认识三角形知识点
- 格式:doc
- 大小:838.62 KB
- 文档页数:7
图形的初步认识:三角形考点一、三角形1、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
2、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。
推论:①直角三角形的两个锐角互余。
②三角形的一个外角等于和它不相邻的来两个内角的和。
③三角形的一个外角大于任何一个和它不相邻的内角。
注:在同一个三角形中:等角平等边;等边平等角;大角对大边;大边对大角。
4、三角形的面积三角形的面积 = 1×底×高2考点二、全等三角形1、全等三角形的观点能够完整重合的两个三角形叫做全等三角形。
2、三角形全等的判断三角形全等的判断定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“ SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“ SSS”)。
(4)角角边定理:有两角和一边对应相等的两个三角形全等(可简写成“角角边”或“ AAS”)。
直角三角形全等的判断:关于特别的直角三角形,判断它们全等时,还有 HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“ HL”)3、全等变换只改变图形的地点,不改变其形状大小的图形变换叫做全等变换。
全等变换包含一下三种:(1)平移变换:把图形沿某条直线平行挪动的变换叫做平移变换。
(2)对称变换:将图形沿某直线翻折 180°,这类变换叫做对称变换。
(3)旋转变换:将图形绕某点旋转必定的角度到另一个地点,这类变换叫做旋转变换。
考点三、等腰三角形1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边平等角)推论 1:等腰三角形顶角均分线均分底边并且垂直于底边。
三角形复习1.三角形的定义:由不在同一亶线上的三条线段首尾顺次相接组成的图形叫做三角形.三角形有三条边,三个内角,三个顶点•组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内 角;相邻两边的公共端点是三角形的顶点,三角形ABC 用符号表示为△ ABC,三角形ABC 的边AB 可用边AB 所对的 角C 的小写字母C 表示,AC 叮用b 表示,BC 町用a 表示.注意:(1)三条线段要不在同一直线上,且首尾顺次相接:(2) 三角形是一个封闭的图形:(3) A ABC 是三角形ABC 的符号标记,单独的△没有意义•2.三角形的分类:(1)按边分类: (2)按角分类:I 等边三角形不等边三勿形直角三欽形锐角三角形钝角三角形3. 三角形的主要线段的定义:(1)三角形的中线 三角形中,连结一个顶点和它对边中点的线段. 表示法J 是厶ABC 的BC 匕的中线.-DC 巧 BC.注意:①三角形的中线是线段:② 三角形三条中线全在三角形的内部: ③ 三角形三条中线交于三角形内部一点: ④ 中线把三角形分成两个而积相等的三角形.<2)三角形的角平分线 三角形一个内角的平分线匂它的对边相交,这个角顶点与交点之间的线段 表示法J 是AABC 的ZBAC 的平分线.等腰三角形底边和腰不相等的等腰三角形三角形AD C注意:①三角形的角平分线是线段:② 三角形三条角平分线全在三角形的内部; ③ 三角形三条角平分线交于三角形内部一点: ④ 用角器画三角形的角平分线.(3) 三角形的高 从三角形的一个顶点向它的对边所在的宜线作垂线,顶点和垂足之间的线段.表示法J 是A ABC 的BC 上的高线. 丄BC 于D.3. Z ADB=Z ADC=90\注意:①三角形的高是线段:② 锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外; ③ 三角形三条高所在直线交于一点•4. 三角形的主要线段的表示法: 三角形的角平分线的表示法:如图1.根据具体情况使用以下任意一种方式表示:① AD 是ABC 的角平分线: ② AD 平分BAC,交BC 于D :③ 如果人D 是ABC 的角平分线,那么DAU 丄BAC.2⑵三角形的中线表示法:根据具体情况使用以下任意一种方式表示: 人BC 的中线:人BC 中BC 边上的中线:(3) 三角线的高的表不法J如图2,根据具体情况,使用以下任意一种方式表示: ① AM 是A8C 的高:② AM 是A8C 中BC 边上的高:③ -◎ 如果AM 是 ABC 中BC 边上高,那么AM fiC,垂足是E; ⑤如果AM 是 人BC 中BC 边上的高,那么 &M8=人MU90 .5. 在画三角形的三条角平分线,三条中线,三条高时应注意:(1) 如图3,三角形三条角平分线交于一点,交点都在三角形内部. (2) 如图4.三角形的三条中线交点一点,交点都在三角形内部.如图567,三角形的三条高交于一点,锐角三角形的三条高的交点在三角形内部, 钝角三角形的三条高的交点在三角形的外部•直角三角形的三条高的交点在直角三角如图1, ①Af 是③如果处是赵的中纯那么严 AD C CB图156•三角形的三边关系三角形的任意两边之和大于第三边;任意两边之差小于第三边. 注意:(1)三边关系的依据是:两点之间线段是短;(2)用成三角形的条件是任意两边之和大于第三边.7.三角形的角与角之间的关系: (:L)三角形三个内角的和等于180 ;(2) 三角形的一个外角等于和它不相邻的两个内角的和: (3) 三角形的一个外角大于任何一个和它不相邻的内角. (4)直角三角形的两个锐角互余.三角形的内角和;4^理宦理:三角形的内角和等于180。
第四章三角形一、认识三角形●三角形的有关概念1、三角形的概念:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫作三角形。
2、三角形的边:组成三角形的线段叫作三角形的边,可以用两个大写英文字母表示,也可以用一个小写英文字母表示。
3、三角形的顶点:相邻两边的公共端点叫作三角形的顶点。
4、三角形的角:相邻两边组成的角叫作三角形的内角,简称三角形的角。
5、角与边的对应关系:大边对大角。
6、三角形的表示:用符号“△”表示,以A,B,C为顶点的三角形记作“△ABC”,读作“三角形ABC”。
●三角形的分类1、按内角的大小分类锐角三角形(三个角都是锐角)直角三角形(最大内角为直角),互相垂直的两条边叫作直角边,最长的边叫作斜边,直角三角形ABC可以用符号“Rt△ABC”表示钝角三角形(最大内角为钝角)注:在一个三角形中,最多有三个锐角,最少有两个锐角;最多有一个直角,最多有一个钝角。
2、按边的相等关系分类等腰三角形:有两条边相等的三角形叫作等腰三角形,其中相等的两条边叫作腰,另一边叫作底边,两腰的夹角叫作顶角,腰和底边的夹角叫作底角。
等边三角形:三条边都相等的三角形叫作等边三角形,即腰和底边相等的等腰三角形叫作等边三角形,也叫正三角形。
不等边三角形:三边都不相等的三角形。
注:●三角形的三边关系1、三角形的两边的和大于第三边,三角形两边的差小于第三边。
(证明可以依据两点之间线段最短,大角对大边,不等式性质)2、三边关系的运用(1)判断以已知的三条线段为边能否构成三角形(2)确定三角形的第三边长(或周长)的取值范围(3)解决线段的不等关系问题(如证明几何不等式)●三角形的高1、三角形的高的概念:从三角形的一个顶点向它所对的边所在直线画垂线,顶点和垂足所连线段叫做三角形的高。
2、三角形高的几何语言表达形式AD是△ABC的边BC上的高,或AD是△ABC的高,或AD垂直BC与点D,或∠BDA=∠CDA=90°3、三角形三条高的位置锐角三角形三条高都在三角形的内部。
三角形的初步认识【概念】不在同一条直线.......上的三条线段首尾......顺次..相接..所组成的图形。
用符号“△”表示。
三边:AB 、AC 、BC 。
有时也用a 、b 、c 表示,顶点A 所对应的边BC 用a 表示,顶点B 所对应的边AC 用b 表示,顶点C 所对应的边AB 用c 表示。
三个内角:∠A 、∠B 、∠C 。
【分类】三角形{三边都不相等等腰三角形{底边和腰不相等等边三角形 三角形{直角三角形斜三角形{锐角三角形钝角三角形【基本性质】1、三角形内角和为180°。
2、三边关系 文字语言数学语言理论依据应用两边之和大于第三边在△ABC 中,a+b>c ;b+c>a ;a+c>b 。
两点之间,线段最短。
1、判断是否能组成三角形。
2、已知两边,求第三边取值范围。
两边之差小于第三边在△ABC 中,|a −b |<c ;|b −c |<a ;|a −c |<b 。
3、三角形的稳定性:当三条边长确定时,三角形的形状、大小完全被确定。
