,由正弦定理,得sin C =c b sin B =23×223=429.因为a =b >c ,所以C 为锐角, 因此cos C =1-sin 2C =1-⎝⎛⎭⎪⎫4292=79. 于是cos(B -C )=cos B cos C +sin B sin C =13×79+223×429=2327.。
2018高考数学异构异模复习考案 第四章 三角函数 课时撬分练4.2三角函数的图象变换及应用 理时间:60分钟基础组1.[2016·衡水二中仿真]已知α为锐角,且有2tan(π-α)-3cos ⎝ ⎛⎭⎪⎫π2+β+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α的值是( )A.355 B.377C.31010D.13答案 C解析 2tan(π-α)-3cos ⎝ ⎛⎭⎪⎫π2+β+5=0化简为-2tan α+3sin β+5=0,① tan(π+α)+6sin(π+β)-1=0化简为tan α-6sin β-1=0.②由①②消去sin β,解得tan α=3.又α为锐角,根据sin 2α+cos 2α=1,解得sin α=31010.2.[2016·衡水中学周测]若函数y =cos2x 与函数y =sin(x +φ)在⎣⎢⎡⎦⎥⎤0,π2上的单调性相同,则φ的一个值为( )A.π6 B.π4 C.π3D.π2答案 D解析 易知y =cos2x 在区间⎣⎢⎡⎦⎥⎤0,π2上单调递减,因为y =sin(x +φ)在⎣⎢⎡⎦⎥⎤0,π2上单调递减,则x +φ∈[ π2+2k π,3π2+2k π ],k ∈Z ,经验证,得φ=π2符合题意,故选D.3.[2016·冀州中学期末]为了得到函数y =sin(2x +1)的图象,只需把函数y =sin2x 的图象上所有的点( )A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度 答案 A解析 ∵y =sin(2x +1)=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +12, ∴需要把y =sin2x 图象上所有的点向左平移12个单位长度即得到y =sin(2x +1)的图象.故选A.4.[2016·衡水中学预测]设函数f (x )=3sin(2x +φ)+cos(2x +φ)(|φ|<π2),且其图象关于直线x =0对称,则( )A .y =f (x )的最小正周期为π,且在⎝ ⎛⎭⎪⎫0,π2上为增函数B .y =f (x )的最小正周期为π,且在⎝⎛⎭⎪⎫0,π2上为减函数 C .y =f (x )的最小正周期为π2,且在⎝ ⎛⎭⎪⎫0,π4上为增函数D .y =f (x )的最小正周期为π2,且在⎝⎛⎭⎪⎫0,π4上为减函数 答案 B解析 f (x )=3sin(2x +φ)+cos(2x +φ) =2sin ⎝⎛⎭⎪⎫2x +φ+π6,∵函数图象关于直线x =0对称, ∴函数f (x )为偶函数, ∴φ+π6=π2+k π(k ∈Z ).∵|φ|<π2,∴φ=π3,∴f (x )=2cos2x ,∴T =2π2=π.∵0<x <π2,∴0<2x <π,∴函数f (x )在⎝⎛⎭⎪⎫0,π2上为减函数.故选B.5.[2016·枣强中学热身]函数f (x )=sin(2x +φ)⎝⎛⎭⎪⎫|φ|<π2的图象向左平移π6个单位后关于原点对称,则函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最小值为( )A .-32B .-12C.12D.32答案 A解析 函数f (x )=sin(2x +φ)向左平移π6个单位得y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6+φ=sin (2x +π3+φ),又其为奇函数,则π3+φ=k π,k ∈Z ,解得φ=k π-π3,k ∈Z .又|φ|<π2,令k =0,得φ=-π3,∴f (x )=sin ⎝⎛⎭⎪⎫2x -π3. 又∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴sin ⎝ ⎛⎭⎪⎫2x -π3∈⎣⎢⎡⎦⎥⎤-32,1, 即当x =0时,f (x )min =-32,故选A. 6.[2016·衡水中学猜题]已知函数f (x )=sin2x 向左平移π6个单位后,得到函数y =g (x ),下列关于y =g (x )的说法正确的是( )A .图象关于点⎝ ⎛⎭⎪⎫-π3,0中心对称 B .图象关于x =-π6轴对称C .在区间⎣⎢⎡⎦⎥⎤-5π12,-π6上单调递增D .在区间⎣⎢⎡⎦⎥⎤-π6,π3上单调递减答案 C解析 函数f (x )=sin2x 向左平移π6个单位后,得到函数f (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6,即f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3,令x =-π3,得f ⎝ ⎛⎭⎪⎫-π3=-sin π3≠0,A 不正确; 令x =-π6,得f ⎝ ⎛⎭⎪⎫-π6=sin0=0≠±1,B 不正确;由-π2+2k π≤2x +π3≤π2+2k π,k ∈Z ,得-5π12+k π≤x ≤π12+k π,k ∈Z ,即函数的增区间为⎣⎢⎡⎦⎥⎤-5π12+k π,π12+k π,k ∈Z ,减区间为⎣⎢⎡⎦⎥⎤π12+k π,7π12+k π,k ∈Z ,当k =0时,⎣⎢⎡⎦⎥⎤-5π12,-π6⊆⎣⎢⎡⎦⎥⎤-5π12,π12,故选C.7.[2016·衡水中学一轮检测]将函数y =3sin ⎝ ⎛⎭⎪⎫2x +π3的图象向右平移π2个单位长度,所得图象对应的函数( )A .在区间⎣⎢⎡⎦⎥⎤π12,7π12上单调递减B .在区间⎣⎢⎡⎦⎥⎤π12,7π12上单调递增C .在区间⎣⎢⎡⎦⎥⎤-π6,π3上单调递减D .在区间⎣⎢⎡⎦⎥⎤-π6,π3上单调递增 答案 B解析 设平移后的函数为f (x ),则f (x )=3sin ⎣⎢⎡2⎝⎛⎭⎪⎫x -π2+⎦⎥⎤π3=3sin ⎝ ⎛⎭⎪⎫2x +π3-π=-3sin ⎝⎛⎭⎪⎫2x +π3.令2k π-π2≤2x +π3≤2k π+π2,k ∈Z ,解得f (x )的递减区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12,k ∈Z ,同理得递增区间为[ k π+π12,k π+⎦⎥⎤7π12,k ∈Z .从而可判断得B 正确. 8.[2016·冀州中学模拟]函数y =A sin(ωx +φ)( ω>0,|φ|<π2,x ∈R )的部分图象如图所示,则函数的表达式为( )A .y =-4sin ⎝ ⎛⎭⎪⎫π8x -π4B .y =-4sin ⎝ ⎛⎭⎪⎫π8x +π4C .y =4sin ⎝ ⎛⎭⎪⎫π8x -π4D .y =4sin ⎝ ⎛⎭⎪⎫π8x +π4 答案 B解析 由图象的最高点为4,最低点为-4,可确定|A |=4.