2019届全国高三原创试卷(一)数学(理)试题
- 格式:doc
- 大小:1.20 MB
- 文档页数:12
绝密★启用前2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A .B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π68.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =- 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为 A .68πB .64πC .62πD .6π二、填空题:本题共4小题,每小题5分,共20分。
参考答案一、选择题1. C2. C3. B4. B5. D6. A7. B8. A9. A10. B11. C 12. D二、填空题13. y=3x14. 12115.0.1816.2三、解答题17.解:(1)()2222sin sin sin 2sin sin sin sin sin sin B C B B C C A B C -=-+=- 即:222sin sin sin sin sin B C A B C +-=由正弦定理可得:222b c a bc +-= 2221cos 22b c a A bc +-∴== ()0,πA ∈3A π\= (2)22a b c +=sin 2sin A B C += 又()sin sin sin cos cos sin B A C A C A C =+=+,3Aπ=1sin 2sin 2C C C ++=整理可得:3sin C C =22sin cos 1C C +=(()223sin 31sin C C ∴=-解得:sin 4C=或4因为sin 2sin 2sin 0B C A C =-=>所以sin 4C >,故sin 4C =.18.解:(1)连接ME ,1B CM ,E 分别为1BB ,BC 中点ME ∴为1B BC ∆的中位线1//ME BC ∴且112ME B C =又N 为1A D 中点,且11//A D BC 1//ND BC ∴且112ND B C =//ME ND ∴∴四边形MNDE 为平行四边形//MN DE ∴,又MN ⊄平面1C DE ,DE Ì平面1C DE//MN ∴平面1C DE(2)设AC BD O =,11111AC B D O =由直四棱柱性质可知:1OO ⊥平面ABCD四边形ABCD 为菱形 AC BD ∴⊥则以O 为原点,可建立如下图所示的空间直角坐标系:则:)A ,()0,1,2M,)1A ,D (0,-1,0)1,22N ⎫-⎪⎪⎝⎭ 取AB 中点F ,连接DF,则01,2F ⎫⎪⎪⎝⎭ 四边形ABCD 为菱形且60BAD ∠=BAD ∴∆为等边三角形 DF AB ∴⊥ 又1AA ⊥平面ABCD ,DF ⊂平面ABCD 1DF AA ∴⊥DF ⊥∴平面11ABB A ,即DF ⊥平面1AMADF ∴为平面1AMA 的一个法向量,且33,022DF ⎛⎫= ⎪ ⎪⎝⎭ 设平面1MA N 的法向量(),,n x y z =,又()13,1,2MA =-,33,,022MN ⎛⎫=- ⎪ ⎪⎝⎭ 132033022nMA x y z n MN x y ⎧⋅=-+=⎪∴⎨⋅=-=⎪⎩,令x =1y =,1z =-()3,1,1n ∴=- cos ,515DF nDF n DF n ⋅∴<>===⋅10sin ,5DF n ∴<>=∴二面角1A MA N --的正弦值为:19.解:(1)设直线l 方程为:3y =x m 2+,()11,A x y ,()22,B x y由抛物线焦半径公式可知:12342AF BF x x +=++=1252x x ∴+= 联立2323y x m y x⎧=+⎪⎨⎪=⎩得:()229121240x m x m +-+= 则()2212121440m m ∆=-->12m ∴< 121212592m x x -∴+=-=,解得:78m =- ∴直线l 的方程为:3728y x =-,即:12870x y --= (2)设(),0P t ,则可设直线l 方程为:23x y t =+ 联立2233x y t y x⎧=+⎪⎨⎪=⎩得:2230y y t --= 则4120t ∆=+>13t ∴>- 122y y ∴+=,123y y t =-3AP PB =123y y ∴=-21y ∴=-,13y =123y y ∴=-则33AB === 20.解: (1)由题意知:()f x 定义域为:()1,-+∞且()1cos 1f x x x '=-+ 令()1cos 1g x x x =-+,1,2x π⎛⎫∈- ⎪⎝⎭ ()()21sin 1g x x x '∴=-++,1,2x π⎛⎫∈- ⎪⎝⎭ ()211x +在1,2π⎛⎫- ⎪⎝⎭上单调递减,1111,7n n a a +-=在1,2π⎛⎫- ⎪⎝⎭上单调递减 ()g x '∴在1,2π⎛⎫- ⎪⎝⎭上单调递减又()0sin 0110g '=-+=>,()()2244sin 102222g ππππ⎛⎫'=-+=-< ⎪⎝⎭++00,2x π⎛⎫∴∃∈ ⎪⎝⎭,使得()00g x '= ∴当()01,x x ∈-时,()0g x '>;0,2x x π⎛⎫∈ ⎪⎝⎭时,()0g x '< 即()g x 在()01,x -上单调递增;在0,2x π⎛⎫ ⎪⎝⎭上单调递减 则0x x =为()g x 唯一的极大值点 即:()f x '在区间1,2π⎛⎫- ⎪⎝⎭上存在唯一的极大值点0x . (2)由(1)知:()1cos 1f x x x '=-+,()1,x ∈-+∞ ①当(]1,0x ∈-时,由(1)可知()f x '在(]1,0-上单调递增()()00f x f ''∴≤=()f x ∴在(]1,0-上单调递减又()00f =0x ∴=为()f x 在(]1,0-上的唯一零点 ②当0,2x π⎛⎤∈ ⎥⎝⎦时,()f x '在()00,x 上单调递增,在0,2x π⎛⎫ ⎪⎝⎭上单调递减 又()00f '=()00f x '∴>()f x ∴在()00,x 上单调递增,此时()()00f x f >=,不存在零点 又22cos 02222f ππππ⎛⎫'=-=-< ⎪++⎝⎭ 10,2x x π⎛⎫∴∃∈ ⎪⎝⎭,使得()10f x '= ()f x ∴在()01,x x 上单调递增,在1,2x π⎛⎫ ⎪⎝⎭上单调递减又()()000f x f >=,2sin ln 1ln ln102222e f ππππ⎛⎫⎛⎫=-+=>= ⎪ ⎪+⎝⎭⎝⎭()0f x ∴>在0,2x π⎛⎫ ⎪⎝⎭上恒成立,此时不存在零点 ③当,2x ππ⎡⎤∈⎢⎥⎣⎦时,sin x 单调递减,()ln 1x -+单调递减 ()f x ∴在,2ππ⎡⎤⎢⎥⎣⎦上单调递减 又02f π⎛⎫> ⎪⎝⎭,()()()sin ln 1ln 10f ππππ=-+=-+< 即()02f f ππ⎛⎫⋅< ⎪⎝⎭,又()f x 在,2ππ⎡⎤⎢⎥⎣⎦上单调递减 ∴()f x 在,2ππ⎡⎤⎢⎥⎣⎦上存在唯一零点 ④当(),x π∈+∞时,[]sin 1,1x ∈-,()()ln 1ln 1ln 1x e π+>+>=()sin ln 10x x ∴-+<即()f x 在(),π+∞上不存在零点综上所述:()f x 有且仅有2个零点21.解:(1)由题意可知X 所有可能的取值为:1-,0,1()()11P X αβ∴=-=-;()()()011P X αβαβ==+--;()()11P X αβ==- 则X 的分布列如下:(2)0.5α=,0.8β=0.50.80.4a ∴=⨯=,0.50.80.50.20.5b =⨯+⨯=,0.50.20.1c =⨯=(i )()111,2,,7i i i i p ap bp cp i -+=++=⋅⋅⋅ 即()110.40.50.11,2,,7i i i i p p p p i -+=++=⋅⋅⋅整理可得:()11541,2,,7ii i p p p i -+=+=⋅⋅⋅()()1141,2,,7i i i i p p p p i +-∴-=-=⋅⋅⋅ (ii )此方案合理.22.解:(1)由2211t x t -=+得:211x t x -=+,又()2222161t y t =+()()222116141144111xx y x x x x x -⨯+∴==+-=--⎛⎫+ ⎪+⎝⎭ 整理可得C 的直角坐标方程为:2214y x += 又cos x ρθ=,sin y ρθ=l ∴的直角坐标方程为:2110x ++=(2)设C 上点的坐标为:()cos ,2sin θθ则C 上的点到直线l的距离d == 当sin 16πθ⎛⎫+=- ⎪⎝⎭时,d 取最小值则min d =23.解:(1)1abc =111111abc bc ac ab a b c a b c ⎛⎫∴++=++⋅=++ ⎪⎝⎭()()()()2222222222222a b c a b b c c a ab bc ac ++=+++++≥++当且仅当a b c ==时取等号()22211122a b c a b c ⎛⎫∴++≥++ ⎪⎝⎭,即:222111a b c a b c ++++≥ (2)()()()()()()3333a b b c c a a b b c c a +++++≥+++,当且仅当a b c ==时取等号又a b +≥,b c +≥a c +≥a b c ==时等号同时成立)()()()3333a b b c c a ∴+++++≥⨯=又1abc =()()()33324a b b c c a ∴+++++≥。