4、三角形外角:由三角形一条边的延长线和另一条相邻的边组成的角。
三角形的一个外角等于不相邻的两个内角和。
【重要的线段】定义角平分线 一个内角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段。
中线 连接三角形的一个顶点及其对边中点的线段。
高线从一个顶点向它的对边所在的直线画垂线,顶点和垂足之间的线段。
ABabcC“三线”交点中垂线:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线,简称“中垂线”。
性质定理:线段垂直平分线上的点到线段两端的距离相等。
角平分线:性质:角平分线上的点到角两边的距离相等。
判定:角的内部到角的两边的距离相等的点在角平分线上。
【全等三角形】1、定义:能够重合的两个三角形叫做全等三角形。
符号:≌(全等于)2、性质:对应边相等,对应角相等。
3、判定:(1)边边边(SSS):三边对应相等的两个三角形全等。
认识三角形知识点总结一、定义与分类三角形是由同一平面内不在同一直线上的三条线段“首尾”顺次连接所组成的封闭图形。
按照不同的标准,三角形可以进行多种分类:按角分:锐角三角形:三个内角都小于90度。
直角三角形:有一个内角等于90度。
钝角三角形:有一个内角大于90度。
按边分:不等边三角形:三条边都不相等。
等腰三角形:两边相等,相等的两边称为腰,另一边称为底边。
等腰三角形进一步又可分为腰与底不等的等腰三角形和等边三角形(三边都相等)。
等边三角形:三边相等,每个内角都是60度。
二、性质与定理稳定性:三角形的形状是固定的,这一性质被称为三角形的稳定性。
内角和定理:三角形的三个内角和等于180度。
这是三角形的一个重要性质,由此可以推导出直角三角形的两个锐角互余等推论。
边长关系:对于任意三角形,任意两边之和大于第三边,任意两边之差小于第三边。
高、中线与角平分线:高:从三角形的一个顶点到它的对边所作的垂线段。
中线:连接三角形的一个顶点和它的对边中点的线段。
角平分线:三角形的一个内角的平分线与这个角的对边相交,连接这个角的顶点和交点的线段。
等腰三角形的特殊性质:底边上的垂直平分线到两条腰的距离相等;底边上的中线、高和顶角平分线三线合一;两底角的平分线相等。
三、面积与周长计算三角形的面积和周长可以通过不同的公式进行计算,具体取决于三角形的类型:普通三角形:面积 = 底边长× 高÷ 2;周长 = 边1长 + 边2长 + 边3长。
直角三角形:面积 = 直角边1长× 直角边2长÷ 2;周长 = 直角边1长 + 直角边2长 + 斜边长。
等腰三角形:面积= 底边长× 高÷ 2(其中高是顶点到底边的垂直距离);周长 = 2 × 等边长 + 底边长。
等边三角形:面积 = (边长)^2 × √3 ÷ 4;周长= 3 × 边长。
综上所述,三角形是一个具有丰富性质和广泛应用的基本概念,掌握其知识点对于理解和解决相关问题具有重要意义。
第七章三角形【知识要点】一.认识三角形1.关于三角形的概念及其按角的分类定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类:①三角形按内角的大小分为三类:锐角三角形、直角三角形、钝角三角形。
②三角形按边分为两类:等腰三角形和不等边三角形。
2.关于三角形三条边的关系(判断三条线段能否构成三角形的方法、比较线段的长短)根据公理“两点之间,线段最短”可得:三角形任意两边之和大于第三边。
三角形任意两边之差小于第三边。
3.与三角形有关的线段..:三角形的角平分线、中线和高三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段;三角形的中线:连接三角形的一个顶点与对边中点的线段,三角形任意一条中线将三角形分成面积相等的两个部分;三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高。
注意:①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。
但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的内部,另两条高在三角形的外部。
④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。
(三角形的三条高(或三条高所在的直线)交与一点,锐角三角形高的交点在三角形的内部,直角三角形高的交点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部。
)4.三角形的内角与外角(1)三角形的内角和:180°引申:①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。
(2)三角形的外角和:360°(3)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;——常用来求角度②三角形的一个外角大于任何一个与它不相邻的内角。
第五单元《三角形》知识点归纳总结三角形的认识及特性1、三角形的定义:由3条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。
2、三角形的特点:三角形有3条边、3个角和3个顶点。
3、三角形的底和高:从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。
例如:从三角形的一个顶点到它的对边作一条垂线,三角形只有3条高。
重点:三角形高的画法。
4、为了表达方便,用字母A、B、C分别表示三角形的三个顶点,上面的三角形可以表示成三角形ABC。
5、三角形的特性:三角形具有稳定性。
如:自行车的三角架,电线杆上的三角架。
6、两点间的距离:两点间所有连线中线段最短,这条线段的长度叫做两点间的距离。
7、三角形三条边的关系:三角形任意两边的和大于第三边。
8、判断3条线段能否围城三角形,只要把较短的两条线段相加的和与最长的线段比较,大于最长的线段就能围成三角形,反之则不能。
☆☆☆三角形应注意:如果一个三角形的两条边分别是4厘米和6厘米,那么第三条边的范围是(6-4〈第三条边〈6+4 )即2〈第三条边〈10 也就是3、4、5、6、7、8、9都可以围成三角形,如果一个等腰三角形的两条边分别是2厘米和6厘米,那么第三条边要么是2厘米,要么是6厘米(因为等腰三角形必须有两条边相等)但是如果是2厘米,那么就会出现2、2、6,它根本就不能围成三角形,所以这道题满足答案的只能是6厘米。
(也就是2、6、6)三角形的分类1、三角形按角分为:锐角三角形、直角三角形和钝角三角形。
三个角都是锐角的三角形叫做锐角三角形;有一个角是直角的三角形叫做直角三角形;有一个角是钝角的三角形叫做钝角三角形。
2、直角三角形的特性:在直角三角形中,互相垂直的两条边叫做直角边,直角所对的边叫做斜边,斜边大于任意一条直角边。
3、三角形按边分为:不等边三角形和等腰三角形(等腰三角形包括等边三角形)不等边三角形:3条边都不相等的三角形叫做不等边三角形。
三角形的认识与计算知识点总结三角形作为几何学中的重要概念之一,是我们学习数学时经常遇到的概念。
本篇文章将对三角形的认识与计算知识点进行总结,以帮助读者更好地理解与掌握相关知识。
一、三角形的定义与分类三角形是由三条线段组成的图形,其特点是三条线段的端点两两相连。
根据三角形的边长和角度的不同,可以将三角形分为以下几类:1. 根据边长分类:- 等边三角形:三条边的长度相等。
- 等腰三角形:两条边的长度相等。
- 普通三角形:三条边的长度均不相等。
2. 根据角度分类:- 直角三角形:其中一个角为直角(90度)。
- 钝角三角形:其中一个角大于直角。
- 锐角三角形:三个角均小于直角。
二、三角形的性质1. 内角和性质:任意三角形的内角和为180度。
假设一三角形的三个内角分别为A、B、C,则有 A + B + C = 180度。
2. 直角三角形的性质:直角三角形有以下特点:- 两条边的平方和等于斜边的平方,即勾股定理。
- 两个锐角的和等于90度。
3. 等腰三角形的性质:等腰三角形有以下特点:- 两个底角相等。
- 等腰三角形的高和底边之间的关系。
4. 等边三角形的性质:等边三角形有以下特点:- 三个内角均为60度。
- 三条边的长度均相等。
三、三角形的计算知识点1. 三角形面积计算:- 根据底边和高的关系计算面积。
- 根据两条边和夹角的关系计算面积。
- 根据海伦公式计算任意三角形的面积。
2. 三角形周长计算:- 根据三条边的长度之和计算周长。
3. 特殊角度的三角函数计算:- sin、cos、tan函数的使用。
4. 利用三角相似计算未知边长:- 根据已知三角形和未知三角形的相似性,利用比例关系计算未知边长。