结合正弦型函数的特征可知A =-4,T =2πω=16,ω=π8,又f (6)=0,|φ|<π2,可得φ=π4,故选B. 9.[2016·衡水二中周测]函数f (x )=sin 2x +sin x cos x +1的最小正周期是________,单调递减区间是________.答案 π ⎣⎢⎡⎦⎥⎤38π+k π,78π+k π(k ∈Z ) 解析 由题意知,f (x )=22sin ⎝⎛⎭⎪⎫2x -π4+32,所以最小正周期T =π.令π2+2k π≤2x-π4≤3π2+2k π(k ∈Z ),得k π+3π8≤x ≤k π+7π8(k ∈Z ),故单调递减区间为⎣⎢⎡⎦⎥⎤3π8+k π,7π8+k π(k ∈Z ). 10.[2016·枣强中学仿真]设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则f (x )的最小正周期为________.答案 π解析 由f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=-f ⎝ ⎛⎭⎪⎫π6知,f (x )有对称中心⎝ ⎛⎭⎪⎫π3,0,由f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫23π知f (x )有对称轴x =12×⎝ ⎛⎭⎪⎫π2+23π=712π.记f (x )的最小正周期为T ,则12T ≥π2-π6,即T ≥23π.故712π-π3=π4=T4,解得T =π.11.[2016·衡水二中月考]已知函数f (x )=3sin x cos x -cos 2x . (1)求f (x )的最小正周期和单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,求函数f (x )的最大值和最小值及相应的x 的值.解 (1)因为f (x )=32sin2x -12cos2x -12=sin ⎝⎛⎭⎪⎫2x -π6-12,所以T =2πω=π,故f (x )的最小正周期为π.2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,所以k π-π6≤x ≤k π+π3,k ∈Z ,则函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3,k ∈Z .(2)因为0≤x ≤π2,所以-π6≤2x -π6≤5π6,所以当2x -π6=π2,即x =π3时,f (x )有最大值12;当2x -π6=-π6,即x =0时,f (x )有最小值-1.12.[2016·武邑中学热身]已知向量a =(sin x,2cos x ),b =(2sin x ,sin x ),设函数f (x )=a ·b .(1)求f (x )的单调递增区间; (2)若将f (x )的图象向左平移π6个单位,得到函数g (x )的图象,求函数g (x )在区间⎣⎢⎡⎦⎥⎤π12,7π12上的最大值和最小值. 解 (1)f (x )=a ·b =2sin 2x +2sin x cos x =2×1-cos2x2+sin2x=2sin ⎝⎛⎭⎪⎫2x -π4+1, 由-π2+2k π≤2x -π4≤π2+2k π,k ∈Z ,得-π8+k π≤x ≤3π8+k π,k ∈Z ,∴f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-π8+k π,3π8+k π(k ∈Z ).(2)由题意g (x )=2sin ⎣⎢⎡ 2⎝⎛⎭⎪⎫x +π6-⎦⎥⎤π4+1=2sin ⎝ ⎛⎭⎪⎫2x +π12+1, 由π12≤x ≤7π12得π4≤2x +π12≤5π4, ∴0≤g (x )≤2+1,即g (x )的最大值为2+1,最小值为0.能力组13.[2016·衡水二中热身]已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2在一个周期内的图象如图所示.若方程f (x )=m 在区间[0,π]上有两个不同的实数解x 1,x 2,则x 1+x 2的值为( )A.π3B.23πC.43π D.π3或43π 答案 D解析 要使方程f (x )=m 在区间[0,π]上有两个不同的实数解,只需函数y =f (x )与函数y =m 的图象在区间[0,π]上有两个不同的交点,由图象知,两个交点关于直线x =π6或关于直线x =2π3对称,因此x 1+x 2=2×π6=π3或x 1+x 2=2×2π3=4π3.14.[2016·武邑中学期末]把函数y =sin2x 的图象沿x 轴向左平移π6个单位,纵坐标伸长到原来的2倍(横坐标不变)后得到函数y =f (x )的图象,对于函数y =f (x )有以下四个判断:①该函数的解析式为y =2sin ⎝ ⎛⎭⎪⎫2x +π6;②该函数图象关于点⎝ ⎛⎭⎪⎫π3,0对称;③该函数在⎣⎢⎡⎦⎥⎤0,π6上是增函数;④函数y =f (x )+a 在⎣⎢⎡⎦⎥⎤0,π2上的最小值为3,则a =2 3.其中,正确判断的序号是________. 答案 ②④解析 将函数y =sin2x 的图象向左平移π6得到y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6=sin ⎝ ⎛⎭⎪⎫2x +π3的图象,然后纵坐标伸长到原来的2倍得到y =2sin ⎝ ⎛⎭⎪⎫2x +π3的图象,所以①不正确.y =f ⎝ ⎛⎭⎪⎫π3=2sin ⎝ ⎛⎭⎪⎫2×π3+π3=2sin π=0,所以函数图象关于点⎝ ⎛⎭⎪⎫π3,0对称,所以②正确.由-π2+2k π≤2x +π3≤π2+2k π,k ∈Z ,得-5π12+k π≤x ≤π12+k π,k ∈Z ,即函数的单调增区间为⎣⎢⎡⎦⎥⎤-5π12+k π,π12+k π,k ∈Z ,当k =0时,增区间为⎣⎢⎡⎦⎥⎤-5π12,π12,所以③不正确.y =f (x )+a =2sin ⎝⎛⎭⎪⎫2x +π3+a ,当0≤x ≤π2时,π3≤2x +π3≤4π3,所以当2x +π3=4π3,即x =π2时,函数取得最小值,y min =2sin4π3+a =-3+a =3,所以a =2 3.所以④正确.所以正确的判断为②④.15.[2016·衡水二中预测]已知函数f (x )=cos x (sin x +cos x )-12.(1)若0<α<π2,且sin α=22,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间.解 解法一:(1)因为0<α<π2,sin α=22,所以cos α=22.