绝密★启用前2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为A .B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132 C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π68.如图是求112122++的程序框图,图中空白框中应填入A .A =12A + B .A =12A+C .A =112A+D .A =112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =-10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为 A .68πB .64πC .62πD .6π二、填空题:本题共4小题,每小题5分,共20分。
绝密★启用前2019年普通高等学校招生全国统一考试理科数学本试卷共4页,23小题,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B铅笔将试卷类型(B )填涂在答题卡的相应位置上。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A . B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π68.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =- 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,PB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D二、填空题:本题共4小题,每小题5分,共20分。
绝密★启用前2019年普通高等学校招生全国统一考试理科数学本试卷共4页,23小题,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B铅笔将试卷类型(B )填涂在答题卡的相应位置上。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N =A .}{43xx -<<B .}42{xx -<<- C .}{22x x -<< D .}{23xx <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos ++x xx x 在[,]-ππ的图像大致为A .B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π68.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =- 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 11.关于函数()sin |||sin |f x x x =+有下述四个结论: ①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,PB 的中点,∠CEF =90°,则球O 的体积为A .68πB .64πC .62πD .6π二、填空题:本题共4小题,每小题5分,共20分。
绝密★启用前2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A .B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π68.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =- 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为 A .68πB .64πC .62πD .6π二、填空题:本题共4小题,每小题5分,共20分。
2019年全国高考理科数学试卷(全国I 卷)及答案一、选择题(本大题共12小题,共60分)1.已知集合}24|{<<-=x x M ,}06|{2<--=x x x N ,则=N M ()A.}34|{<<-x xB.}24|{-<<-x xC.}22|{<<-x xD.}32|{<<x x 2.设复数z 满足1z i -=,z 在复平面内对应的点为(,)x y ,则()A.22(1)1x y ++=B.22(1)1x y -+=C.22(1)1x y +-=D.22(1)1x y ++=3.已知2log 0.2a =,0.22b =,0.30.2c =,则()A.a b c <<B.a c b <<C.c a b <<D.b c a<<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是215-(618.0215≈-称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是215-.若某人满足上述两个黄金分割比例,且腿长为cm 105,头顶至脖子下端的长度为cm 26,则其身高可能是()A.cm 165B.cm 175C.cm 185D.cm 1905.函数2sin ()cos x xf x x x+=+在[,]ππ-的图像大致为()A.B.C.D.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,下图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.516B.1132C.2132D.11167.已知非零向量,a b 满足2a b = ,且()a b b -⊥ ,则a 与b的夹角为()A.6πB.3πC.23πD.56π8.右图是求112+12+2的程序框图,图中空白框中应填入()A.12A A =+B.12A A=+C.112A A =+D.112A A=+9.记n S 为等差数列{}n a 的前n 项和.已知40S =,55a =,则()A.25n a n =- B.310n a n =- C.228n S n n=- D.2122n S n n =-10.已知椭圆C 的焦点为)0,1(1-F ,)0,1(2F ,过2F 的直线与C 交于A ,B 两点.若||2||22B F AF =,||||1BF AB =,则C 的方程为()A.1222=+y xB.12322=+y x C.13422=+y x D.14522=+y x 11.关于函数()sin sin f x x x =+有下述四个结论:①()f x 是偶函数②()f x 在区间(,)2ππ单调递增③()f x 在[],ππ-有4个零点④()f x 的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③12.已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC ∆是边长为2的正三角形,,E F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为()A.B.C.二、填空题(本大题共4小题,共20分)13.曲线23()x y x x e =+在点(0,0)处的切线方程为.14.记n S 为等比数列{}n a 的前n 项和,若113a =,246a a =,则5S =.15.甲乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该对获胜,决赛结束)根据前期的比赛成绩,甲队的主客场安排依次为“主主客客主客主”设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛相互独立,则甲队以4:1获胜的概率是.16.已知双曲线C:22221(0,0)x y a b a b -=>>的左、右焦点分别为12,F F ,过1F 的直线与C 的两条渐近线分别交于,A B 两点.若112,0F A AB F B F B =⋅=uuu r uuu r uuu r uuu r ,则C 的离心率为.三、解答题(本大题共5小题,共60分)17.ABC ∆的内角,,A B C 的对边分别为,,a b c .设()22sin sin sin sin sin B C A B C -=-.(1)求A ;2b c +=,求sin C .18.如图,直四棱柱1111ABCD A B C D -的底面是菱形,14,2,60AA AB BAD ==∠=︒,,,E M N 分别是11,,BC BB A D 的中点.(1)证明://MN 平面1C DE ;(2)求二面角1A MA N --的正弦值.19.已知抛物线x y C 3:2=的焦点为F ,斜率为23的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若4||||=+BF AF ,求l 的方程;(2)若PB AP 3=,求||AB .20.已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导函数.证明:(1)()f x '在区间(1,2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.21.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物实验.实验方案如下:每一轮选取两只白鼠对药效进行对比实验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮实验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止实验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮实验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮实验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在实验开始时都赋予4分,(0,1,,8)i p i = 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i = ,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}(0,1,2,,7)i i p p i +-= 为等比数列;(ii)求4p ,并根据4p 的值解释这种实验方案的合理性.