四、例题解析与应用1. 解析几何题目解析:根据已知条件使用三角形的性质解答几何题目。
2. 实际应用题解析:将三角形的知识应用于实际生活中的问题,如建筑工程、地理测量等。
总结:本文对三角形的认识与计算知识点进行了总结与归纳,从定义与分类、性质、计算知识点、例题解析与应用等方面进行了说明。
第10讲认识三角形与图形全等目标导航知识精讲知识点01三角形(1)三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.组成三角形的线段叫做三角形的边.相邻两边的公共端点叫做三角形的顶点.相邻两边组成的角叫做三角形的内角,简称三角形的角.(2)按边的相等关系分类:不等边三角形和等腰三角形(底和腰不等的等腰三角形、底和腰相等的等腰三角形即等边三角形).(3)三角形的主要线段:角平分线、中线、高.(4)三角形具有稳定性.【知识拓展1】(2021秋•阳新县期末)如图表示的是三角形的分类,则正确的表示是()A.M表示三边均不相等的三角形,N表示等腰三角形,P表示等边三角形B.M表示三边均不相等的三角形,N表示等边三角形,P表示等腰三角形C.M表示等腰三角形,N表示等边三角形,P表示三边均不相等的三角形D.M表示等边三角形,N表示等腰三角形,P表示三边均不相等的三角形【即学即练1】(2021秋•静安区期末)下列说法错误的是()A.任意一个直角三角形都可以被分割成两个等腰三角形B.任意一个等腰三角形都可以被分割成两个等腰三角形C.任意一个直角三角形都可以被分割成两个直角三角形D.任意一个等腰三角形都可以被分割成两个直角三角形【即学即练2】(2021秋•双牌县期末)下面是小强用三根火柴组成的图形,其中符合三角形概念的是()A.B.C.D.知识点02三角形的角平分线、中线和高(1)从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.(2)三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.(3)三角形一边的中点与此边所对顶点的连线叫做三角形的中线.(4)三角形有三条中线,有三条高线,有三条角平分线,它们都是线段.(5)锐角三角形的三条高在三角形内部,相交于三角形内一点,直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.【知识拓展2】(2021秋•两江新区期末)如图,在△ABC中,AB=5,AC=3,AD为BC边上的中线,则△ABD与△ACD的周长之差为()A.2B.3C.4D.5【即学即练1】(2021秋•沙坪坝区校级期末)数学课上,同学们在作△ABC中AC边上的高时,共画出下列四种图形,其中正确的是()A.B.C.D.【即学即练2】(2021秋•思明区校级期末)如图,AD,BE,CF是△ABC的三条中线,则下列结论正确的是()A.BC=2AD B.AB=2AF C.AD=CD D.BE=CF知识点03三角形的面积(1)三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.(2)三角形的中线将三角形分成面积相等的两部分.【知识拓展3】(2021秋•正阳县期末)如图,在△ABC中,已知点D、E、F分别是BC、AD、CE的中点,且△ABC的面积为24,则△BEF的面积是()A.2B.4C.6D.8【即学即练1】(2021秋•同安区期末)如图,S△ABD=S△ACD,已知AB=8cm,AC=5cm,那么△ABD和△ACD的周长差是cm.【即学即练2】(2021秋•嘉鱼县期末)如图,在△ABC中,AD,AE分别是边BC上的高和中线,AD=2cm,△ACE的面积是3cm2,则BC=cm.知识点04三角形的重心(1)三角形的重心是三角形三边中线的交点.(2)重心的性质:①重心到顶点的距离与重心到对边中点的距离之比为2:1.②重心和三角形3个顶点组成的3个三角形面积相等.③重心到三角形3个顶点距离的和最小.(等边三角形)【知识拓展4】(2021秋•泉州期末)如图,在Rt△ABC中,∠C=90°,点G是△ABC的重心,GE⊥AC,垂足为E,若GE=3,则线段CB的长度为()A.10B.9C.6D.【即学即练1】(2021秋•莱州市期末)如图,点O是△ABC的重心,连接AO并延长交BC于点D.若BC =6,则CD=.【即学即练2】(2021秋•广丰区期末)三角形的中线把三角形分成了面积相等的两部分,而三条中线交于一点,这一点叫此三角形的心.知识点05三角形三边关系(1)三角形三边关系定理:三角形两边之和大于第三边.(2)在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.(3)三角形的两边差小于第三边.(4)在涉及三角形的边长或周长的计算时,注意最后要用三边关系去检验,这是一个隐藏的定时炸弹,容易忽略.【知识拓展5】(2021秋•樊城区期末)若线段AP,BP,AB满足AP+BP>AB,则关于P点的位置,下列说法正确的是()A.P点一定在直线AB上B.P点一定在直线AB外C.P点一定在线段AB上D.P点一定在线段AB外【即学即练1】(2021秋•宜春期末)下列长度的三条线段能组成三角形的是()A.3,4,8B.5,6,11C.5,6,10D.4,5,9【即学即练2】(2021秋•岑溪市期末)已知一个三角形有两边长分别为3和9,则它的第三边长可能是()A.4B.5C.6D.7知识点06三角形内角和定理(1)三角形内角的概念:三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°.(2)三角形内角和定理:三角形内角和是180°.(3)三角形内角和定理的证明证明方法,不唯一,但其思路都是设法将三角形的三个内角移到一起,组合成一个平角.在转化中借助平行线.(4)三角形内角和定理的应用主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.【知识拓展6】(2021秋•大余县期末)如图,在△ABC中,AD是BC边上的高,AE,BF分别是∠BAC,∠ABC的平分线.∠BAC=50°,∠ABC=60°.则∠DAE+∠ACD等于()A.75°B.80°C.85°D.90°【即学即练1】(2021秋•铅山县期末)如图,BD平分∠ABC,CD平分∠ACD,若∠A=80°,则∠D的度数为()A.100°B.120°C.130°D.140°【即学即练2】(2021秋•连江县期末)如图,已知△ABC中,BD,CE分别是△ABC的角平分线,BD与CE交于点O,如果设∠A=n°(0<n<180),那么∠COD的度数是()A.45°+n°B.90°C.90°﹣D.180°﹣n°知识点07全等图形(1)全等形的概念能够完全重合的两个图形叫做全等形.(2)全等三角形能够完全重合的两个三角形叫做全等三角形.(3)三角形全等的符号“全等”用符号“≌”表示.注意:在记两个三角形全等时,通常把对应顶点写在对应位置上.(4)对应顶点、对应边、对应角把两个全等三角形重合到一起,重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角.【知识拓展1】(2021秋•潜江期末)下列说法正确的是()A.两个面积相等的图形一定是全等图形B.两个全等图形形状一定相同C.两个周长相等的图形一定是全等图形D.两个正三角形一定是全等图形【即学即练1】图中所示的网格是正方形网格,则下列关系正确的是()A.∠1>∠2B.∠1<∠2C.∠1+∠2=90°D.∠1+∠2=180°【即学即练2】(2021秋•辛集市期末)观察下面的6组图形,其中是全等图形的有()A.3组B.4组C.5组D.6组知识点08直角三角形的性质(1)有一个角为90°的三角形,叫做直角三角形.(2)直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:性质1:直角三角形两直角边的平方和等于斜边的平方(勾股定理).性质2:在直角三角形中,两个锐角互余.性质3:在直角三角形中,斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点)性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积.性质5:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.【知识拓展8】(2021秋•富川县期末)在一个直角三角形中,一个锐角等于56°,则另一个锐角的度数是()A.26°B.34°C.36°D.44°【即学即练1】(2021秋•越城区期末)如图,在△ABC中,点P在边BC上(不与点B,点C重合),()A.若∠BAC=90°,∠BAP=∠B,则AC=PCB.