所以f (α)=22⎝ ⎛⎭⎪⎫22+22-12=12. (2)因为f (x )=sin x cos x +cos 2x -12=12sin2x +1+cos2x 2-12 =12sin2x +12cos2x =22sin ⎝⎛⎭⎪⎫2x +π4,所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z .解法二:f (x )=sin x cos x +cos 2x -12=12sin2x +1+cos2x 2-12 =12sin2x +12cos2x =22sin ⎝⎛⎭⎪⎫2x +π4.(1)因为0<α<π2,sin α=22,所以α=π4,从而f (α)=22sin ⎝⎛⎭⎪⎫2α+π4=22sin 3π4=12.(2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z .16.[2016·冀州中学期末]已知向量m =(a sin x ,cos x ),n =(sin x ,b sin x ),其中a ,b ,x ∈R .若f (x )=m ·n 满足f ⎝ ⎛⎭⎪⎫π6=2,且f (x )的导函数f ′(x )的图象关于直线x =π12对称.点击观看解答视频(1)求a ,b 的值;(2)若关于x 的方程f (x )+log 2k =0在区间⎣⎢⎡⎦⎥⎤0,π2上总有实数解,求实数k 的取值范围.解 (1)f (x )=m ·n =a sin 2x +b sin x cos x =a 2(1-cos2x )+b2sin2x . 由f ⎝ ⎛⎭⎪⎫π6=2,得a +3b =8.①∵f ′(x )=a sin2x +b cos2x ,又f ′(x )的图象关于直线x =π12对称,∴f ′(0)=f ′⎝ ⎛⎭⎪⎫π6,∴b =32a +12b ,即b =3a .② 由①②得,a =2,b =2 3.(2)由(1)得f (x )=1-cos2x +3sin2x =2sin ⎝⎛⎭⎪⎫2x -π6+1. ∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴-π6≤2x -π6≤5π6, ∴-1≤2sin ⎝⎛⎭⎪⎫2x -π6≤2,f (x )∈[0,3].又f (x )+log 2k =0在⎣⎢⎡⎦⎥⎤0,π2上有解,即f (x )=-log 2k 在⎣⎢⎡⎦⎥⎤0,π2上有解,∴-3≤log 2k ≤0,解得18≤k ≤1,即k ∈⎣⎢⎡⎦⎥⎤18,1.。
2018高考数学异构异模复习考案 第四章 三角函数 4.3 三角函数的化简与求值撬题 理1.sin20°cos10°-cos160°sin10°=( )A .-32 B.32 C .-12 D.12答案 D解析 原式=sin20°cos10°+cos20°sin10°=sin(20°+10°)=12.2.化简cos40°cos25°1-sin40°=( ) A .1 B. 3C. 2 D .2答案 C解析 原式=cos 220°-sin 220°cos25°sin 220°-2sin20°cos20°+cos 220° =cos 220°-sin 220°cos25°cos20°-sin20° =2sin65°cos25°=2cos25°cos25°= 2. 3.已知向量a =⎝ ⎛⎭⎪⎫sin ⎝ ⎛⎭⎪⎫α+π6,1,b =(4,4cos α-3),若a ⊥b ,则sin ⎝ ⎛⎭⎪⎫α+4π3=() A .-34 B .-14C.34D.14答案 B解析 ∵a ⊥b ,∴a ·b =4sin ⎝ ⎛⎭⎪⎫α+π6+4cos α- 3=23sin α+6cos α- 3=43sin ⎝ ⎛⎭⎪⎫α+π3-3=0,∴sin ⎝ ⎛⎭⎪⎫α+π3=14. ∴sin ⎝ ⎛⎭⎪⎫α+4π3=-sin ⎝ ⎛⎭⎪⎫α+π3=-14. 4.已知tan α=-2,tan(α+β)=17,则tan β的值为________. 答案 3解析 tan β=tan[(α+β)-α]=tan α+β-tan α1+tan α+βtan α=17+21-27=3. 5.sin15°+sin75°的值是________.答案 62解析 解法一:sin15°+sin75°=sin(45°-30°)+sin(45°+30°)=2sin45°·cos30°=62. 解法二:sin15°+sin75°=sin15°+cos15°=2sin(45°+15°)=2sin60°=62. 6.已知函数y =cos x 与y =sin(2x +φ)(0≤φ≤π),它们的图象有一个横坐标为π3的交点,则φ的值是________.答案 π6解析 显然交点为⎝ ⎛⎭⎪⎫π3,12, 故有sin ⎝ ⎛⎭⎪⎫23π+φ=12, ∴23π+φ=2k π+π6,k ∈Z , 或23π+φ=2k π+56π,k ∈Z , ∴φ=2k π-π2或φ=2k π+π6,k ∈Z , 又0≤φ≤π,故φ=π6.7.已知α∈⎝ ⎛⎭⎪⎫0,π2,且2sin 2α-sin α·cos α-3cos 2α=0,则sin ⎝ ⎛⎭⎪⎫α+π4sin2α+cos2α+1=________. 答案 268 解析 解法一:由2sin 2α-sin αcos α-3cos 2α=0,得(2sin α-3cos α)·(sin α+cos α)=0,∵α∈⎝ ⎛⎭⎪⎫0,π2,∴sin α+cos α>0,∴2sin α=3cos α,又sin 2α+cos 2α=1, ∴cos α=21313,sin α=31313, ∴sin ⎝ ⎛⎭⎪⎫α+π4sin2α+cos2α+1=22sin α+cos αsin α+cos α2+-sin 2α+cos 2α=268. 解法二:同解法一得2sin α=3cos α,即tan α=32,由三角函数定义令y =3,x =2,则r =13,又α∈⎝ ⎛⎭⎪⎫0,π2,故cos α=21313.(或对式子2sin 2α-sin αcos α-3cos 2α=0两边同时除去cos 2α得2tan 2α-tan α-3=0,即(2tan α-3)(tan α+1)=0,得tan α=32或tan α=-1(舍).)以下同解法一. 8.化简tan π12-1tan π12=________. 答案 -2 3解析 原式=sin π12cos π12-cos π12sin π12=-⎝ ⎛⎭⎪⎫cos 2π12-sin 2π12sin π12cos π12=-cos π612sin π6=-2 3. 9.如图,A ,B ,C ,D 为平面四边形ABCD 的四个内角.(1)证明:tan A 2=1-cos A sin A;(2)若A +C =180°,AB =6,BC =3,CD =4,AD =5,求tan A 2+tan B 2+tan C 2+tan D 2的值. 