四、选做题(2选1)(本大题共2小题,共10分)22.在直角坐标系xOy 中,曲线C 的参数方程为22211()41t x t t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩为参数.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos sin 110ρθθ+=.(1)求C 和l 的直角坐标方程;(2)求C 上的点到l 距离的最小值.23.已知,,a b c 为正数,且满足1abc =,证明:(1)222111a b c a b c++≤++(2)333()()()24a b b c c a +++++≥2019年高考理科数学(全国I 卷)参考答案选择题1-5CCBBD 6-12ABAAB CD13.3y x =14.5S =121315.0.1816.217.解答:(1)由()22sin sin sin sin sin B C A B C -=-得222sin sin sin sin sin B C A B C +-=结合正弦定理得222b c a bc+-=∴2221cos =22b c a A b c +-=⋅⋅又(0,)A π∈,∴=3A π.(22b c +=sin 2sin A B C +=,()sin 2sin A A C C ++=∴6sin()2sin 23C C π++=,∴1sin cos 222C C -=∴2sin()62C π-=又203C π<<∴662C πππ-<-<又sin()06C π->∴062C ππ<-<∴2cos 62C π⎛⎫-= ⎪⎝⎭,∴sin sin()66C C ππ=-+=sin cos cos sin 6666C C ππππ⎛⎫⎛⎫-+- ⎪ ⎝⎭⎝⎭624=.18、解:(1)连结,M E 和1,B C ,∵,M E 分别是1BB 和BC 的中点,∴1//ME B C 且112ME B C =,又N 是1A D ,∴//ME DN ,且ME DN =,∴四边形MNDE 是平行四边形,∴//MN DE ,又DE ⊂平面1C DE ,MN ⊄平面1C DE ,∴//MN 平面1C DE.(2)以D 为原点建立如图坐标系,由题(0,0,0)D ,(2,0,0)A ,1(2,0,4)A,M 1(0,0,4)A A =-uuu r,1(2)A M =--uuuu r ,1(2,0,4)A D =--uuur,设平面1AA M 的法向量为1111(,,)n x y z =u r ,平面1DA M 的法向量为2222(,,)n x y z =u u r,由111100n A A n A M ⎧⋅=⎪⎨⋅=⎪⎩u r uuu r u r uuuu r得11114020z x z -=⎧⎪⎨-+-=⎪⎩,令1x =得1n =u r ,由212100n A D n A M ⎧⋅=⎪⎨⋅=⎪⎩u u r uuur u u r uuuu r得2222224020x z x z --=⎧⎪⎨-+-=⎪⎩,令22x =得2(2,0,1)n =-u u r ,∴12121215cos ,5n n n n n n ⋅==⋅u r u u ru r u u r u r u u r ,∴二面角1A MA N --的正弦值为5.19.解答:设直线l 的方程为b x y +=23,设),(11y x A ,),(22y x B ,(1)联立直线l 与抛物线的方程:⎪⎩⎪⎨⎧=+=x y bx y 3232消去y 化简整理得0)33(4922=+-+b x b x ,0494)33(22>⨯--=∆b b ,21<∴b ,9)33(421b x x -⨯=+,依题意4||||=+BF AF 可知42321=++x x ,即2521=+x x ,故259)33(4=-⨯b ,得87-=b ,满足0>∆,故直线l 的方程为8723-=x y ,即07128=+-x y .(2)联立方程组⎪⎩⎪⎨⎧=+=x y b x y 3232消去x 化简整理得0222=+-b y y ,084>-=∆b ,21<∴b ,221=+y y ,b y y 221=, PB AP 3=,可知213y y -=,则222=-y ,得12-=y ,31=y ,故可知23-=b 满足0>∆,∴3134|13|941||11||212=+⨯+=-⋅+=y y k AB .20.解答:(1)对()f x 进行求导可得,1()cos 1f x x x '=-+,(12x π-<<取1()cos 1g x x x=-+,则21()sin (1)g x x x '=-++,在(1,2x π∈-内21()sin (1)g x x x '=-++为单调递减函数,且(0)1g =,21(102(1)2g ππ=-+<+所以在(0,1)x ∈内存在一个0x ,使得()0g x '=,所以在0(1,)x x ∈-内()0g x '>,()f x '为增函数;在0(,2x x π∈内()0g x '<,()f x '为减函数,所以在()f x '在区间(1,2π-存在唯一极大值点;(2)由(1)可知当(1,0)x ∈-时,()f x '单调增,且(0)0f '=,可得()0'<x f 则()f x 在此区间单调减;当0(0,)x x ∈时,()f x '单调增,且(0)0f '=,()0f x '>则()f x 在此区间单调增;又(0)0f =则在0(1,)x x ∈-上()f x 有唯一零点0x =.当0(,2x x π∈时,()f x '单调减,且0()0,()02f x f π''><,则存在唯一的10(,)2x x π∈,使得1()0f x '=,在01(,)x x x ∈时,()0f x '>,()f x 单调增;当1(,)2x x π∈时,()f x 单调减,且()1ln(1)1ln 022f e ππ=-+>-=,所以在0(,)2x x π∈上()f x 无零点;当(,)2x ππ∈时,sin y x =单调减,ln(1)y x =-+单调减,则()f x 在(,)2x ππ∈上单调减,()0ln(1)0f ππ=-+<,所以在(,)2x ππ∈上()f x 存在一个零点.当(,)x π∈+∞时,()sin ln(1)1ln(1)0f x x x π=-+<-+<恒成立,则()f x 在(,)x π∈+∞上无零点.综上可得,()f x 有且仅有2个零点.21.解答:(1)一轮实验中甲药的得分有三种情况:1、1-、0.得1分时是施以甲药的白鼠治愈且施以乙药的白鼠未治愈,则(1)(1)P X αβ==-;得1-分时是施以乙药的白鼠治愈且施以甲药的白鼠未治愈,则(1)(1)P X αβ=-=-;得0分时是都治愈或都未治愈,则(0)(1)(1)P X αβαβ==+--.则X的分布列为:(2)(i )因为0.5α=,0.8β=,则(1)0.4a P X ==-=,(0)0.5b P X ===,(1)0.1c P X ===.可得110.40.50.1i i i i p p p p -+=++,则110.50.40.1i i i p p p -+=+,则110.4()0.1()i i i i p p p p -+-=-,则114i ii i p p p p +--=-,所以1{}(0,1,2,,7)i i p p i +-= 为等比数列.(ii )1{}(0,1,2,,7)i i p p i +-= 的首项为101p p p -=,那么可得:78714p p p -=⨯,67614p p p -=⨯,………………2114p p p -=⨯,以上7个式子相加,得到76811(444)p p p -=⨯+++ ,则886781111441(1444)143p p p p --=⨯++++=⨯=- ,则18341p =-,再把后面三个式子相加,得23411(444)p p p -=⨯++,则4423411844141311(1444)334141257p p p --=⨯+++==⨯==-+.4p 表示“甲药治愈的白鼠比乙药治愈的白鼠多4只,且甲药的累计得分为4”,因为0.5α=,0.8β=,αβ<,则实验结果中“甲药治愈的白鼠比乙药治愈的白鼠多4只,且甲药的累计得分为4”这种情况的概率是非常小的,而41257p =的确非常小,说明这种实验方案是合理的.22.(1)曲线C :由题意得22212111t x t t -==-+++即2211x t +=+,则2(1)y t x =+,然后代入即可得到2214y x +=(1)x ¹-而直线l :将cos ,sin x y ρθρθ==代入即可得到2110x ++=(2)将曲线C 化成参数方程形式为则d =所以当362ππθ+=23.(1)1abc = ,111bc ac ab a b c∴++=++.由基本不等式可得:222222,,222b c a c a b bc ac ab +++≤≤≤,于是得到222222222111222b c a c a b a b c a b c +++++≤++=++.(2)由基本不等式得到:332()8()a b a b ab +≥+≥,332()8()b c b c bc +≥+≥,332()8()c a c a ac +≥+≥.于是得到333333222()()()8[()()()]a b b c c a ab bc ac +++++≥++824≥⨯。