若∠BAC=90°,∠BAP=∠C,则AP⊥BCC.若AP⊥BC,PB=PC,则∠BAC=90°D.若PB=PC,∠BAP=∠CAP,则∠BAC=90°【即学即练2】(2021秋•嘉鱼县期末)在△ABC中,∠A=90°,∠B=40°,则∠C =度.能力拓展【考点1】:认识三角形例题1.(2021·石家庄市第四十一中学七年级期末)若三角形的两边长是2cm 和5cm,第三边长的数值是奇数,则这个三角形的周长是()A.9cm B.12cm C.10cm D.14cm【变式1】(2021·山东烟台市·七年级期末)用直角三角板作ABC的高,下列作法正确的是()A.B.C.D.【变式2】(2021·浙江温州市·七年级期末)如图,三角形ABC 中,AC BC ⊥,CD AB ⊥于点D ,则下列线段关系成立的是( )A .AD BC AB +< B .BD AC AB +< C .2BC AC CD +>D . AC BC AB +<例题2.(2020·辽宁锦州市·七年级期末)已知三角形ABC ,且AB =3厘米,BC =2厘米,A 、C 两点间的距离为x 厘米,那么x 的取值范围是________.【变式1】(2021·广西南宁市·七年级期末)现有一张边长为1的正方形纸片,第一次沿着线段1AP 剪开,留下三角形1ABP ;第二次取1BP 的中点2P ,再沿着2AP 剪开,留下三角形2ABP ;第三次取2BP 的中点3P ,再沿着3AP 剪开,留下三角形3ABP ;…,如此进行下去,在第n 次后,被剪去图形的面积之和是________.【变式2】(2020·浙江杭州市·七年级期末)已知直线//m n ,将一块含有45︒角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 相交于点D .若124︒∠=,则2∠的度数为_______.例3.(2021·兰州市第三十六中学七年级期末)把两个形状相同,大小不同的三角板如图所示拼在一起,已知B DAC x ∠=∠=,2C BAD x ∠=∠=. (1)求C ∠的度数;(2)如图,如果ACF BCF ∠=∠,试比较AEC ∠和BFC ∠的大小.【变式1】(2021·浙江台州市·七年级期末)如图,在平面内有三个点、、A B C(1)根据下列语句画图: ①连接AB ; ②作直线BC ;③作射线AC ,在AC 的延长线上取一点D 使得CD CB =,连接BD ; (2)比较,,AB BD AB BC CD AD +++的大小关系.【变式2】(2021·四川绵阳市·东辰国际学校七年级期末)如图,两个形状、大小完全相同的含有30°、60°的直角三角板如图①放置,PA、PB与直线MN重合,且三角板PAC、三角板PBD均可绕点P逆时针旋转(1)试说明∠DPC=90°;(2)如图②,若三角板PBD保持不动,三角板PAC绕点P逆时针旋转旋转一定角度,PF平分∠APD,PE 平分∠CPD,求∠EPF;(3)如图③.在图①基础上,若三角板PAC开始绕点P逆时针旋转,转速为5°/秒,同时三角板PBD绕点P逆时针旋转,转速为1°/秒,(当PA转到与PM重合时,两三角板都停止转动),在旋转过程中,PC、PB、PD三条射线中,当其中一条射线平分另两条射线的夹角时,请求出旋转的时间.【考点2】:图形的全等例题1.(2001·浙江省杭州第十中学七年级期末)如图所示,某同学将一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①②去【变式1】(2020·四川成都市·七年级期末)如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=()A .90°B .120°C .135°D .150°【变式2】(2020·山东泰安市·七年级期末)下列说法正确的是( )A .全等三角形是指形状相同的两个三角形B .全等三角形是指面积相等的两个三角形C .两个等边三角形是全等三角形D .全等三角形是指两个能完全重合的三角形例题2.(2021·湖北黄石市·七年级期末)如图,是一个33⨯的正方形网格,则∠1+∠2+∠3+∠4=________.【变式1】(2020·重庆七年级期末)如图,图中由实线围成的图形与①是全等形的有______.(填番号)【变式2】(2020·山西临汾市·七年级期末)如图,ABC ADE ≅,如果5,7,6AB cm BC cm AC cm ===,那么DE 的长是______.例题3.(2020·江苏苏州市·七年级期末)如图,用三种不同的方法沿网格线把正方形分割成4个全等的图形(三种方法得到的图形相互间不全等).【变式1】(2018·全国七年级期末)如图,在△ABC和△DBC中,∠ACB=∠DBC=90°,E是BC的中点,DE⊥AB,垂足为点F,且AB=DE.(1)求证:BD=BC;(2)若BD=6cm,求AC的长.【变式2】(2019·山东青岛市·七年级期末)图①,图②都是由一个正方形和一个等腰直角三角形组成的图形.(1)用实线把图①分割成六个全等图形;(2)用实线把图②分割成四个全等图形.分层提分题组A 基础过关练一.选择题(共6小题)1.(2021秋•思明区校级期末)如图,CM是△ABC的中线,AM=4cm,则BM的长为()A.3cm B.4cm C.5cm D.6cm2.(2021秋•东城区校级期末)如图,AD是△ABC中∠BAC的角平分线,DE⊥AC于点E,DE=4,AC=6,那么△ACD的面积是()A.10B.12C.16D.243.(2021秋•玉林期末)下列长度的三条线段能构成三角形的是()A.3,4,8B.5,6,11C.5,5,10D.3,7,94.(2021秋•全椒县期末)如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠BAC=50°,∠ABC=60°,则∠DAE=()A.5°B.4°C.8°D.6°5.(2021秋•无为市期末)如图,已知方格纸中是4个相同的正方形,则∠1+∠2=()A.60°B.90°C.100°D.120°6.(2021秋•望城区期末)在一个直角三角形中,有一个锐角等于25°,则另一个锐角的度数是()A.25°B.55°C.65°D.75°二.填空题(共8小题)7.(2021秋•岚皋县校级月考)图中以AE为边的三角形共有个.8.(2021秋•天河区期末)在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多3cm,已知AB=4cm,则AC的长为cm.9.(2021秋•定海区校级月考)如图,△ABC中,D是BC边上的一点(不与B,C重合),点E,F是线段AD的三等分点,记△BDF的面积为S1,△ACE的面积为S2,若S1+S2=3,则△ABC的面积为.10.(2021秋•港南区期中)如图,BD、CE是△ABC的高,若AB=4,AC=6,CE=5,则BD的长度是.11.(2021秋•广丰区期末)三角形的中线把三角形分成了面积相等的两部分,而三条中线交于一点,这一点叫此三角形的心.12.(2021秋•巢湖市期末)△ABC的两边长分别是2和5,且第三边为奇数,则第三边长为.13.(2021秋•包河区期末)如图,在△ABC中,∠ACB=90°,点D在AB上,将△BDC沿CD折叠,点B落在AC边上的点B′处,若∠ADB′=20°,则∠A的度数是.14.(2021秋•大连月考)直角三角形中两个锐角的差为20°,则较小的锐角度数是°.三.解答题(共3小题)15.(2021秋•启东市期末)如图,在△ABC中,∠CAE=18°,∠C=42°,∠CBD=27°.(1)求∠AFB的度数;(2)若∠BAF=2∠ABF,求∠BAF的度数.16.(2021秋•双台子区期末)如图,在△ABC中,CD平分∠ACB,AE⊥CD,垂足为F,交BC于点E,若∠BAE=33°,∠B=37°,求∠EAC的度数.17.(2021秋•临漳县期末)阅读并填空将三角尺(△MPN,∠MPN=90°)放置在△ABC上(点P在△ABC 内),如图1所示,三角尺的两边PM、PN恰好经过点B和点C.我们来探究:∠ABP与∠ACP是否存在某种数量关系.(1)特例探索:若∠A=50°,则∠PBC+∠PCB=度;∠ABP+∠ACP=度;(2)类比探索:∠ABP、∠ACP、∠A的关系是;(3)变式探索:如图2所示,改变三角尺的位置,使点P在△ABC外,三角尺的两边PM、PN仍恰好经过点B和点C,则∠ABP、∠ACP、∠A的关系是.题组B 能力提升练一.选择题(共7小题)1.(2021秋•兴城市期末)如图,在△ABC中,∠C=90°,∠B=70°,点D、E分别在AB、AC上,将△ADE沿DE折叠,使点A落在点F处.则∠BDF﹣∠CEF=()A.20°B.30°C.40°D.50°2.