解 (1)证法一:tan A 2=sin A 2cos A 2=2sin 2A 22sin A 2cos A 2=1-cos A sin A . 证法二:1-cos A sin A =2sin 2A 22sin A 2cos A 2=tan A 2. (2)由A +C =180°,得C =180°-A ,D =180°-B .由(1),有 tan A 2+tan B 2+tan C 2+tan D 2=1-cos A sin A +1-cos B sin B +1-cos 180°-A sin 180°-A +1-cos 180°-B sin 180°-B =2sin A +2sin B. 连接BD .在△ABD 中,有BD 2=AB 2+AD 2-2AB ·AD cos A ,在△BCD 中,有BD 2=BC 2+CD 2-2BC ·CD cos C ,所以AB 2+AD 2-2AB ·AD cos A =BC 2+CD 2+2BC ·CD cos A . 则cos A =AB 2+AD 2-BC 2-CD 22AB ·AD +BC ·CD =62+52-32-4226×5+3×4=37. 于是sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫372=2107. 连接AC .同理可得 cos B =AB 2+BC 2-AD 2-CD 22AB ·BC +AD ·CD=62+32-52-4226×3+5×4=119, 于是sin B =1-cos 2B =1-⎝ ⎛⎭⎪⎫1192=61019. 所以tan A 2+tan B 2+tan C2+tan D 2=2sin A +2sin B =2×7210+2×19610=4103. 10.已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55.(1)求sin ⎝ ⎛⎭⎪⎫π4+α的值; (2)求cos ⎝ ⎛⎭⎪⎫5π6-2α的值. 解 (1)因为α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55, 所以cos α=-1-sin 2α=-255. 故sin ⎝ ⎛⎭⎪⎫π4+α=sin π4cos α+cos π4sin α=22×⎝ ⎛⎭⎪⎫-255+22×55=-1010. (2)由(1)知sin2α=2sin αcos α=2×55×⎝ ⎛⎭⎪⎫-255=-45, cos2α=1-2sin 2α=1-2×⎝ ⎛⎭⎪⎫552=35, 所以cos ⎝ ⎛⎭⎪⎫5π6-2α=cos 5π6cos2α+sin 5π6sin2α=⎝ ⎛⎭⎪⎫-32×35+12×⎝ ⎛⎭⎪⎫-45=-4+3310.。
2018高考数学异构异模复习考案 第四章 三角函数 课时撬分练4.3 三角函数的化简与求值 理时间:60分钟基础组1.[2016·衡水二中猜题]若sin ⎝ ⎛⎭⎪⎫π4+α=25,则sin2α等于( )A .-825B.825 C .-1725D.1725答案 C解析 sin2α=-cos ⎝ ⎛⎭⎪⎫π2+2α=2sin 2(π4+α )-1=2×⎝ ⎛⎭⎪⎫252-1=-1725,故选C.2.[2016·衡水二中一轮检测]若sin ⎝ ⎛⎭⎪⎫π3-α=14,则cos ⎝ ⎛⎭⎪⎫π3+2α=( )A .-78B .-14C. 14D. 78答案 A解析 由sin ⎝ ⎛⎭⎪⎫π3-α=14,得sin ⎣⎢⎡ π2-⎦⎥⎤⎝ ⎛⎭⎪⎫π6+α=14,即cos ⎝ ⎛⎭⎪⎫π6+α=14, ∴cos ⎝ ⎛⎭⎪⎫π3+2α=cos ⎣⎢⎡⎦⎥⎤π6+α=2cos 2⎝ ⎛⎭⎪⎫π6+α-1=2×⎝ ⎛⎭⎪⎫142-1=-78.3.[2016·冀州中学周测]在△ABC 中,若cos A =45,cos B =513,则cos C =( )A.365 B.3665C.1665D.3365 答案 C解析 在△ABC 中,0<A <π,0<B <π,从而sin A =35,sin B =1213,所以cos C =cos[π-(A +B )]=-cos(A+B )=sin A ·sin B -cos A ·cos B =35×1213-45×513=1665.4.[2016·衡水二中月考]已知π2<α<π,3sin2α=2cos α,则cos(α-π)等于( )A.23B.64答案 C解析 由3sin2α=2cos α得sin α=13.因为π2<α<π,所以cos(α-π)=-cos α=1-⎝ ⎛⎭⎪⎫132=223.故选C.5.[2016·枣强中学周测]函数f (x )=2sin 2⎝ ⎛⎭⎪⎫π4+x -3cos2x ⎝⎛⎭⎪⎫π4≤x ≤π2的最大值为( )A .2B .3C .2+ 3D .2- 3答案 B解析 依题意,f (x )=1-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4+x -3cos2x =sin2x -3cos2x +1=2sin ⎝ ⎛⎭⎪⎫2x -π3+1,当π4≤x ≤π2时,π6≤2x -π3≤2π3,12≤sin ⎝⎛⎭⎪⎫2x -π3≤1,此时f (x )的最大值是3,选B.6.[2016·冀州中学预测]若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝ ⎛⎭⎪⎫π4-β2=33,则cos ⎝⎛⎭⎪⎫α+β2=( )A.33B .-33 C.539D .-69答案 C解析 cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2= cos ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-β2,而π4+α∈⎝ ⎛⎭⎪⎫π4,3π4,π4-β2∈⎝ ⎛⎭⎪⎫π4,π2,因此sin ⎝⎛⎭⎪⎫π4+α=223,sin ⎝ ⎛⎭⎪⎫π4-β2=63,则cos ⎝⎛⎭⎪⎫α+β2=13×33+223×63=539. 7.[2016·枣强中学一轮检测]若α∈⎝ ⎛⎭⎪⎫0,π2,且sin 2α+cos2α=14,则tan α的值等于( )A.22B.33C. 2D. 3答案 D解析 由二倍角公式可得sin 2α+1-2sin 2α=14,即sin 2α=34,又α∈⎝ ⎛⎭⎪⎫0,π2,所以sin α=32,即α=π3,所以tan α=tan π3=3,故选D.8.[2016·冀州中学月考]关于函数f (x )=2(sin x -cos x )·cos x 的四个结论:p 2:把函数g (x )=2sin2x -1的图象向右平移π4个单位后可得到函数f (x )=2(sin x -cos x )cos x 的图象; p 3:单调递增区间为⎣⎢⎡⎦⎥⎤k π+7π8,k π+11π8,k ∈Z ; p 4:图象的对称中心为⎝ ⎛⎭⎪⎫k 2π+π8,-1,k ∈Z .