学而思 小升初第6讲_小升初专项训练_找规律篇
- 格式:doc
- 大小:323.00 KB
- 文档页数:11
小升初:找规律专题练习解题策略:(1)观察,实验,归纳,猜想和验证的综合考察;(2)以退为进的解题过程;(3)是抽象思维能力和计算能力,形象思维能力等的综合考察;(4)积累经验也是非常必要的。
以退为进:数字类找规律例1已知数列1,2,4,8,16,32……,求这个数列中第10项是多少。
练习:1、已知数列3,9,27,81……,求这个数列的第7项是多少?例2.观察下面左、右两列等式的关系(先计算)计算:例3、求和:例4、 的积中有多少个奇数字,多少个偶数字?思路分析:如此大的因数,不可能按一般方法列竖式去乘,一定存在着某些规律,使问题得到简化。
例5、 计算:变式练习:计算(1)751531311⨯+⨯+⨯+……+201120091⨯(2)1、观察下列算式:23451=+⨯ ,24462=+⨯,25473=+⨯,24846⨯+=,请你在观察规律之后并用你得到的规律填空:250___________=+⨯, 第n 个式子呢? ___________________2、观察下列顺序排列的等式:9×0+1=19×1+2=119×2+3=219×3+4=319×4+5=41……猜想:第n 个等式(n 为正整数)应为 .3、一个两位数的个位数是a ,十位数字是b ,请用代数式表示这个两位数是__________________。
如何表示baba 呢?4、观察下列各式:31=3,32=9,33=27,34=81,35=243,36=729…你能从中发现底数为3的幂的个位数有什么规律吗?根据你发现的规律回答:32004的个位数字是 .5、观察下列各式,你会发现什么规律?3×5=15,而15=241-。
5×7=35,而35=261-……11×13=143,而143=2121-将你猜想到的规律用只含一个字母的式子表示出来:__________6、问题:你能比较20052006和20062005的大小吗?7、一群整数朋友按照一定的规律排成一排,可排在□位置的数跑掉了,请帮它们把跑掉的朋友找回来。
第六讲 找规律与定义新运算同学们在探索某一类事物的性质或它们之间的关系的时候,经常从观察具体事物入手,通过分析、猜测、验证,找出这类事物的一般属性。
这种“从特殊到一般的推理方法”,叫做归纳法,或者称之为找规律,很多人也称之为周期问题。
找规律问题在小升初考试中几乎每年必考,但考题的分值较低,多以填空题型是出现。
这是为了考验我们是否能在最短时间里找到数字间的奥秘,即是在考察我们的数感和归纳能力,这种能力不是与生俱来的,是和我们日常积累分不开的,正所谓见多识广吧。
所以找规律这类题目,需要同学们养成细观察、勤思考的习惯,不断提高归纳能力。
找规律是奥数里最重要的思想之一,很多难题都是靠这种方法解决的,要求我们能够观察数列或数表中每一个数自身的特征(如奇偶性,整除性,是否为质或者合数等等)、相邻数之间的差或商的变化特征(常见的有等差数列,等比数列,斐波那契数列,复合数列等等),有时候还需要考虑连续多个数之间的和差倍关系,甚至对于某个自然数的余数数列等等,所以同学们要好好的体会这种思想方法,争取在奥数的学习中能够克服难题,取得进步。
【例1】 (人大附分班考试题)看规律:3211=,233123+=,3236…… 试求314+"的值为多少?3312++=3367++分析:通过前面给的规律可以自己在适推几个:1,()23333234123410+++=+++=2()2333332123451234515225++++=++++==,可知本题应该为:3336714+++="()()333333333333322123456714123451051510800++++++++−++++=−="本题就是立方和公式13+23+33+43+…+n 3=(1+2+3+4+…+n)2的应用。
【例2】(2008“数学解题能力展示”读者评选活动五年级组初赛试题)在纸上写着一列自然数1,2,……,98,99。
六年级数学小升初找规律练习题目(推荐完整)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(六年级数学小升初找规律练习题目(推荐完整))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为六年级数学小升初找规律练习题目(推荐完整)的全部内容。
六年级数学小升初找规律练习题目(推荐完整)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望六年级数学小升初找规律练习题目(推荐完整)这篇文档能够给您的工作和学习带来便利。
同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈六年级数学小升初找规律练习题目(推荐完整)> 这篇文档的全部内容。
济南市外海实验学校六年级找规律练习题班级 姓名 等级1、观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=_ ___。