(2021秋•椒江区期末)如图,在△ABC中,∠A=60°,∠B=70°,CD是∠ACB的平分线,CH⊥AB 于点H,则∠DCH的度数是()A.5°B.10°C.15°D.20°3.(2021秋•开州区期末)如图,在△ABC中,D在BC的延长线上,过D作DF⊥AB于F,交AC于E.已知∠A=35°,∠ECD=85°,则∠D=()A.30°B.40°C.45°D.50°4.(2021秋•忠县期末)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AC上一点,将△ABD 沿线段BD翻折,使得点A落在A'处,若∠A'BC=30°,则∠CBD=()A.5°B.10°C.15°D.20°5.(2021秋•密山市期末)如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,若S△DEF=4,则S△ABC等于()A.16B.24C.32D.306.(2021秋•潮安区期末)如图,AD是△ABC的中线,点E是AD的中点,连接BE、CE,若△ABC的面积是8,则阴影部分的面积为()A.4B.2C.6D.87.(2021秋•江宁区期中)如图,在四边形ABCD与四边形A'B'C'D'中,AB=A'B',∠B=∠B',BC=B'C'.下列条件中:①∠A=∠A',AD=A'D';②∠A=∠A',CD=C'D';③∠A=∠A',∠D=∠D';④AD=A'D',CD=C'D'.添加上述条件中的其中一个,可使四边形ABCD≌四边形A'B'C'D'.上述条件中符合要求的有()A.①②③B.①③④C.①④D.①②③④二.填空题(共8小题)8.(2021秋•博兴县期末)如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=76°,∠C=64°,则∠DAE的度数是.9.(2021秋•平罗县期末)如图,△ABC中,D在BC的延长线上,过D作DF⊥AB于F,交AC于E.已知∠A=35°,∠ECD=85°,则∠D=.10.(2021秋•博白县期末)如图,将△ABC纸片沿DE折叠,使点A落在点A'处,且A'B平分∠ABC,A'C 平分∠ACB,若∠BA'C=120°,则∠1+∠2的度数为.11.(2020秋•十堰期末)如图,在2×2的方格纸中,∠1+∠2等于.12.(2021秋•鹿城区校级月考)由四个全等的直角三角形和一个小正方形组成的大正方形ABCD如图所示,连接BE并延长交AD于点F,若AG=2BG,则=.13.(2021春•东阳市期末)如图,把一张长方形纸板裁去两个边长为3cm的小正方形和两个全等的小长方形,再把剩余部分(阴影部分)四周折起,恰好做成一个有底有盖的长方体纸盒,纸盒底面长方形的长为3kcm,宽为2kcm,则:(1)裁去的每个小长方形面积为cm2.(用k的代数式表示)(2)若长方体纸盒的表面积是底面积的正整数倍,则正整数k的值为.14.(2021秋•湖州期末)如图,在△ABC中,AE是△ABC的角平分线,D是AE延长线上一点,DH⊥BC 于点H.若∠B=30°,∠C=50°,则∠EDH=.15.(2021秋•山亭区期末)定义:当三角形中一个内角α是另一个内角的两倍时,我们称此三角形为“倍角三角形”,其中α称为“倍角”,如果一个“倍角三角形”的一个内角为99°,那么倍角α的度数是.三.解答题(共4小题)16.(2021秋•建昌县期末)如图,AD是∠BAC的平分线,CE是△ADC边AD上的高,若∠BAC=70°,∠ECD=20°.求∠ACB的度数.17.(2021秋•沙依巴克区校级期末)如图,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE 平分∠BAC,求∠EAD的度数.18.(2021秋•南昌期末)如图,在△ABC中,∠B=2∠C,AD⊥BC于点D,AE平分∠BAC交BC于点E.(1)若∠C=40°,求∠DAE的度数;(2)若EF⊥AE,交AC于点F,请补全图形,并在第(1)问的条件下,求∠FEC的度数.19.(2021秋•邗江区期末)点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,一直角三角板的直角顶点放在点O处.(1)如图1,将三角板DOE的一边OD与射线OB重合时,则∠COD=∠COE;(2)如图2,将图1中的三角板DOE绕点O逆时针旋转一定角度,当OC恰好是∠BOE的角平分线时,求∠COD的度数;(3)将图1中的三角尺DOE绕点O逆时针旋转旋转一周,设旋转的角度为α度,在旋转的过程中,能否使∠AOE=3∠COD?若能,求出α的度数;若不能,说明理由.题组C 培优拔尖练一.选择题(共3小题)1.(2021秋•拱墅区校级月考)如图,O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC的顶点重合),S四边形BCHG,S△AGH分别表示四边形BCHG和△AGH的面积,则的最大值是()A.B.1C.D.2.(2021春•九龙坡区校级期末)如图,在△ABC中,延长CA至点F,使得AF=CA,延长AB至点D,使得BD=2AB,延长BC至点E,使得CE=3CB,连接EF、FD、DE,若S△DEF=36,则S△ABC为()A.2B.3C.4D.53.(2021春•青山区期末)如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF 交AD于点G,交BE于点H,下面说法正确的是()①△ABE的面积=△BCE的面积;②∠AFG=∠AGF;③∠F AG=2∠ACF;④BH=CH.A.①②③④B.①②③C.②④D.①③二.填空题(共3小题)4.(2021秋•武昌区期末)如图,在△ABC中,∠ACB=2α,CD平分∠ACB,∠CAD=30°﹣α,∠BAD =30°,则∠BDC=.(用含α的式子表示)5.(2021春•高邮市期中)如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB,BC,CA至点A1,B1,C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1,B1,C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2;…;按此规律继续下去,可得到△A4B4C4,则其面积S4=.6.(2021春•宝应县月考)如图,A,B,C分别是线段A1B、B1C、C1A的中点,若△A1B1C1的面积是28,那么△ABC的面积是.三.解答题(共5小题)7.(2021秋•青田县期末)如图,直线l∥线段BC,点A是直线l上一动点.在△ABC中,AD是△ABC的高线,AE是∠BAC的角平分线.(1)如图1,若∠ABC=65°,∠BAC=80°,求∠DAE的度数;(2)当点A在直线l上运动时,探究∠BAD,∠DAE,∠BAE之间的数量关系,并画出对应图形进行说明.8.(2021秋•西湖区校级期末)新定义:在△ABC中,若存在一个内角是另外一个内角度数的n倍(n为大于1的正整数),则称△ABC为n倍角三角形.例如,在△ABC中,∠A=80°,∠B=60°,∠C=40°,可知∠A=2∠C,所以△ABC为2倍角三角形.(1)在△DEF中,∠E=40°,∠F=35°,则△DEF为倍角三角形.(2)如图1,直线MN与直线PQ相交于O,∠POM=30°,点A、点B分别是射线OP、OM上的动点;已知∠BAO、∠OBA的角平分线交于点C,在△ABC中,如果有一个角是另一个角的2倍,请求出∠BAC 的度数.(3)如图2,直线MN⊥直线PQ于点O,点A、点B分别在射线OP、OM上,已知∠BAO、∠OAG的角平分线分别与∠BOQ的角平分线所在的直线交于点E、F,若△AEF为3倍角三角形,试求∠ABO的度数.9.(2021秋•兴庆区校级期末)如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F.(1)当△PMN所放位置如图①所示时,求出∠PFD与∠AEM的数量关系;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=15°,∠PEB=30°,求∠N的度数.10.我们把两个能够互相重合的图形称为全等形.(1)请你用四种方法把长和宽分别为5和3的矩形分成四个均不全等的小矩形或正方形,且矩形或正方形的各边长均为整数;(2)是否能将上述3×5的矩形分成五个均不全等的整数边矩形?若能,请画出.11.(2021秋•思明区校级期末)问题提出:(1)我们把两个面积相等但不全等的三角形叫做“偏等积三角形”.如图1,△ABC中,AC=7,BC=9,AB=10,P为AC上一点,当AP=时,△ABP与△CBP是偏等积三角形;问题解决:(2)如图2,四边形ABED是一片绿色花园,△ACB、△DCE是等腰直角三角形,∠ACB=∠DCE=90°(0<∠BCE<90°),①△ACD与△BCE是偏等积三角形吗?请说明理由;②已知BE=60m,△ACD的面积为2100m3.如图3,计划修建一条经过点C的笔直的小路CF,F在BE 边上,FC的延长线经过AD中点G.若小路每米造价600元,请计算修建小路的总造价.。