其中正确的结论有( ) A .1个 B .2个 C .3个 D .4个 答案 B解析 因为f (x )=2sin x cos x -2cos 2x =sin2x -cos2x -1=2sin ⎝ ⎛⎭⎪⎫2x -π4-1,所以最大值为2-1,所以p 1错误.将g (x )=2sin2x -1的图象向右平移π4个单位后得到h (x )=2·sin2⎝ ⎛⎭⎪⎫x -π4-1=2sin ⎝ ⎛⎭⎪⎫2x -π2-1的图象,所以p 2错误.由-π2+2k π≤2x -π4≤π2+2k π,k ∈Z ,解得-π8+k π≤x ≤3π8+k π,k ∈Z ,即增区间为⎣⎢⎡⎦⎥⎤-π8+k π,3π8+k π,k ∈Z ,所以p 3正确.由2x -π4=k π,k ∈Z ,得x =k 2π+π8,k ∈Z ,所以图象的对称中心为⎝ ⎛⎭⎪⎫k 2π+π8,-1,k ∈Z ,所以p 4正确,所以选B.9.[2016·衡水中学月考]如图,圆O 与x 轴的正半轴的交点为A ,点C ,B 在圆O 上,且点C 位于第一象限,点B 的坐标为⎝ ⎛⎭⎪⎫1213,-513,∠AOC =α.若|BC |=1,则3cos 2α2-sin α2cos α2-32的值为________.答案513解析 由题意得|OB |=|BC |=1,从而△OBC 为等边三角形,∴sin ∠AOB =sin ⎝ ⎛⎭⎪⎫π3-α=513,又∵3cos2α2-sin α2cos α2-32=3·1+cos α2-sin α2-32=-12sin α+32cos α=sin ⎝⎛⎭⎪⎫α+2π3=sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫α+2π3=sin ⎝ ⎛⎭⎪⎫π3-α=513. 10.[2016·衡水中学期中]已知13sin α+5cos β=9,13cos α+5sin β=15,那么sin(α+β)的值为________.答案5665解析 将两等式的两边分别平方再相加,得169+130sin(α+β)+25=306,所以sin(α+β)=5665.11.[2016·武邑中学期中]已知函数f (x )=3sin ωx cos ωx +cos 2ωx -12(ω>0),其最小正周期为π2.点击观看解答视频(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,求实数k 的取值范围.解 (1)f (x )=3sin ωx cos ωx +cos 2ωx -12=32sin2ωx +cos2ωx +12-12=sin ⎝ ⎛⎭⎪⎫2ωx +π6.由题意知f (x )的最小正周期T =2π2ω=πω=π2,所以ω=2.所以f (x )=sin ⎝ ⎛⎭⎪⎫4x +π6. (2)将f (x )的图象向右平移π8个单位后,得到y =sin ⎣⎢⎡⎦⎥⎤4⎝⎛⎭⎪⎫x -π8+π6=sin ⎝ ⎛⎭⎪⎫4x -π3的图象,再将所得图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象,所以g (x )=sin ⎝⎛⎭⎪⎫2x -π3.因为0≤x ≤π2,所以-π3≤2x -π3≤2π3.g (x )+k =0在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,即函数y =g (x )与y =-k 在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个交点,由正弦函数的图象可知-32≤-k <32或-k =1,所以-32<k ≤32或k =-1. 12.[2016·衡水中学期末]已知cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=-14,α∈⎝ ⎛⎭⎪⎫π3,π2,求:(1)sin2α; (2)tan α-1tan α.解 (1)cos ⎝⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=cos ⎝ ⎛⎭⎪⎫π6+α·sin ⎝ ⎛⎭⎪⎫π6+α=12sin (2α+π3 ) =-14, 即sin ⎝ ⎛⎭⎪⎫2α+π3=-12,注意到α∈⎝ ⎛⎭⎪⎫π3,π2,故2α+π3∈⎝ ⎛⎭⎪⎫π,4π3,从而cos ⎝ ⎛⎭⎪⎫2α+π3=-32, ∴sin2α=sin ⎝ ⎛⎭⎪⎫2α+π3-π3=sin( 2α+π3 ) cos π3-cos ⎝⎛⎭⎪⎫2α+π3sin π3=-12×12+32×32=12. (2)∵2α∈⎝ ⎛⎭⎪⎫2π3,π,sin2α=12,∴cos2α=-32,∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos2αsin2α=-2×-3212=2 3.⎝⎛或者由知2α+π3=7π6,∴α=5π12,∴sin2α=sin 5π6=12,cos2α=cos 5π6=-32,∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-cos2α12sin2α=⎭⎫ 2 3. 能力组13.[2016·冀州中学猜题]设sin ⎝ ⎛⎭⎪⎫π4+θ=13,则sin2θ=( )A .-79B .-19C.19D.79答案 A解析 sin2θ=-cos ⎝ ⎛⎭⎪⎫π2+2θ=2sin 2⎝ ⎛⎭⎪⎫π4+θ-1=2×⎝ ⎛⎭⎪⎫132-1=-79.14.[2016·衡水中学模拟]已知θ为第二象限角,sin(π-θ)=2425,则cos θ2的值为________.答案 ±35解析 ∵θ为第二象限角,∴θ2为第一、三象限角.∴cos θ2的值有两个.由sin(π-θ)=2425,可知sin θ=2425,∴cos θ=-725,∴2cos 2θ2=1825.∴cos θ2=±35.15.[2016·衡水中学仿真]已知函数f (x )=cos ⎝⎛⎭⎪⎫2x +π6+sin2x .(1)求f ⎝ ⎛⎭⎪⎫π8的值;(2)设α∈⎣⎢⎡⎦⎥⎤0,π2,sin α=255,证明:5f ⎝⎛⎭⎪⎫α-7π24=122tan4α.解 (1)f (x )=cos ⎝ ⎛⎭⎪⎫2x +π6+sin2x =cos2x cos π6-sin2x sin π6+sin2x =32cos2x -12sin2x +sin2x =32cos2x +12sin2x =sin ⎝⎛⎭⎪⎫2x +π3, 所以f ⎝ ⎛⎭⎪⎫π8=sin ⎝ ⎛⎭⎪⎫2×π8+π3=sin ⎝ ⎛⎭⎪⎫π4+π3 =sin π4cos π3+cos π4sin π3=2+64.(2)证明:由(1),知f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3,所以f ⎝ ⎛⎭⎪⎫α-7π24=sin ⎣⎢⎡ 2⎝⎛⎭⎪⎫α-7π24+⎦⎥⎤π3=sin ⎝⎛⎭⎪⎫2α-π4=22sin2α-22cos2α. 