2、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+…,若符合前面式子的规律,则。
10102+=⨯+=b a baa b3、已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102; …… ……由此规律知,第⑤个等式是 。
11.探索规律知识要点梳理探索规律一般分为重复的规律(周期问题)和变换的规律,其中变换的规律又分为数字排列律,计算式规律,图形排列规律,图形变换规律。
数字排列规律:数列填空,要在数列中相邻两个数的和、差、积、商中发现共同点,寻找规律。
数组填空,一般先看到每组第一个数与组数的关系,再分别看每组中后几个数与本组中的第一个数的关系。
数阵或数表填空,要分析数的横行或竖列中各数的关系,找出规律。
图形的变化规律:先确定有儿种图形,然后观察每种图形在不同组的位置变化,最后找出图形的排列规律。
颜色交替规律:通过发现两组颜色的变化来找出规律。
间隔排列物体个数之问的变化规律:两种物体间隔着排成一行,排在两端的物体个数比中间多1个。
或者说排在中问的物体个数比两端的少1个。
解决周期问题主要是找到循环重复的部分,用有余除法进行解答,而探索变换的规律时要注意观察,比较和归纳总结,对学生的综合能力要求较高,学生要多加练习不同的题型。
考点精讲分析典例精讲考点1 数字排列规律【例1】找规律填空。
(1)1,5,9,13,17,( ),()……(2)10,11,13,16,( ),25……(3)1,3,7,15,31,( )……(4)1,1,2,3,5,8,( ),()……(5)4,9,16,25,( ),()……【精析】本题先比较相邻两个数的差,发现规律,(1)的差都相等是4,(2)的差是1 ,2,3,4……的有序自然数,(3)的差是2,4,8,16……的倍数关系数列,(4)的差是0,1,1,2,3又重复本来的数列,再总结下可以发现从第三个数开始每个数等于前两个数的和,(5)的差是5,7,9...…奇数列,再总结下发现每个数是自然数的平方。
然后根据规律填空即可。
【答案】(1)1,5,9,13,17,( 21),(25)……(2)10,11,13,16,(20),25……(3)1,3,7,15,31,(63)……(4)1,1,2,3,5,8,(13),(21)……(5)4,9,16,25,(36),(49)……【归纳总结】此类题是数列找规律题目,解决时可以先观察数字之间的联系,如果直接看不出来的话通常可以算出数列相邻两个数字的差,然后再观察差的规律,根据规律推出差,进行加法计算,算出空的数字,此题中的(I)是小学比较重要的等差数列,(2)和(3)可以称为二阶数列(相邻两数差构成基本数列),(4)是著名的兔子数列(也叫斐波那切数列),(5)是平方数列,总结这些数列的特点,可以帮助我们更好的解答数列找规律的题目。
2023-2024学年人教版六年级下册数学小升初专题训练:探索规律一、单选题1.把一些正方形纸片按规律拼成如下的图案,第( )个图案中恰好有365个纸片。
A.73B.81C.91D.932.正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形,……,以此类推,根据以上操作,若要得到53个正方形,需要操作的次数是( )A.12B.13C.14D.153.按如图的方法堆放小球。
第15堆有( )个小球。
A.95B.105C.110D.1204.用边长是1厘米的等腰三角形拼成等腰梯形如图:……按照这样的规律,第n个等腰梯形是由( )个这样的三角形拼成的。
A.2n B.3n C.2n+1D.2n+35.把一些规格相同的杯子叠起来(如图),4个杯子叠起来高20厘米,6个杯子叠起来高26厘米。
n个杯子叠起来的高度可以用下面( )的关系式来表示。
A.6n﹣10B.3n+11C.6n﹣4D.3n+86.用小棒摆六边形,按这个规律摆4个六边形需要( )根小棒。
A.23B.22C.21D.20二、判断题7.如图所示:,摆9个这样的三角形需21根小棒。
( )8.按0、1、3、6、10、15……的规律,下一个数应该是21。
( )9.用火柴棒按下图所示搭正方形,搭一个正方形用4根火柴棒,搭n个正方形用4n根火柴棒。
( )10.因为1÷A=0.0909…;2÷A=0.1818…;3÷A=027272…;所以4÷A=0.3636…。
( )11.根据33×4=132,333×4=1332,3333×4=13332,可知33333×4=133332。
( )12.按□□○▲□□○▲□□○▲……的规律排列,第35个是▲。
( )三、填空题13.观察图形的规律,第8个图形一共由 个小三角形组成。
小升初第二:找律解策略:(1)察,,,猜想和的合考察;(2)以退的解程;(3)是抽象思能力和算能力,形象思能力等的合考察;(4)累也是非常必要的。