初一数学三角形知识点归纳一.认识三角形1.三角形的概念及其角度分类由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.这里有两点需要注意:①组成三角形的三条线段要“不在同一直线上”;如果在同一直线上,三角形就不存在;② 三条线段“按顺序连接”意味着三条线段中的两条之间有一个公共端点,即三角形的顶点三角形按内角的大小可以分为三类:锐角三角形、直角三角形、钝角三角形.2.关于三角形三边之间的关系根据公理“连结两点的线中,线段最短”可得三角形三边关系的一个性质定理,即三角形任意两边之和大于第三边.三角形三边关系的另一个性质是:三角形任意两边之间的差值小于第三边对于这两个性质,要全面理解,掌握其实质,应用时才不会出错.让三角形三条边的长度分别为a、B和C,然后:①一般地,对于三角形的某一条边a来说,一定有|b-c|② 特别是,如果已知线段a最大,只要满足B+C>a,那么三条线段a、B和C可以形成三角形;如果已知a段最小,只要满足| B-C|3.关于三角形的内角和三角形的三个内角之和为180°①直角三角形的两个锐角互余;② 三角形中最多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角.4.关于三角形的中心线、高度和中心线①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;② 任何三角形都有三条角平分线、三条中线和三个高度;③任意一个三角形的三条角平分线、三条中线都在三角形的内部.但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部,如图1;直角三角形有一条高在三角形的内部,另两条高恰好是它两条边,如图2;钝角三角形一条高在三角形的内部,另两条高在三角形的外部,如图3.④ 在三角形中,三条中线在一点相交,三条角平分线在一点相交,三条具有高度的直线在一点相交二.图形的全等·可以完全重合的图形称为全等全等图形。
全等图形的形状和大小相同,但形状相同,但大小不同,或者两个面积相同但形状不同的图形不全等四.全等三角形¤1. 关于全等三角形的概念能够完全重合的两个三角形叫做全等三角形.互相重合的顶点叫做对应点,互相重合的边叫做对应边,互相重合的角叫做对应角所谓“完全重合”是指每一条边对应同一条边,每一个角对应同一条边。
六年级数学知识点复习认识三角形与四边形六年级数学知识点复习:认识三角形与四边形在六年级的数学学习中,我们掌握了许多重要的数学知识点。
其中,三角形和四边形是数学中常见的图形,对于我们理解几何形状和计算面积周长有着重要的意义。
本文将重点复习认识三角形和四边形的相关概念和性质。
一、三角形的认识与性质1. 三角形的定义三角形是由三条线段组成的图形,其中每个线段都与另外两个线段相交,形成三个内角和三个顶点。
三角形的边是线段,而顶点则是线段的端点。
2. 三角形的分类根据三角形的边长和角度的特点,我们可以将三角形分为以下几类:(1) 等边三角形:三条边的长度相等。
(2) 等腰三角形:两条边的长度相等。
(3) 直角三角形:一个内角为90度。
(4) 钝角三角形:一个内角大于90度。
(5) 锐角三角形:三个内角都小于90度。
3. 三角形的性质对于任意一个三角形ABC,它具有以下性质:(1) 三角形的内角和等于180度。
(2) 任意两边之和大于第三边。
(3) 三角形的最长边所对应的内角最大。
二、四边形的认识与性质1. 四边形的定义四边形是由四条线段组成的图形,其中每个线段都与另外两个线段相交,形成四个内角和四个顶点。
四边形的边是线段,而顶点则是线段的端点。
2. 四边形的分类根据四边形的边长和角度的特点,我们可以将四边形分为以下几类:(1) 矩形:拥有四个直角的四边形。
(2) 平行四边形:拥有两对平行边的四边形。
(3) 正方形:既是矩形又是平行四边形的四边形,拥有四个相等的边和四个直角。
(4) 梯形:拥有一对平行边的四边形。
(5) 菱形:拥有四个边长相等的四边形。
(6) 平行四边形的特殊情况:矩形、正方形和菱形。
3. 四边形的性质对于任意一个四边形ABCD,它具有以下性质:(1) 四边形的内角和等于360度。
(2) 平行四边形的对角线相互平分。
(3) 矩形和正方形的对角线相等。
(4) 菱形的对角线互相垂直且相互平分。
三、三角形和四边形的应用1. 计算三角形面积三角形的面积可以通过以下公式进行计算:面积 = 底边长度 ×高 / 2其中,底边为三角形的边长,高为从底边到对应顶点的垂直距离。
《认识三角形》知识点解读1三角形是平面内最简单、最基本的几何图形之一,在生活中随处可见。
他不仅是我们学习其他图形的基础,而且是现实生活中有着广泛的应用。
因此探讨三角形中的基本性质可以使我们更好的认识现实世界,为了更好的学好三角形,我们先着眼于三角形的一些基本概念和性质。
知识点1三角形的概念及表示(重点)不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形。
三角形有三条边,三个内角,三个顶点。
组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角;相邻两边的公共端点是三角形的顶点,三角形ABC用符号表示为△ABC,三角形ABC的边AB可用边AB所对的角C的小写字母c表示,AC可用b表示,BC可用a表示。
解读:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)△ABC是三角形ABC的符号标记,单独的△没有意义。
例1 如图所示,图中的三角形有()A.6个B.8个C.10个D.12个分析:数三角形个数易遗漏或重复。
要做到不重不漏,就应按照一定的顺序去数。
如图,可按图形的形成过程去数,共有8个三角形,分别是:△ABC,△ADC,△ABD,△BCD,△AOB,△BOC,△COD,△AOD。
答案:选B知识点2 三角形的内角和及其他性质(重点)三角形的内角和等于180°。
直角三角形的两锐角互余。
例2若一个三角形的三个内角不相等,则它的最小角不能大于()A.45°B.60°C.90°D.120°分析:因为三角形内角和为180°,条件中说三个内角不相等,最小角若大于60°,则内角和超过180°。
答案:应选B知识点3 三角形的分类(难点)按边分类:不等边三角形(三边均不相等)和等腰三角形(至少两边相等)【等边三角形:三条边都相等的三角形。
它是特殊的等腰三角形】按角分类:锐角三角形(三个角均为锐角)、直角三角形(有一个角为直角)、钝角三角形(有一个角为钝角)解读:(1)对三角形进行分类时,要做到不重不漏;(2)由定义知等边三角形是特殊的等腰三角形,等腰三角形包括等边三角形,这两类三角形在三角形分类中不能并列出现。
1 认识三角形学习目标1. 认识三角形的概念及其基本要素。
2. 掌握三角形三条边之间的关系。
3. 认识等腰三角形和等边三角形。
知识详解1. 由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形。
三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角;相邻两边的公共端点是三角形的顶点,三角形ABC用符号表示为△ABC,三角形ABC的边AB可用边AB所对的角C的小写字母c 表示,AC可用b表示,BC可用a表示。
注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)△ABC是三角形ABC的符号标记,单独的△没有意义。
2. 三角形的角与角之间的关系:(1)三角形三个内角的和等于180°;(三角形的内角和定理)。
(2)直角三角形的两个锐角互余。
3.三角形的分类4.通常,我们用符号“Rt△ABC”表示直角三角形ABC。
把直角所对的边称为直角三角形的斜边,夹直角的两条边称为直角边。
5.有两边相等的三角形叫做等腰三角形。
三边都相等的三角形叫做等边三角形,也叫做正三角形。
两条直角边相等的直角三角形叫做等腰直角三角形。
三角形的三边关系:三角形的任意两边之和大于第三边;任意两边之差小于第三边。
注意:(1)三边关系的依据是:两点之间线段是短;(2)围成三角形的条件是任意两边之和大于第三边。
6.三角形的主要线段(1)连结三角形一个顶点和它对边中点的线段,叫做三角形这个边上的中线。
简称三角形的中线。