因为α∈⎣⎢⎡⎦⎥⎤0,π2,sin α=255,所以cos α=1-sin 2α=55.所以sin2α=2sin αcos α=45,cos2α=1-2sin 2α=-35,tan2α=sin2αcos2α=-43.所以tan4α=2tan2α1-tan 22α=247. 所以5f ⎝ ⎛⎭⎪⎫α-7π24=5⎝ ⎛⎭⎪⎫22sin2α-22cos2α=5⎣⎢⎡⎦⎥⎤22×45-22×⎝ ⎛⎭⎪⎫-35=722, 又122tan4α=122247=722,所以5f ⎝⎛⎭⎪⎫α-7π24=122tan4α. 16.[2016·冀州中学一轮检测]已知函数f (x )=sin ⎝ ⎛⎭⎪⎫3x +π4. (1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝ ⎛⎭⎪⎫α3=45cos ⎝⎛⎭⎪⎫α+π4cos2α,求cos α-sin α的值.解 (1)因为函数y =sin x 的单调递增区间为⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z . 由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z .所以,函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-π4+2k π3,π12+2k π3,k ∈Z . (2)由已知,有sin ⎝ ⎛⎭⎪⎫α+π4=45·cos ⎝ ⎛⎭⎪⎫α+π4(cos 2α-sin 2α),所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎪⎫cos αcos π4-sin αsin π4(cos 2α-sin 2α),即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α是第二象限角,知α=3π4+2k π,k ∈Z .此时,cos α-sin α=- 2.当sin α+cos α≠0时,有(cos α-sin α)2=54.由α是第二象限角,知cos α-sin α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52.。
1.sin20°cos10°-cos160°sin10°=( ) A .-32B.32C .-12D.12答案 D解析 原式=sin20°cos10°+cos20°sin10°=sin(20°+10°)=12.2.化简cos40°cos25°1-sin40°=( )A .1 B. 3 C. 2 D .2答案 C 解析 原式 =cos 220°-sin 220°cos25°sin 220°-2sin20°cos20°+cos 220°=cos 220°-sin 220°cos25° cos20°-sin20° =2sin65°cos25°=2cos25°cos25°= 2.3.已知向量a =⎝ ⎛⎭⎪⎫sin ⎝ ⎛⎭⎪⎫α+π6,1,b =(4,4cos α-3),若a ⊥b ,则sin ⎝ ⎛⎭⎪⎫α+4π3=( )A .-34B .-14C.34D.14答案 B 解析 ∵a ⊥b ,∴a ·b =4sin ⎝ ⎛⎭⎪⎫α+π6+4cos α- 3 =23sin α+6cos α- 3 =43sin ⎝⎛⎭⎪⎫α+π3-3=0,∴sin ⎝⎛⎭⎪⎫α+π3=14. ∴sin ⎝ ⎛⎭⎪⎫α+4π3=-sin ⎝⎛⎭⎪⎫α+π3=-14. 4.已知tan α=-2,tan(α+β)=17,则tan β的值为________.点击观看解答视频答案 3解析 tan β=tan =tan α+β -tan α1+tan α+β tan α=17+21-27=3.5.sin15°+sin75°的值是________. 答案62解析 解法一:sin15°+sin75°=sin(45°-30°)+sin(45°+30°)=2sin45°·cos30°=62. 解法二:sin15°+sin75°=sin15°+cos15° =2sin(45°+15°)=2sin60°=62. 6.在△ABC 中,a =4,b =5,c =6,则sin2Asin C =________.答案 1解析 由正弦定理得sin A ∶sin B ∶sin C =a ∶b ∶c =4∶5∶6,又由余弦定理知cos A =b 2+c 2-a 22bc =25+36-162×5×6=34,所以sin2A sin C =2sin A cos A sin C =2×sin A sin C ×cos A =2×46×34=1. 7.已知函数y =cos x 与y =sin(2x +φ)(0≤φ≤π),它们的图象有一个横坐标为π3的交点,则φ的值是________.答案π6解析 显然交点为⎝ ⎛⎭⎪⎫π3,12,故有sin ⎝ ⎛⎭⎪⎫23π+φ=12,∴23π+φ=2k π+π6,k ∈Z , 或23π+φ=2k π+56π,k ∈Z , ∴φ=2k π-π2或φ=2k π+π6,k ∈Z ,又0≤φ≤π,故φ=π6.8.已知α∈⎝ ⎛⎭⎪⎫0,π2,且2sin 2α-sin α·cos α-3cos 2α=0,则sin ⎝ ⎛⎭⎪⎫α+π4sin2α+cos2α+1=________.答案268解析 解法一:由2sin 2α-sin αcos α-3cos 2α=0,得(2sin α-3cos α)·(sin α+cos α)=0,∵α∈⎝⎛⎭⎪⎫0,π2,∴sin α+cos α>0,∴2sin α=3cos α,又sin 2α+cos 2α=1,∴cos α=21313,sin α=31313,∴sin ⎝⎛⎭⎪⎫α+π4sin2α+cos2α+1=22 sin α+cos α sin α+cos α 2+ -sin 2α+cos 2α =268. 解法二:同解法一得2sin α=3cos α,即tan α=32,由三角函数定义令y =3,x =2,则r =13,又α∈⎝⎛⎭⎪⎫0,π2,故cos α=21313.(或对式子2sin 2α-sin αcos α-3cos 2α=0两边同时除去cos 2α得2tan 2α-tan α-3=0,即(2tan α-3)(tan α+1)=0,得tan α=32或tan α=-1(舍).)以下同解法一. 9.化简tan π12-1tanπ12=________.答案 -2 3解析 原式=sin π12cos π12-cos π12sin π12=-⎝⎛⎭⎪⎫cos 2π12-sin 2π12sin π12cos π12=-cos π612sin π6=-2 3.10. 如图,A ,B ,C ,D 为平面四边形ABCD 的四个内角.