绝密★启用前2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A .B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π68.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =- 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为 A .68πB .64πC .62πD .6π二、填空题:本题共4小题,每小题5分,共20分。
2019年高考数学试题全国Ⅰ卷理科试题及其解答已知非零向量,a b 满足||2||a b =,且()a b b -⊥,则a b 与的夹角为1的程序框图,图中空白框中应填入由此可得22222(,)11a b a b B a a -++,2222222(1,),(1,),11a b a b AF b F B a a -∴=-=-++ 2222222222,12(1),=3,31 2.a AF F B a b a c =∴=-∴=-=-=解得11.(2019全国Ⅰ理)关于函数f(x)=sin|x|+|sinx|有下述四个结论:①f(x)是偶函数 ②f(x)在区间(π/2,π)单调递增③f(x)是在[-π,π]有4个零点 ④f(x)的最大值是2其中所有正确结论的编号是 ( C ) 可以看作是正方体截下来的一个角,若2,0,F A AB F B F B ==A y =-在0=bx -即1212220()13322F B F B b b b b a a k k F B F B c c a a a a c c ====-=∴-=-+-,,又,, 22222332 2.b ac a a c a e =∴-==∴=即,,, ,018060.A A <<∴=,2sinA+ sinB=2sinC ,260+sin(120)=2sin C -即60+sin120cos cos120sin =2sin C C C -230)2= 20120,303090,cos(30)0,cos(30)2C C C C <<∴-<-<∴->∴-=, 62sin 30)30]sin(30)cos30cos(30)sin 30.4C C C +∴=+=-+-=如图,直四棱柱ABCD-A B C D 的底面菱形,AA =4,AB=2,∠ME12B 1DC C ME 如图所示建立空间直角坐标系D-xyz.∵A(2,0,0),A 1(2,0,4),M(1,3,2),N(1,0,2), (0,0,4),(1,3,2),(1,0,2),(0,3,0),A A AM A N MN ∴=-=--=--=- 由此可得平面A 1MA 和平面A 1MN 的一个法向量分别为(3,1,0),(2,0,1),m n ==-2310cos ,.5||||2m n m n m n ==⨯的正弦值为 (2019全国Ⅰ理)已知抛物线x 轴的交点为P.3|AP PB AB =若,求 |||AF BF +0(2)(,0)3(P x AP PB x =设,,即和y 2=3x 消去.1,2,,7),其中1,2,,7)为等比数列;的值解释这种试验方案的合理性解:(1)X可取-1,0,1,P(X=-1)=(1-α)β,P(X=0)=αβ+(1-α)(1-β)=2αβ+1-α-β,P(X=1)=α (1-β),0.8=0.4,b=P(X=0)=2×0.5×0.8+1-0.5-0.8=0.5,c=P(X=1) =0.5×0.2=0.1,1110.40.50.1(1,2,,7)i i i p p p p i -+∴=++=,110.50.40.1i i i p p p -+=+即,1154i i i p p p -+=+即,11=4()i i i i p p p p +-∴--,101110{}4i i p p p p p p +-=≠∴-,是首项为,公比为的为等比数列.1(ii){}i i n p p n S +-设数列的前项和为,则81088776651080()(14)=()+()+()++()==14p p S p p p p p p p p p p --------, 8108(41)=0=3p p p -∴,, 同理414(41)=3p p -, 8484441==41=25741p p -∴+-,8411=257p p =∴,, p 4表示最终认为甲药更有效的概率.由计算结果可以看出,在甲药的治愈率为0.5,乙药 的治愈率为0.8时,认为甲药更有效的概率为1/257≈0.0039,此时得出错误结论的概率非 常小,说明这种试验方案合理. 21(1)(1x -=2(11x -=又ab bc++或:由柯西不等式得2。
2019年全国统一高考数学试卷(理科)(全国1卷)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合M={x|﹣4<x<2},N={x|x2﹣x﹣6<0},则M∩N=()A.{x|﹣4<x<3} B.{x|﹣4<x<﹣2} C.{x|﹣2<x<2} D.{x|2<x<3} 2.(5分)设复数z满足|z﹣i|=1,z在复平面内对应的点为(x,y),则()A.(x+1)2+y2=1 B.(x﹣1)2+y2=1C.x2+(y﹣1)2=1 D.x2+(y+1)2=13.(5分)已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A.165cm B.175cm C.185cm D.190cm5.(5分)函数f(x)=在[﹣π,π]的图象大致为()A.B.C.D.6.(5分)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.B.C.D.7.(5分)已知非零向量,满足||=2||,且(﹣)⊥,则与的夹角为()A.B.C.D.8.(5分)如图是求的程序框图,图中空白框中应填入()A.A=B.A=2+C.A=D.A=1+9.(5分)记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A.a n=2n﹣5 B.a n=3n﹣10 C.S n=2n2﹣8n D.S n=n2﹣2n 10.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1 B.+=1C.+=1 D.+=111.(5分)关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数②f(x)在区间(,π)单调递增③f(x)在[﹣π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③12.(5分)已知三棱锥P﹣ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为()A.8πB.4πC.2πD.π二、填空题:本题共4小题,每小题5分,共20分。
绝密★启用前2019年普通高等学校招生全国统一考试理科数学本试卷共4页,23小题,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=A. }{43x x -<<B. }{42x x -<<-C. }{22x x -<<D. }{23x x <<【答案】C 【解析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题. 【详解】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A. 22+11()x y += B. 22(1)1x y -+= C. 22(1)1x y +-= D. 22(+1)1y x +=【答案】C 【解析】 【分析】本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x ,y )和点(0,1)之间的距离为1,可选正确答案C .【详解】,(1),z x yi z i x y i =+-==+-1,z i -则22(1)1x y +-=.故选C .【点睛】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.3.已知0.20.32log 0.2,2,0.2a b c ===,则A. a b c <<B. a c b <<C. c a b <<D. b c a <<【答案】B【分析】运用中间量0比较,a c ,运用中间量1比较,b c 【详解】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,<<=则01,c a c b <<<<.故选B .【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是12(12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cm【答案】B 【解析】理解黄金分割比例的含义,应用比例式列方程求解.【详解】设人体脖子下端至腿根的长为x cm ,肚脐至腿根的长为y cm ,则262611052x x y +==+,得42.07, 5.15x cm y cm ≈≈.又其腿长为105cm ,头顶至脖子下端的长度为26cm ,所以其身高约为42.07+5.15+105+26=178.22,接近175cm .故选B .【点睛】本题考查类比归纳与合情推理,渗透了逻辑推理和数学运算素养.采取类比法,利用转化思想解题.5.函数f (x )=2sin cos x xx x++在[—π,π]的图像大致为A.B.C. D.【答案】D 【解析】 【分析】先判断函数的奇偶性,得()f x 是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案. 【详解】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x-+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又221422()1,2()2f πππππ++==>2()01f πππ=>-+.故选D . 