三角形的三条中线交于一点,这个点叫做三角形的重心。
(2)三角形一个角的角平分线和这个角的对边相交,这个角的顶点和对边交点之间的线段叫做三角形中这个角的角平分线。
简称三角形的角平分线。
一个三角形共有三条角平分线,它们都在三角形内部,而且相交于一点。
(3)三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高。
四年级数学下册第五单元的必背知识点一、三角形的认识及特性1. 三角形的定义:由三条线段围成的图形 (每相邻两条线段的端点相连)叫做三角形。
2. 三角形的特点:三角形有3条边、3个角和3个顶点。
3. 三角形的底和高:从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。
三角形只有3条高。
4. 三角形的特性:三角形具有稳定性。
如自行车的三角架、电线杆上的三角架等都是利用了三角形的稳定性。
5. 三角形三条边的关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
这是判断三条线段能否构成三角形的重要依据。
6. 三角形的分类:按角分类:锐角三角形、直角三角形和钝角三角形。
按边分类:等腰三角形 (包括等边三角形)和不等边三角形。
在等腰三角形中,相等的两条边叫做腰,另一条边叫做底;在等边三角形中,三条边都相等,三个角也都相等,每个角都是60°。
二、分数和小数的深入理解与运用1. 分数的意义和性质:分数表示的是整体的一部分。
分子表示被取走的份数,分母表示整体的份数。
分数与除法的关系:分数的分子相当于除法中的被除数,分母相当于除数。
2. 分数的运算:包括分数的加法、减法、乘法和除法。
掌握分数的基本运算规则,并能将分数化简为最简形式。
3. 小数的概念和性质:理解小数点的位置和小数位的含义。
掌握小数与分数的关系及相互转换。
4. 小数的运算:包括小数的加法、减法、乘法和除法。
掌握小数运算的规则,特别是小数点的位置处理。
5. 分数和小数的实际应用:将分数和小数应用于解决实际问题,如购物、度量转换、数据分析等。
6. 分数和小数的比较和排序:学会比较分数和小数的大小,进行排序和选择。
三、其他知识点方程的认识:初步了解方程的概念,即含有未知数的等式。
运算定律的应用:在小数和分数的运算中,运用加法交换律、结合律、乘法交换律、结合律和分配律等运算定律进行简便计算。
解决实际问题:通过应用分数、小数和三角形的知识解决实际问题,培养学生的数学应用能力和思维能力。
七年级上册三角形知识点三角形是初中数学中最基础的概念之一,也是更高级几何知识的基础。
在七年级上册中,我们需要掌握三角形的性质、类型、计算等方面的知识点。
下面,本文将为大家详细介绍七年级上册三角形的知识点。
I. 三角形的定义三角形是一个有三条边和三个角的图形,简单来说就是由三条不在同一直线上的线段相连接所形成的图形。
II. 三角形的性质1. 三角形的内角和是180度。
即三角形任意两个角的角度之和加上第三个角的角度等于180度。
2. 三角形的外角等于它不相邻两个内角的和。
即三角形的一个内角与与其不相邻的另一个内角所组成的外角的角度等于这个三角形的第三个角。
3. 三角形中,两边之和大于第三边。
III. 三角形的类型1. 根据边长分类等边三角形:三条边长度相等的三角形。
等腰三角形:至少有两边长度相等的三角形。
普通三角形:三条边长度各不相等的三角形。
2. 根据角度分类直角三角形:其中一个角为直角(90度)的三角形。
钝角三角形:其中一个角为钝角(大于90度)的三角形。
锐角三角形:三个角都是锐角(小于90度)的三角形。
IV. 三角形的计算1. 三角形面积的计算公式为:S = 1/2 × b × h,其中b为底边的长度,h为高的长度。
2. 根据勾股定理,可以计算直角三角形的斜边长。
勾股定理指的是:直角三角形中,斜边的平方等于两条直角边的平方和。
V. 三角形的应用三角形并不仅仅只是一个抽象的概念,它在现实生活中应用非常广泛。
比如,测量建筑物的高度、角度、斜边长度等等都需要用到三角形的知识。
此外,在各个领域中,比如物理学、化学、计算机科学等等,三角形也有着广泛的应用。
结语在七年级上册学习三角形的知识,是建立数学基础的必要步骤。
因此,我们需要掌握三角形的基本定义、性质、类型、计算等知识,并在实际应用中学以致用。
相信通过学习,我们会对三角形有一个更加深入的认识。
第01讲认识三角形(7个知识点+17大题型+18道强化训练)知识点01 三角形的概念由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形;记作:△ABC,如图:其中:线段AB,AC,CA 是三角形的边,A,B,C 是三角形的顶点,∠A,∠B,∠C 是相邻两边组成的角,叫做三角形的内角,简称三角形的角.【即学即练1】1.(23-24七年级下·全国·课后作业)下面是一位同学用三根木棒拼成的图形,其中是三角形的是( )A.B.C.D.知识点2 三角形的分类:等腰三角形:在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
【即学即练2】2.(23-24七年级下·河北邢台·阶段练习)如图所示,小手盖住了一个三角形的一部分,则这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形知识点3 三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
【拓展:三边关系的运用】①判断三条线段能否组成三角形;②当已知三角形的两边长时,可求第三边的取值范围。
【即学即练3】3.(23-24七年级下·海南海口·期末)如图1是一根细铁丝围成的正方形,其边长为2,现将该细铁丝围成一个三角形(如图2所示),则AB的长可能为()A.3.5B.4C.4.5D.5知识点4 三角形的稳定性①三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
三角形具有稳定性,而四边形没有稳定性。
②三角形的稳定性有广泛的运用:桥梁、起重机、人字形屋顶、桌椅等【即学即练4】4.(23-24七年级下·山西运城·期末)2024年年初,山西省最长的跨黄河大桥——临猗黄河大桥完成合拢任务,如图是桥身的一部分,桥身采用三角形钢结构架,这其中蕴含的数学道理是()A.三线合一B.三角形的稳定性C.垂线段最短D.三角形两边之和大于第三边知识点5 三角形的重要线段【即学即练5】5.(22-23七年级下·湖北恩施·期中)如图,三角形ABC 中,AC BC ^,D 为BC 边上的任意一点,连接AD ,E 为线段AD 上的一个动点,过点E 作EF AB ^点F .6108BC AB AC ===,,,则CE EF +的最小值为( )A .6B .4.8C .2.4D .5【即学即练6】6.(24-25七年级上·山东·随堂练习)如图所示,在ABC V 中,8AB =,6AC =,AD 是ABC V 的中线,则ABD △与ADC △的周长之差为( )A .14B .1C .2D .7知识点6 三角形的内角①三角形内角和定理:三角形三个内角的和等于 180 度。
认识三角形1.三角形有关的概念(1) 三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形,组成三角形的线段叫做三角形的边,相邻两边公共的端点叫做三角形的顶点.相邻两边组成的角叫做三角形的内角(简称三角形的角).(2) 三角形的表示三角形用符号“△”表示,顶点是A 、B 、C 的三角形,记作“△ABC ”,读作“三角形ABC ”。
如图7 -4一l ,三角形有三个顶点:A 、B 、C ;有三条边:AB 、BC 、AC;有三个角:A ∠、B ∠、C ∠.△ABC 的三边用c b a ,,表示时,A ∠所对的边BC 用a 表示.B ∠所对的边AC 用b 表示.C ∠所对的边AB 用c 表示.2.三角形的分类⎪⎩⎪⎨⎧是钝角)钝角三角形(有一个角是直角)直角三角形(有一个角是锐角)锐角三角形(三个角都形角三注意:根据角的大小来识别三角形的形状时,一般只要考虑三角形中的最大角;若最大角是锐角,则三角形是锐角三角形;若最大角是直角,则三角形直角三角形;若最大角是钝角,则三角形钝角三角形.3.三角形中边的关系(1)三角形的任意两边之和大于第三边;(2)三角形的任意两边之差小于第三边如图7 -4 -1中,c b a b a c a b c b c a a c b c b a <-<-<->+>+>+,,;,,。
注意:在任意给定的三条线段中,当三条线段中较短的两条线段之和大于另一条线段时,才能组成三角形。