(1)证明:tan A 2=1-cos Asin A;(2)若A +C =180°,AB =6,BC =3,CD =4,AD =5,求tan A 2+tan B 2+tan C 2+tan D2的值.解 (1)证法一:tan A 2=sin A2cos A 2=2sin2A22sin A 2cos A 2=1-cos Asin A .证法二:1-cos Asin A=2sin2A22sin A 2cosA 2=tan A2. (2)由A +C =180°,得C =180°-A ,D =180°-B . 由(1),有tan A 2+tan B 2+tan C 2+tan D2 =1-cos A sin A +1-cos B sin B +1-cos 180°-A sin 180°-A +1-cos 180°-B sin 180°-B =2sin A +2sin B. 连接BD .在△ABD 中,有BD 2=AB 2+AD 2-2AB ·AD cos A , 在△BCD 中,有BD 2=BC 2+CD 2-2BC ·CD cos C , 所以AB 2+AD 2-2AB ·AD cos A =BC 2+CD 2+2BC ·CD cos A .则cos A =AB 2+AD 2-BC 2-CD 22 AB ·AD +BC ·CD =62+52-32-422 6×5+3×4 =37.于是sin A =1-cos 2A =1- 37 2=2107.连接AC .同理可得cos B =AB 2+BC 2-AD 2-CD 22 AB ·BC +AD ·CD=62+32-52-422 6×3+5×4 =119, 于是sin B =1-cos 2B =1-⎝ ⎛⎭⎪⎫1192=61019. 所以tan A 2+tan B 2+tan C2+tan D2=2sin A +2sin B =2×7210+2×19610=4103. 11.已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55.点击观看解答视频(1)求sin ⎝ ⎛⎭⎪⎫π4+α的值;(2)求cos ⎝⎛⎭⎪⎫5π6-2α的值. 解 (1)因为α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55, 所以cos α=-1-sin 2α=-255.故sin ⎝⎛⎭⎪⎫π4+α=sin π4cos α+cos π4sin α=22×⎝ ⎛⎭⎪⎫-255+22×55=-1010.(2)由(1)知sin2α=2sin αcos α=2×55×⎝ ⎛⎭⎪⎫-255=-45, cos2α=1-2sin 2α=1-2×⎝ ⎛⎭⎪⎫552=35, 所以cos ⎝ ⎛⎭⎪⎫5π6-2α=cos 5π6cos2α+sin 5π6sin2α=⎝ ⎛⎭⎪⎫-32×35+12×⎝ ⎛⎭⎪⎫-45=-4+3310.。
2018高考数学异构异模复习考案 第四章 三角函数 4.4.1 正、余弦定理撬题 理1.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 为( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .不能确定 答案 C解析 由正弦定理可把不等式转化为a 2+b 2<c 2.又cos C =a 2+b 2-c 22ab<0,所以三角形为钝角三角形.2.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.答案 1解析 由sin B =12得B =π6或5π6,因为C =π6,所以B ≠5π6,所以B =π6,于是A =2π3.由正弦定理,得3sin2π3=b12,所以b =1.3.在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________. 答案 (6-2,6+2)解析 如图,作△PBC ,使∠B =∠C =75°,BC =2,作直线AD 分别交线段PB 、PC 于A 、D 两点(不与端点重合),且使∠BAD =75°,则四边形ABCD 就是符合题意的四边形.过C 作AD 的平行线交PB 于点Q ,在△PBC 中,过P 作BC 的垂线交BC 于点E ,则PB =BEcos75°=6+2;在△QBC 中,由余弦定理QB 2=BC 2+QC 2-2QC ·BC ·cos30°=8-43=(6-2)2,故QB =6-2,所以AB 的取值范围是(6-2,6+2).4.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c=2,cos A =-14,则a 的值为________.答案 8解析 由cos A =-14得sin A =154,所以△ABC 的面积为12bc sin A =12bc ×154=315,解得bc =24,又b -c =2,所以a 2=b 2+c 2-2bc cos A =(b -c )2+2bc -2bc cos A =22+2×24-2×24×⎝ ⎛⎭⎪⎫-14=64,故a =8.5.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________.答案3解析 因为a =2,所以(2+b )(sin A -sin B )=(c -b )sin C 可化为(a +b )(sin A -sin B )=(c -b )sin C ,由正弦定理可得(a +b )·(a -b )=(c -b )c ,即b 2+c 2-a 2=bc ,由余弦定理可得cos A =b 2+c 2-a 22bc =bc 2bc =12,又0<A <π,故A =π3,因为cos A =12=b 2+c 2-42bc ≥2bc -42bc,所以bc ≤4,当且仅当b =c 时取等号.由三角形面积公式知S △ABC =12bc sin A =12bc ·32=34bc ≤3,故△ABC 面积的最大值为 3.6.在△ABC 中,a =4,b =5,c =6,则sin2Asin C =________.答案 1解析 由正弦定理得sin A ∶sin B ∶sin C =a ∶b ∶c =4∶5∶6,又由余弦定理知cos A =b 2+c 2-a 22bc =25+36-162×5×6=34,所以sin2A sin C =2sin A cos A sin C =2×sin A sin C ×cos A =2×46×34=1. 7.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知b -c =14a,2sin B =3sin C ,则cos A 的值为________.答案 -14解析 由2sin B =3sin C ,结合正弦定理得2b =3c , 又b -c =14a ,所以b =32c ,a =2c .