【点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养.采取性质法或赋值法,利用数形结合思想解题.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.516B.1132C.2132D.1116【答案】A 【解析】 【分析】本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.【详解】由题知,每一爻有2中情况,一重卦的6爻有62情况,其中6爻中恰有3个阳爻情况有36C ,所以该重卦恰有3个阳爻的概率为3662C =516,故选A .【点睛】对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.7.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为A.π6B.π3C.2π3D.5π6【答案】B 【解析】 【分析】本题主要考查利用平面向量数量积数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由()a b b -⊥得出向量,a b 的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.【详解】因为()a b b -⊥,所以2()a b b a b b -⋅=⋅-=0,所以2a b b ⋅=,所以cos θ=22||12||2a b b a b b ⋅==⋅,所以a 与b 的夹角为3π,故选B . 【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.8.如图是求112122++的程序框图,图中空白框中应填入A. A =12A+ B. A =12A+C. A =112A+D. A =112A+【答案】A 【解析】 【分析】本题主要考查算法中的程序框图,渗透阅读、分析与解决问题等素养,认真分析式子结构特征与程序框图结构,即可找出作出选择.【详解】执行第1次,1,122A k ==≤是,因为第一次应该计算1122+=12A +,1k k =+=2,循环,执行第2次,22k =≤,是,因为第二次应该计算112122++=12A +,1k k =+=3,循环,执行第3次,22k =≤,否,输出,故循环体为12A A=+,故选A .【点睛】秒杀速解 认真观察计算式子的结构特点,可知循环体为12A A=+.9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A. 25n a n =- B. 310n a n =- C. 228n S n n =-D. 2122n S n n =- 【答案】A 【解析】 【分析】等差数列通项公式与前n 项和公式.本题还可用排除,对B ,55a =,44(72)1002S -+==-≠,排除B ,对C,245540,25850105S a S S ==-=⨯-⨯-=≠,排除C.对D,2455410,4240052S a S S ==-=⨯-⨯-=≠,排除D ,故选A .【详解】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,故选A . 【点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断.10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A. 2212x y +=B. 22132x y +=C. 22143x y +=D. 22154x y +=【答案】B 【解析】 【分析】可以运用下面方法求解:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去21co s c os A F F B F F ∠∠,,得223611n n +=,解得2n =.22224,,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 【详解】如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1A F B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得2n =.22224,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]ππ-有4个零点 ④f (x )的最大值为2 其中所有正确结论的编号是 A. ①②④ B. ②④C. ①④D. ①③【答案】C 【解析】 【分析】画出函数()sin sin f x x x =+的图象,由图象可得①④正确,故选C .【详解】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0x π≤≤时,()2sin f x x =,它有两个零点:0,π;当0x π-≤<时,()()sin sin 2sin f x x x x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N 时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④ 正确,故选C .【点睛】化简函数()sin sin f x x x =+,研究它的性质从而得出正确答案.12.已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,PB 的中点,∠CEF =90°,则球O 的体积为A. B.C.D.【答案】D 【解析】 【分析】本题也可用解三角形方法,达到求出棱长的目的.适合空间想象能力略差学生.设2PA PB PC x ===,,E F 分别为,PA AB 中点,//EF PB ∴,且12EF PB x ==,ABC ∆为边长为2的等边三角形, CF ∴=90CEF ∠=︒1,2CE AE PA x ∴===AEC ∆中余弦定理()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D Q 为AC 中点,1cos 2AD EAC PA x ∠==,2243142x x x x +-+∴=, 22121222x x x ∴+=∴==,PA PB PC ∴===,又===2A B B C A C ,,,PA PB PC ∴两两垂直,2R ∴==R ∴=,34433V R ∴=π==,故选D . 【详解】,PA PB PC ABC ==∆为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别PA 、AB 中点,//EF PB ∴,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥平面PAC ,PB ⊥平面PAC ,PAB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体一部分,2R ==3442338R V R =∴=π=⨯=π,故选D .【点睛】本题考查学生空间想象能力,补型法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补型成正方体解决.二、填空题:本题共4小题,每小题5分,共20分。
绝密★启用前2019年普通高等学校招生全国统一考试理科数学本试卷共4页,23小题,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos ++x xx x 在[,]-ππ的图像大致为A .B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π68.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =- 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F分别是P A ,PB 的中点,∠CEF =90°,则球O 的体积为A .68πB .64πC .62πD .6π二、填空题:本题共4小题,每小题5分,共20分。
绝密★启用前2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为A .B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132 C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π68.如图是求112122++的程序框图,图中空白框中应填入A .A =12A + B .A =12A+C .A =112A+D .A =112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =-10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为 A .68πB .64πC .62πD .6π二、填空题:本题共4小题,每小题5分,共20分。
2019届全国高三原创试卷(一)理科数学本试题卷共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、考试范围:高考范围。
2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
6、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