例如:有三条线段的长分别为3、4、6因为3 +4 >6,所以这三条线段能组成三角形.又如:有三条线段的长分别为3、4、8要为3+4 <8,所以这三条线段不能组成三角形.4.三角形的三种主要线段(1)高:从三角形的一个顶点向它的对边所在的直线画垂线,顶点和垂足间的线段,叫做三角形的高。
如图7 -4 -2,AD 是△ABC 的高,可表示为AD ⊥ BC 或ADC ∠=90°或ADB ∠= 90°。
(2)中线:在三角形中,连接顶点和它对边中点的线段,叫做三角形的中线。
如图7 -4 -3,AE 是△ABC 的中线,表示为BE=EC 或BE = 21BC 或BC= 2EC. (3)角平分线:在三角形中,一个内角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线,一个角的平分线是一条射线,而三角形的角平分线是一条线段.如图7-4-4,AF 是ABC ∆的角平分线,可表示为CAF BAF ∠=∠或BAC BAF ∠=∠21或CAF BAC ∠=∠2.一个三角形中三条中线交于一点,三条角平分线交于一点,三条高所在直线交于一点。
5.三角形的高、角平分线、中线的画法(1)三角形高的画法,如图7-4 -5.注意:①锐角三角形、直角三角形、钝角三角形都有三条高.②锐角三角形的三条高交于三角形内部一点.如图7 -4 -5甲,③钝角三角形的三条高交于三角形外部一点.如图7 -4 -5乙,④直角三角形的三条高交于直角顶点.如图7 -4 -5丙.(2) 三角形的中线的画法:将三角形一边的中点与这边所对角的顶点连接起来,就得到三角形一边上的中线.(3)三角形的角平分线的画法:三角形的角平分线的画法与角平分线的画法相同,可以用量角器。
防错档案:画钝角三角形的高容易出错,要抓住从三角形一顶点向对边作垂线段.6.面积法解题例如:如图7 -4 -6,在△ABC中,AB =AC ,AC 边上的高BD= 10,求AB 边上的高CE 的长.解析:由三角形面积公式有:AC BD AB CE S ABC ⋅=⋅=∆2121 因为AB =AC ,BD =10,所以CE= BD= 10.名题诠释【例题1】如图7 -4 -7,点D 是△ABC 的边BC 上的一点,点E 在AD 上.(1)图中共有____个三角形;(2)以.AC 为边的三角形是____;(3)以∠BDE 为内角的三角形是____.【解析】 (1)AD 的左右两侧各有3个三角形,分别是△ABE 、△ABD 、△EBD 、△ACE 、△.ACD 、△ECD ,左右两侧组合又形成2个以BC 为边的三角形,它们是△ABC 、△EBC.故共有8个三角形.(2) 以AC 为边的三角形有3个,它们是△.ACE 、△ACD 、△ACB. (3)以∠BDE 为内角的三角形有2个,它们是△EBD 、△ABD .【答案】 (1)8 (2)△ACE 、△ACD 、△ACB (3)△EBD 、△ABD【点评】 数三角形要注意选择恰当的顺序,做到不重不漏,注意最容易漏掉的是最大的三角形.【例题2】 下列三角形分别是什么三角形?(1)已知一个三角形的两个内角分别是50°和60°;(2) 已知一个三角形的两个内角分别是35°和55°;(3) 已知一个三角形的两个内角分别是30°和45°;(4) 已知一个三角形的周长为16cm ,有两边的长分别是6cm 和4cm.【解析】 确定三角形的形状,应紧扣定义.【答案】 (1) 锐角三角形,因为三角形内角和为180°,而两个内角分别是50°和60°,所以第三个内角是70°,即这个三角形是锐角三角形.(2) 直角三角形,同理.(3) 钝角三角形,同理.(4) 等腰三角形.因为第三条边的长为16 -6 -4 =6(cm).【点评】 应全面考虑三角形的边和角的条件,再根据定义判别.【例题3】 下列长度的三条线段能组成三角形的是( ).A. lcm 、2cm 、3.5cmB.4cm 、5cm 、9cmC. 5cm 、8cm 、15cmD.8cm 、8cm 、9cm【解析】 因为1+2<3.5,所以lcm 、2cm 、3.5cm 的三条线段不能构成三角形因为4+5 =9,所以4cm 、5cm 、9cm 的三条线段不能构成三角形;因为5+8<15,所以5cm 、8cm 、15cm 的三条线段不能构成三角形;因为8+8 >9,所以8cm 、8cm 、9cm 的三条线段能构成三角形.【答案】D【点评】 三条线段能否构成三角形的条件是三角形三边的关系,即是否满足任意两边之和大于第三边.简便方法是检验较小的两边之和是否大于最大边.【例题4】 甲地离学校4km ,乙地离学校lkm .记甲、乙两地之间的距离为dkm ,则d 的取值为( ).A.3B.5C.3或5 D .3≤d ≤5【解析】本题应分两种情况讨论:(1)甲、乙两地与学校在一条直线上;(2)甲、乙两地与学校不在同一条直线上,则构成三角形,可利用三角形三边关系解题.【答案】 D【例题5】 如图7-4 -8,在△ABC 中,1∠=2∠,G 为AD 的中点,延长BG 交AC 于E .F 为AB 上一点,CF ⊥AD 于H ,下面判断正确的有( ).①AD 是△ABE 的角平分线;②BE 是△ABD 边AD 上的中线;③CH 为△ACD 边AD 上的高;④AH 是△ACF 的角平分线和高线.A.l 个 B .2个 C.3个 D .4个【解析】由1∠=2∠知AD 平分∠BAE .但AD 不是△ABE 内的线段,故①错,AD 应是△ABC 的角平分线;同理,BE 经过△ABD 的边AD 的中点G ,但BE 不是△ABD 中的线段,故②不正确,正确的说法应是BG 是△ABD 边AD 上的中线;由于CH ⊥AD 于H ,故CH 是△ACD 边AD 上的高,故③正确;AH 平分∠FAC 并且在△ACF 内,故AH 是△ACF 的角平分线,同理AH 也是△ACF 的高,故④正确.【答案】B【点评】 三角形的角平分线和角的平分线之间的区别:前者是线段,在三角形的内部,后者是射线,可以无限延伸.【例题6】在△ABC 中,AB =AC ,AC 边上的中线BD 把三角形的周长分为12cm 和15cm 两部分,求三角形各边的长,【解析】 中线BD 把三角形的周长分为12cm 和15cm 两部分,要分类讨论:(1)当腰长小于底边时,AB +AD =12,如图7-4 -9①;(2)当腰长大于底边时,AB +AD =15,如图7-4 -9②.【答案】设AB=x ,则有:AD= DC=x 21. (1)若AB +AD =12,即x + x 21=12,x =8. AB =AC =8,DC =4,故BC= 15 -4= 11.此时AB +AC> BC ,所以三角形三边长分别为8cm ,8cm ,llcm.(2)若AB+ .4D= 15,即x +x 21=15,x =10. 即AB =AC =10,DC =5,故BC=12 -5 =7.显然,此时三角形存在,所以三角形三边长分别为l0cm ,l0cm ,7cm .综上所述,此三角形的三边长分别为8cm ,8cm .llcm 或l0cm ,l0cm ,7cm .【例题7】 如图7-4 -10,是甲、乙、丙、丁四位同学画的钝角△ABC 的高BE ,其中画法错误的是____________【解析】 甲图错在把三自形的高线与AC 边的垂线定义相混淆,把“线段”画成“直线”;乙图错在未抓住“垂线”这一特征,画出的BE 与AC 不垂直;丙图错在没有过点B 画AC 的垂线,故不是高;丁图错在没有向点B 的对边画垂线.【答案】 甲、乙、丙、丁【例题8】 如图7—4-11,在△ABC 中,AB =AC ,AC 边上高BD=10,P 为边BC 上任意一点,PM ⊥AB ,PN ⊥AC ,垂足分别为M,N .求PM+PN 的值.【解析】 连接AP 后,PM 、PN 就转化为△APB 和△APC 的高,从而由面积法可求得PM+ PN 的值.【答案】 连接AP ,由图7-4 -11可知:ABC ACP ABP S S S ∆∆∆=+, 即BD AC PN AC PM AB ⋅=⋅+⋅212121 因为AB =AC ,BD =10,所以PM+PN= BD =10.速效基础演练1如图7 -4 -12,图中三角形的个数共有 ( ).A 1个B .2个 C.3个 D .4个2 三角形两边的长分别为lcm 和4cru ,第三边的长是一个偶数,则第三边的长是________,这个三角形是___________三角形3如图7 -4 -13.( 1 ) AD ⊥BC ,垂足为D ,则AD 是___________的高,_______=_______= 90°;( 2 ) 若AE 平分BAC ∠,交BC 于E 点,AE 叫___________的角平分线,BAE ∠ =_______=21________; ( 3 ) 若AF= FC ,则△ABC 的中线是_________;( 4 ) 若BC= GH= HF .则AG 是________的中线,AH 是_________的中线。