由余弦定理得cos A =b 2+c 2-a22bc=⎝ ⎛⎭⎪⎫32c 2+c 2-c22×32c ×c =-14.8.△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍. (1)求sin ∠B sin ∠C ;(2)若AD =1,DC =22,求BD 和AC 的长.解 (1)S △ABD =12AB ·AD sin ∠BAD ,S △ADC =12AC ·AD sin ∠CAD .因为S △ABD =2S △ADC ,∠BAD =∠CAD ,所以AB =2AC , 由正弦定理可得sin ∠B sin ∠C =AC AB =12.(2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2. 在△ABD 和△ADC 中,由余弦定理知,AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB , AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC .故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6. 由(1)知AB =2AC ,所以AC =1.。
2018高考数学异构异模复习考案 第四章 三角函数 4.4.1 正、余弦定
理撬题 理
1.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 为( )
A .锐角三角形
B .直角三角形
C .钝角三角形
D .不能确定
答案 C
解析 由正弦定理可把不等式转化为a 2+b 2<c 2.
又cos C =a 2+b 2-c 22ab <0,所以三角形为钝角三角形. 2.设△ABC
的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6
,则b =________. 答案 1
解析 由sin B =12得B =π6或5π6,因为C =π6,所以B ≠5π6,所以B =π6,于是A =2π3
.由正弦定理,得3sin 2π3=b 12
,所以b =1. 3.在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________.
答案 (6-2,6+2)
解析 如图,作△PBC ,使∠B =∠C =75°,BC =2,作直线AD 分别交线段PB 、PC 于A 、D 两点(不与端点重合),且使∠BAD =75°,则四边形ABCD 就是符合题意的四边形.过C 作AD 的平行线交PB 于点Q ,在△PBC 中,过P 作BC 的垂线交BC 于点E ,则PB =BE
cos75°
=6+2;在△QBC 中,由余弦定理QB 2=BC 2+QC 2-2QC ·BC ·cos30°=8-43=(6-2)2,故QB =6-2,所以AB 的取值范围是(6-2,6+2).
4.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b
-c =2,cos A =-14,则a 的值为________. 答案 8 解析 由cos A =-14得sin A =154,所以△ABC 的面积为12bc sin A =12bc ×154
=315,解得bc =24,又b -c =2,所以a 2=b 2+c 2-2bc cos A =(b -c )2+2bc -2bc cos A =22+2×24-2×
24×⎝ ⎛⎭
⎪⎫-14=64,故a =8. 5.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________.
答案 3
解析 因为a =2,所以(2+b )(sin A -sin B )=(c -b )sin C 可化为(a +b )(sin A -sin B )=(c -b )sin C ,由正弦定理可得(a +b )·(a -b )=(c -b )c ,即b 2+c 2-a 2=bc ,由余弦定理可得cos A =b 2+c 2-a 22bc =bc 2bc =12,又0<A <π,故A =π3,因为cos A =12=b 2+c 2-42bc ≥2bc -42bc
,所以bc ≤4,当且仅当b =c 时取等号.由三角形面积公式知S △ABC =12bc sin A =12bc ·32=34
bc ≤3,故△ABC 面积的最大值为 3.
6.在△ABC 中,a =4,b =5,c =6,则sin2A sin C
=________. 答案 1
解析 由正弦定理得sin A ∶sin B ∶sin C =a ∶b ∶c =4∶5∶6,又由余弦定理知cos A =b 2+c 2-a 22bc =25+36-162×5×6=34,所以sin2A sin C =2sin A cos A sin C =2×sin A sin C ×cos A =2×46×34
=1. 7.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知b -c =14
a,2sin B =3sin C ,则cos A 的值为________.
答案 -14
解析 由2sin B =3sin C ,结合正弦定理得2b =3c ,
又b -c =14a ,所以b =32
c ,a =2c . 由余弦定理得cos A =b 2+c 2-a 22bc =⎝ ⎛⎭⎪⎫32c 2+c 2-2c 22×32c ×c =-14
. 8.△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍.
(1)求sin ∠B sin ∠C
; (2)若AD =1,DC =22
,求BD 和AC 的长. 解 (1)S △ABD =12
AB ·AD sin ∠BAD , S △ADC =12AC ·AD sin ∠CAD .
因为S △ABD =2S △ADC ,∠BAD =∠CAD ,所以AB =2AC ,
由正弦定理可得sin ∠B sin ∠C =AC AB =12
. (2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2. 在△ABD 和△ADC 中,由余弦定理知, AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB , AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC . 故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6. 由(1)知AB =2AC ,所以AC =1.。