7、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,{}2log (2)A x y x ==-若全集U A =,{}12B x x =<<,则U C B =( ) A .(),1-∞ B .(],1-∞ C .()2,+∞ D .[)2,+∞ 2.设i 是虚数单位,若复数5()12ia a R i+∈-是纯虚数,则a =( ) A .1- B .1 C .2- D .23.若(0,)απ∈,sin()cos παα-+=sin cos αα-的值为( )A.3 B.3- C .43 D .43-4.设平面向量(3,1)a =,(,3)b x =-,a b ⊥,则下列说法正确的是( ) A.x =a b ⊥的充分不必要条件 B .a b -与a 的夹角为3πC.12b = D .a b -与b 的夹角为6π 5.已知双曲线2222:1(0,0)y x C a b a b-=>>(2,2),则双曲线的实轴长为( ) A .12B .1 C.//MN AB D .//MN 平面ABCD 6.若321n xdx =+⎰,则二项式2nx ⎛⎝的展开式中的常数项为( ) A .45256 B .45256- C.45128 D .45128- 7.如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入,a b 的分别为10,4,则输出的a=( )A .0B . 14 C. 4 D .28.某几何体的三视图如图所示,则该几何体的体积为( )A .163 B .203 C. 169 D .2099.已知0a >,1a ≠,2()x f x x a =-,当()1,1x ∈-时,均有1()2f x <则实数a 的取值范围是( )A .[)10,2,2⎛⎤⋃+∞ ⎥⎝⎦ B .(]10,1,22⎛⎤⋃ ⎥⎝⎦ C.(]1,11,22⎡⎫⋃⎪⎢⎣⎭D .[)1,12,2⎡⎫⋃+∞⎪⎢⎣⎭10.某旅行社租用,A B 两种型号的客车安排900名客人旅行,,A B 两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为( )A .31200元B .36000元 C. 36800元 D .38400元 11.已知函数()()2sin (0,)2f x x πωϕωϕ=+><的图象经过点(0,1)B -,在区间(,)183ππ上为单调函数,且()f x 的图象向左平移π个单位后与原来的图象重合,当12172,(,)123t t ππ∈--,且12t t ≠时,12()()f t f t =,则12()f t t +=( )A ..1- C.1 D 12.已知点P 是曲线sin ln y x x =+上任意一点,记直线OP (O 为坐标原点)的斜率为k ,则( )A .存在点P 使得1k ≥B .对于任意点P 都有1k < C. 对于任意点P 都有0k < D .至少存在两个点P 使得1k =-第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知平面向量(1,)a x y =-,1a ≤则事件“y x ≥”的概率为 .14.已知抛物线24x y =的焦点为F ,准线与y 轴的交点为M ,N 为抛物线上任意一点,且满足NF =,则NMF ∠ .15.如图所示,在平面四边形ABCD 中,AB =,BC =,AB AD ⊥,AC CD ⊥,3AD AC =,则AC = .16.在三棱锥A BCD -中,底面为Rt ∆,且B C C D ⊥,斜边BD 上的高为1,三棱锥A BCD-的外接球的直径是AB ,若该外接球的表面积为16π,则三棱锥A BCD -的体积的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知数列{}n a 的前n 项和为n S ,11,a =11n n a S +=+ (1)求{}n a 的通项公式;(2)记21log ()n n n b a a +=⋅,数列{}n b 的前n 项和为n T ,求证:12111...2nT T T +++<. 18. 如图,在四棱锥E ABCD -中,底面ABCD 为矩形,平面ABCD ⊥平面ABE ,90AEB ∠=,BE BC =,F 为CE 的中点..(1)求证:平面BDF ⊥平面ACE ;(2)2AE EB =,在线段AE 上是否存在一点P ,使得二面角P DB F --的余弦值为10.请说明理由.19. 某房产中介公司2017年9月1日正式开业,现对2017年9月1日到2018年5月1日前8个月的二手房成交量进行统计,y 表示开业第x 个月的二手房成交量,得到统计表格如下:(1)统计中常用相关系数来衡量两个变量之间线性关系的强弱,统计学认为,对于变量,x y ,如果[]0.75,1r ∈,那么相关性很强;如果[]0.3,0.75r ∈,那么相关性一般;如果0.25r ≤,那么相关性很弱,通过散点图初步分析可用线性回归模型拟合y 与x 的关系,计算(,)(1,2,...,8)i i x y i =得相关系数r ,并回答是否可以认为两个变量具有很强的线性相关关系(计算结果精确到0.01)(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆˆˆybx a =+(计算结果精确到0.01),并预测该房地产中介公司2018年6月份的二手房成交量(计算结果四舍五入取整数).(3)该房地产中介为增加业绩,决定针对二手房成交客户开展抽奖活动,若抽中“一等奖”获6千元奖金;抽中“二等奖”获3千元奖金;抽中“祝您平安”,则没有奖金. 已知一次抽奖活动中获得“一等奖”的概率为16,获得“二等奖”的概率为13,现有甲、乙两个客户参与抽奖活动,假设他们是否中奖相互独立,求此二人所获奖金总额X (千元)的分布列及数学期望.参考数据:81850i ii x y==∑,821204i i x ==∑,8213776i i y ==∑4.58≈5.57≈,参考公式:1221ˆˆˆ,ni ii nii x y nx yby bx xnxα==-==--∑∑,ni ix y nx yr -=∑,20.设椭圆2222:1(0)x y C a b a b +=>>的右焦点为1F,离心率为2,过点1F 且与x 轴垂直的(1)求椭圆C 的方程;(2)若24y a =上存在两点,M N ,椭圆C 上存在两个,P Q 点满足:1,,M N F 三点共线,1,,P Q F 三点共线,且PQ MN ⊥,求四边形PMQN 的面积的最小值.21.已知()ln()()f x x m mx m R =+-∈ (1)求()f x 的单调区间;(2)设1m >,12,x x 为函数()f x 的两个零点,求证:.120x x +<请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标系xoy 中,曲线1C 的参数方程为cos sin x a y b ϕϕ=⎧⎨=⎩(0,a b ϕ>>为参数),在以O为极点,x 轴的正半轴为极轴的极坐标系中,曲线2C 是圆心在极轴上,且经过极点的圆.已知曲线1C 上的点(1,)2M 对应的参数3πϕ=,射线3πθ=与曲线2C 交于点(1,)3D π(1)求曲线1C 、2C 的直角坐标方程;(2)若点,A B 在曲线1C 上的两个点且OA OB ⊥,求2211OAOB+的值.23.选修4-5:不等式选讲 已知函数()34f x x x =-++. (1)求()(4)f x f ≥的解集;(2)设函数()(3)()g x k x k R =-∈,若()()f x g x >对x R ∀∈成立,求实数k 的取值范围理科数学试题答案一、选择题1-5:BDCBC 6-10: ADBCC 11、12:BB 二、填空题 13.1142π- 14.6π 15. 3 16.43三、解答题17.解(1)11n n a S +=+2n ≥,11n n a S -=+,所以12(2)n n a a n +=≥,又11a =,所以22a =,212a a =符合上式, 所以{}n a 是以1为首项,以2为公比的等比数列. 所以12n n a -=(2)由(1)知21log ()n n n b a a +=⋅12log (22)21n n n -=⨯=-, 所以21(21)2n n T n n +-==, 所以22212111111......12n T T T n+++=+++1111...1213(1)n n ≤++++⋅⋅- 11111223=+-+-111...221n n n++-=-<-18.解:(1)∵平面ABCD ⊥平面ABE ,BC AB ⊥, 平面ABCD ⋂平面ABE AB =,∴BC ⊥平面ABE ,又∵AE ⊂平面ABE ,∴BC AE ⊥又∵AE BE ⊥,BC BE B ⋂=,∴AE ⊥平面BCE ,BF ⊂平面BCE ,即AE BF ⊥, 在BCE ∆中,BE CB =,F 为CE 的中点, ∴BF CE ⊥,AE CE E ⋂=,∴BF ⊥平面ACE , 又BF ⊂平面BDF , ∴平面BDF ⊥平面ACE(2)如图建立空间直角坐标系,设1AE =, 则(2,0,0)B ,(0,1,2)D ,(2,0,2)C ,(1,0,1)F ,设(0,,0)P a ,(2,1,2)BD =-,(1,0,1)BF =-,(2,,0)PB a =-, 因为,0EC BD ⋅=,0EC BF ⋅= 所以EC 平面BDP ,故(2,0,2)EC =为平面平面BDP 的一个法向量 设n ⊥平面BDP ,且(,,)n x y z =,则 由n BD ⊥得220x y z -++=, 由n PB ⊥得20x ay -=, 从而(,2,1)n a a =-cos ,2EC n EC n EC n⋅==∴10cos ,EC n =解得0a =,或1a =,即P 在E 处或A 处.19.解:(1)依题意: 4.5x =,21y =88i ix y x yr -=∑===940.924 4.58 5.57=≈⨯⨯ 因为[]0.920.75,1∈,所以变量,x y 线性相关行很强.(2)818222188508 4.521ˆ 2.242048 4.58i ii i i x yx ybx x===⋅-⨯⨯===-⨯-∑∑ ˆˆ21 2.24 4.510.92ay bx =-=-⨯= 即y 关于x 的回归方程为ˆ 2.2410.92yx =+ 当10x =,ˆ 2.241010.9233.32y=⨯+= 所以预计2018年6月份的二手房成交量为33(3)二人所获奖金总额X 的所有可能取值有0,3,6,9,12千元111111(0),(1)2,224233P X P X ==⨯===⨯⨯=11115111(6)2,(9)2,336218369P X P X ==⨯+⨯⨯===⨯⨯=111(12),6636P X ==⨯=所以,奖金总额的分布列如下表:()03691244318936E X =⨯+⨯+⨯+⨯+⨯=千元20.解:(122b a=∵离心率为2,∴2c a =,又222a b c =+,解得a =1c =,1b =, ∴椭圆C 的方程为2212x y += (2)(i )当直线MN 的斜率不存在时,直线PQ 的斜率为0,此时4MN =,PQ =,PMQN S =四边形(ii )当直线MN 的斜率存在时,设直线MN 的方程为(1)(0)y k x k =-≠,联立24y x =, 得2222(24)0(0)k x k x k -++=∆>, 设,M N 的横坐标分别为,M N x x ,则242M N x x k +=+,∴244M N MN x x p k =++=+, 由PQ MN ⊥可得直线PQ 的方程为1(1)(0)y x k k=--≠,联立椭圆C 的方程,消去y ,得222(2)4220(0)k x x k +-+-=∆>设,P Q 的横坐标为,P Q x x ,则24,2P Q x x k +=+22222P Q k x x k -=+∴PQ =22)2k k +=+2221)2(2)PMQNk S MN PQ k k +=⋅=+四边形,令2(1)(1)k t t +=>,则2(1)(1)PMQNS t t =-+四边形2221)11t t ==+>--,综上()minPMQNS =四边形21.解:(1)∵()ln()f x x m mx =+-,∴1'()f x m x m =-+ 当0m ≤时,∴1'()0f x m x m=->+, 即()f x 的单调递增区间为(),m -+∞,无减区间;当0m >时,∴1()1'()m x m m f x m x m x m-+-=-=++,由'()0f x =,得1(,)x m m m=-+∈-+∞, 1(,)x m m m∈--+时,'()0f x >, 1(,)x m m ∈-++∞时,'()0f x <, ∴0m >时,易知()f x 的单调递增区间为1(,)m m m --+, 单调递减区间为1(,)m m-++∞, (2)由(1)知()f x 的单调递增区间为1(,)m m m --+,单调递减区间为1(,)m m -++∞, 不妨设12m x x -<<,由条件知1122ln()ln()x m mx x m mx +=⎧⎨+=⎩,即1212mx mx x m e x m e⎧+=⎪⎨+=⎪⎩ 构造函数()mx g x ex =-,()mx g x e x =-与y m =图象两交点的横坐标为12,x x 由'()10mx g x me=-=可得ln 0m x m -=< 而2ln (1)m m m >>,∴ln (,)m m m-∈-+∞ 知()mx g x e x =-在区间ln (,)m m m --上单调递减,在区间ln (,)m m-+∞上单调递增, 可知12ln m m x x m--<<< 欲证120x x +<,只需证122ln m x x m +<,即证212ln ln (,)m m x x m m<-∈-+∞, 考虑到()g x 在ln (,)m m -+∞上递增,只需证212ln ()()m g x g x m-<- 由21()()g x g x =知,只需证112ln ()()m g x g x m-<- 令2ln ()()()m h x g x g x m -=--=2ln 2ln 2mx m mx m e x e m ----, 则'()h x 2ln 2()mx m m mx mem e --=---2ln ()222m mx mx e m e e -=+-≥220==,所以()h x 为增函数,又ln ()0m h m -=, 结合1ln m m x m --<<知1()0h x <,即成立112ln ()()m g x g x m-<-, 即120x x +<成立.22.解:(1)将(1,2M 及对应的参数3πϕ=,代入cos sin x a y b ϕϕ=⎧⎨=⎩,得1cos 3sin 23a b ππ⎧=⎪⎪=⎪⎩,即21a b =⎧⎨=⎩, 所以曲线1C 的方程为2cos sin x y ϕϕ=⎧⎨=⎩ϕ为参数,即,2214x y +=. 设圆2C 的半径为R ,由题意,圆2C 的极坐标方程为2cos R ρθ=.(或222()x R y R -+=) 将点(1,)3D π代入2cos R ρθ=,得12cos 3R π=,即1R =所以曲线2C 的极坐标方程为2cos ρθ=,即22(1)1x y -+=(2)设12(,),(,)2A B πρθρθ+在曲线1C 上, 所以222211cos sin 14ρθρθ+=,222222sin cos 14ρθρθ+=, 所以222222121111cos sin 4OA OB θθρρ⎛⎫+=+=+ ⎪⎝⎭22sin 5cos 44θθ⎛⎫++= ⎪⎝⎭ 23.解:(1)()34f x x x =-++∴()(4)f x f ≥,即349x x -++≥∴4349x x x ≤-⎧⎨---≥⎩①或43349x x x -<<⎧⎨-++≥⎩②或3349x x x ≥⎧⎨-++≥⎩③ 解不等式①:5x ≤-;②:无解;③:4x ≥,所以()(4)f x f ≥的解集为{5x x ≤-或}4x ≥(2)()()f x g x >即()34f x x x =-++的图象恒在()(3)g x k x =-,k R ∈图象的上方, 可以作出()34f x x x =-++21,47,4321,3x x x x x --≤-⎧⎪=-<<⎨⎪+≥⎩的图象,而()(3)g x k x =-,k R ∈图象为恒过定点(3,0)P ,且斜率k 变化的一条直线,作出函数()y f x =,()y g x =图象如图,其中2PB k =,可求:(4,7)A -∴1PA k =-,由图可知,要使得()f x 的图象恒在()g x 图象的上方,实数k 的取值范围为12k -<≤.。
2019届全国高三原创试卷(一)理科数学本试题卷共6页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|2,}x A y y x R ==∈,{|}B x y x R ==∈,则A B =( )A .{1}B .(0,)+∞C .(0,1)D .(0,1]2.若复数z 满足22zi z i +=-(i 为虚数单位),z 为z 的共轭复数,则|1|z +=( )A .2 C .33.在矩形ABCD 中,4AB =,3AD =,若向该矩形内随机投一点P ,那么使得ABP ∆与ADP ∆的面积都不小于2的概率为( )A .14 B .13 C .47 D . 494.已知函数()(1)()f x x ax b =-+为偶函数,且在(0,)+∞单调递减,则(3)0f x -<的解集为( )A .(2,4)B .(,2)(4,)-∞+∞ C.(1,1)- D .(,1)(1,)-∞-+∞5.已知双曲线22212x y a a -=-a 的值为( ) A .1 B .-2 C.1或-2 D .-16.等比数列的前n 项和,前2n 项和,前3n 项和分别为A ,B ,C ,则( ) A .A B C += B .2B AC = C.3A B C B +-= D .22()A B A B C +=+7.执行如图所示的程序框图,若输入0m =,2n =,输出的 1.75x =,则空白判断框内应填写的条件为( )A .||1m n -<?B .||0.5m n -<? C.||0.2m n -<? D .||0.1m n -<? 8.将函数()2sin(2)3f x x π=+图象上的每个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图象向左平移12π个单位得到函数()g x 图象,在()g x 图象的所有对称轴中,离原点最近的对称轴为( ) A .24x π=-B .4x π=C.524x π=D .12x π=9.在239(1)(1)(1)x x x ++++++的展开式中,含2x 项的系数是( )A .119B .120 C.121 D .72010. 我国古代数学名著《九章算术》记载:“刍甍者,下有袤有广,而上有袤无丈.刍,草也;薨,屋盖也.”翻译为:“底面有长有宽为矩形,顶部只有长没有宽为一条棱.刍甍字面意思为茅草屋顶.”如图,为刍甍的三视图,其中正视图为等腰梯形,侧视图为等腰三角形,则它的体积为( )A .1603 B .160 C.2563D .64 11.已知椭圆C :22143x y +=,直线l :4x =与x 轴交于点E ,过椭圆右焦点F 的直线与椭圆相交于A ,B 两点,点C 在直线l 上,则“BC x 轴”是“直线AC 过线段EF 中点”的( )A .充分不必要条件B .必要不充分条件 C.充要条件 D .既不充分也不必要条件 12.下列命题为真命题的个数是( )①ln32<;②ln π<15<;④3ln 2e <A .1 B .2 C.3 D .4二、填空题(每题5分,满分20分,将答案填在答题纸上)13.平面向量a 与b 的夹角为45︒,(1,1)a =-,||1b =,则|2|a b += .14.已知实数x ,y 满足约束条件2001x y x y k x -+≥⎧⎪++≥⎨⎪≤⎩,且2z x y =+的最小值为3,则常数k = .15.考虑函数xy e =与函数ln y x =的图像关系,计算:21ln e xdx =⎰.16.如图所示,在平面四边形ABCD 中,2AD =,4CD =,ABC ∆为正三角形,则BCD ∆面积的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 若数列{}n a 的前n 项和为n S ,首项10a >且22n n n S a a =+(*n N ∈).(1)求数列{}n a 的通项公式; (2)若0n a >(*n N ∈),令1(2)n n n b a a =+,求数列{}n b 的前n 项和n T .18. 如图,四边形ABCD 与BDEF 均为菱形,FA FC =,且60DAB DBF ∠=∠=︒. (1)求证:AC ⊥平面BDEF ;(2)求直线AD 与平面ABF 所成角的正弦值.19. 某市政府为了节约生活用电,计划在本市试行居民生活费定额管理,即确定一户居民月用电量标准a ,用电量不超过a 的部分按平价收费,超出a 的部分按议价收费.为此,政府调查了100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图所示.(1)根据频率分布直方图的数据,求直方图中x 的值并估计该市每户居民平均用电量μ的值; (2)用频率估计概率,利用(1)的结果,假设该市每户居民月平均用电量X 服从正态分布2(,)N μσ(i )估计该市居民月平均用电量介于240μ度之间的概率;(ii )利用(i )的结论,从该市所有居民中随机抽取3户,记月平均用电量介于240μ度之间的户数为Y ,求Y 的分布列及数学期望()E Y .20. 如图,圆O :224x y +=,(2,0)A ,(2,0)B -,D 为圆O 上任意一点,过D 作圆O 的切线分别交直线2x =和2x =-于E ,F 两点,连AF ,BE 交于点G ,若点G 形成的轨迹为曲线C .(1)记AF ,BE 斜率分别为1k ,2k ,求1k ,2k 的值并求曲线C 的方程;(2)设直线l :y x m =+(0m ≠)与曲线C 有两个不同的交点P ,Q ,与直线2x =交于点S ,与直线1y =-交于点T ,求OPQ ∆的面积与OST ∆面积的比值λ的最大值及取得最大值时m 的值.21. 已知函数2()(1)1xf x ax e =+-. (1)当0a ≥时,讨论函数()f x 的单调性; (2)求函数()f x 在区间[0,1]上零点的个数.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程已知直线l的参数方程为2x y a ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数方程,a R ∈),曲线C 的极坐标方程为2sin 4cos ρθθ=.(1)分别将直线l 的参数方程和曲线C 的极坐标方程化为直角坐标方程; (2)若直线l 经过点(0,1),求直线l 被曲线C 截得线段的长. 23.选修4-5:不等式选讲已知函数()|24||1|f x x x =-++,x R ∈ (1)解不等式()9f x ≤;(2)若方程2()f x x a =-+在区间[0,2]有解,求实数a 的取值范围.试卷答案一、选择题1-5:DADBC 6-10:DBABA 11、12:AC 二、填空题21e + 16.4+三、解答题17.(1)当1n =时,21112S a a =+,则11a = 当2n ≥时,2211122n n n n n n n a a a aa S S ---++=-=-, 即111()(1)0n n n n n n a a a a a a ---+--=⇒=-或11n n a a -=+ ∴1(1)n n a -=-或n a n = (2)由0n a >,∴n a n =,1111()(2)22n b n n n n ==-++∴1111111111323[(1)()()][1]23242221242(1)(2)n n T n n n n n n +=-+-++-=+--=-+++++ 18.(1)设AC 与BD 相交于点O ,连接FO ,∵四边形ABCD 为菱形,∴AC BD ⊥,且O 为AC 中点, ∵FA FC =,∴AC FO ⊥, 又FOBD O =,∴AC ⊥平面BDEF .(2)连接DF ,∵四边形BDEF 为菱形,且60DBF ∠=︒,∴DBF ∆为等边三角形, ∵O 为BD 中点,∴FO BD ⊥,又AC FO ⊥,∴FO ⊥平面ABCD . ∵OA ,OB ,OF 两两垂直,∴建立空间直角坐标系O xyz -,如图所示,设2AB =,∵四边形ABCD 为菱形,60DAB ∠=︒,∴2BD =,AC =∵DBF ∆为等边三角形,∴OF =.∴A ,(0,1,0)B ,(0,1,0)D -,F ,∴(1,0)AD =-,(AF =,(,0)AB =.设平面ABF 的法向量为_(,,)n x y z =,则3030AF n x AB n x y ⎧=-=⎪⎨=-+=⎪⎩,取1x =,得(1,3,1)n =.设直线AD 与平面ABF 所成角为θ, 则||15sin |cos ,|5||||AD n AD n AD n θ=<>==.19.(1)由(0.0020.00950.0110.01250.0050.0025)201x ++++++⨯=得0.0075x =1700.041900.192100.22+2300.25+2500.152700.12900.05225.6μ=⨯+⨯+⨯⨯⨯+⨯+⨯=(2)(i )11(225.6240)[12(240)]25P X P X <<=->= (ii )因为13,5YB ⎛⎫ ⎪⎝⎭,∴3314()55iii P Y i C -⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭,1,2,3i =. 所以Y 的分布列为所以()355E Y =⨯=20.(1)设00(,)D x y (00y ≠),易知过D 点的切线方程为004x x y y +=,其中22004x y +=则0042(2,)x E y -,0042(2,)x F y +-,∴002200001222004242164414416164x x y y x y k k y y -+--====---设(,)G x y ,由1214k k =-1224y y x x ⇒=--+2214x y ⇒+=(0y ≠) 故曲线C 的方程为2214x y +=(0y ≠) (2)22225844044y x m x mx m x y =+⎧⇒++-=⎨+=⎩, 设11(,)P x y ,22(,)Q x y ,则1285x x m +=-,212445m x x -=,由226420(44)0m m ∆=-->m ⇒<0m ≠,2m ≠±|PQ ==∵与直线2x =交于点S ,与直线1y =-交于点T ∴(2,2)S m +,(1,1)T m --- ∴||)ST m ==+∴||||OPQ OSTS PQ S ST λ∆∆===3mt +=,(3t ∈且1,3,5t ≠则λ=== 当134t =,即43t =,53m =-时,λ21.(1)∵2'()(21)xf x ax ax e =++当0a =时,'()0xf x e =≥,此时()f x 在R 单调递增;当0a >时,244a a ∆=-①当01a <≤时,0∆≤,2210ax ax ++≥恒成立, ∴'()0f x ≥,此时()f x 在R 单调递增;②当1a >时,令1'()01f x x=⇒=-21x =-+即()f x 在(,1-∞-和(1)-+∞上单调递增;在(11--上单调递减; 综上:当01a ≤≤时,()f x 在R 单调递增;当1a >时,()f x 在(,1-∞--和(1)-+∞上单调递增;在(11--上单调递减; (2)由(1)知,当01a ≤≤时,()f x 在[0,1]单调递增,(0)0f =,此时()f x 在区间[0,1]上有一个零点;当1a >时,10-<且10-<,∴()f x 在[0,1]单调递增;(0)0f =,此时()f x 在区间[0,1]上有一个零点;当0a <时,令'()010f x x =⇒=->(负值舍去)①当11-即103a -≤<时,()f x 在[0,1]单调递增,(0)0f =,此时()f x 在区间[0,1]上有一个零点;②当11-即13a <-时,若(1)0f >即1113a e -<<-时,()f x 在[0,1-单调递增,在[1-上单调递减,(0)0f =,此时()f x 在区间[0,1]上有一个零点;若(1)0f ≤即11a e ≤-时,()f x在[0,1-单调递增,在[1-上单调递减, (0)0f =,此时()f x 在区间[0,1]上有零点0x =和在区间[1-有一个零点共两个零点; 综上:当11a e≤-时,()f x 在区间[0,1]上有2个零点; 11a e>-时,()f x 在区间[0,1]上有1个零点. 22.(1)显然0y x a x y a =-+⇒+-= 由24cos sin θρθ=可得22sin 4cos ρθρθ=,即24y x =, (2)∵直线l 22x y a ⎧=-⎪⎪⎨⎪=+⎪⎩过(0,1),则1a =将直线l 的参数方程代入24y x =得220t ++=,12122t t t t ⎧+=-⎪⎨=⎪⎩由直线参数方程的几何意义可知,12||||8AB t t =-===.23.(1)()9f x ≤可化为|24||1|9x x -++≤2339x x >⎧⎨-≤⎩或1259x x -≤≤⎧⎨-≤⎩或1339x x <-⎧⎨-+≤⎩; 24x <≤或12x -≤≤或21x -≤<-;不等式的解集为[2,4]-;(2)由题意:22()5f x x a a x x =-+⇔=-+,[0,2]x ∈故方程2()f x x a =-+在区间[0,2]有解⇔函数y a =和函数25y x x =-+图象在区间[0,2]上有交点∵当[0,2]x ∈时,2195[,7]4y x x =-+∈ ∴19[,7]4a ∈。