以退:数字找律1、观察下列算式: 1 5 4 32, 2 6 4 42, 3 7 4 52, 4 8 4 62,请你在观察规律之后并用你得到的规律填空:___ ___ _____ 50 2 , 第 n 个式子呢 ?___________________2、用算器算下列各式,并将果填写在横上。
(回家独立完成)①1×7×15873=② 2×7×15873=③3×7×15873=④ 4×7×15873=你了什么律?把你的律用的言写出来:3、察下列序排列的等式: 9×0+1=19×1+2=119×2+3=219×3+4=319×4+5=41⋯⋯猜想:第 n 个等式 (n 正整数 ) .4、一个两位数的个位数是a,十位数字是 b,用代数式表示个两位数是__________________。
如何表示 baba 呢?推广之。
5、察下列各式: 3 1 =3,3 2 =9,3 3 =27,3 4 =81, 3 5 =243,3 6 =729⋯你能从中底数 3 的的个位数有什么律?根据你的律回答: 3 2004的个位数字是.6、察下列各式,你会什么律?3×5=15,而 15= 421。
5×7=35,而 35=62 1⋯⋯11×13= 143,而 143= 1221将你猜想到的律用只含一个字母的式子表示出来:__________7、:你能比20052006和 20062005的大小?以退:了解决个,我先把它抽象成数学,写出它的一般形式,即比 n n+1和 (n+1)n的大小( n 正整数) ,我从 n=1,n=2,n=3 ⋯⋯些的情况入手,从中律,,猜出。
2024年人教版六年级下册数学小升初专题训练:探索规律一、单选题1.1、4、9、a 、25、36……在这组数中a 是( )。
A .18B .16C .142.按下面的规律,第15个图形一共有( )个 • 。
A .60B .100C .2253.将小正方体按下图方式摆放在地上,接着往下摆,第6组小正方体有( )个面露在外面。
A .23B .25C .274.按照1,12,14,18,☆……的规律,☆代表的数是( )。
A .110B .116C .1125.根据999×2+2=2000,999×3+3=3000,999×4+4=4000,可知999×5+5=( )。
A .5000B .6000C .70006.如图,……如果有n 个三角形,需要( )根小棒。
A .3B .2n+1C .2n+2二、填空题7.,摆7个六边形需要 根小棒,摆n 个六边形需要 根小棒。
8.按规律填一填,24,32,40, ,56, , 。
9.已知9×0.7=6.3,99×0.77=76.23,999×0.777=776.223,9999 ×0.7777=7776.2223,那么99999×0.77777= 。
10.“37”是个有趣的数,你瞧:37×3=111,37×6=222。
写出下面两题的结果:37×9= ,37×15= 。
11.唐唐在桌面上用小正方体按下图方式摆放。
摆1个小正方体有5个面露在外面,摆2个小正方体有8个面露在外面……摆n 个小正方体有 个面露在外面。
12.林林用火柴棒在桌面上摆图形(如下图),已经摆了3个正方形。
照这样继续摆下去,要摆出6个正方形,一共需要 根火柴棒。
13.已知:2+ 23=22×23,3+ 38=32×38,4+ 415=42×415,5+ 524=52×524,按照这个规律,下一个式子是 。
小升初重点中学真题之找规律篇1、有一批长度分别为1, 2, 3, 4, 5, 6, 7, 8, 9, 10和11厘米的细木条,它们的数量都足够多,从中适当选取3根木条作为三条边,可围成一个三角形;如果规定底边是11厘米,你能围成多少个不同的三角形?2、有7双白手套,8双黑手套,9双红手套放在一只袋子里。
一位小朋友在黑暗中从袋中摸取手套,每次摸-只,但无法看清颜色,为了确保能摸到至少6双手套,他最少要摸出手套()只。
(手套不分左、右手,任意二只可成一双)。
3、某次中外公司谈判会议开始10分钟听到挂钟打钟(只有整点时打钟,儿点钟就响儿下),整个会议当中共听到14下钟声,会议结束时,时针和分针恰好成90度角,求会议开始的时间结束的时间及各是什么时刻。
4、4道单项选择题,每题都有A、B、C、D四个选项,其中每题只有一个选项是正确的,有800名学生做这四道题,至少有人的答题结果是完全一样的?5、设有十个人各拿着一只提桶同时到水龙头前打水,设水龙头注满第一个人的桶需要1分钟,注满第二个人的桶需要2分钟,…….如此下去,当只有两个水龙头时,巧妙安排这十个人打水,使他们总的费时时间最少.这时间等于分钟.在右图的方格表中,每次给同一行或同一列的两个数加1,经过若干次后,能否使表中的四个数同时都是5的倍数?为什么?1 24 3预测2甲、乙两厂生产同一规格的上衣和裤子,甲厂每月用16天生产上衣,14天做裤子,共生产448套衣服(每套上衣、裤子各一件);乙厂每月用12天生产上衣,18天生产裤子,共生产720套衣服。
两厂合并后,每月(按30天计算)最多能生产多少套衣服?找规律篇之答案1、【解】由于数量足够多,所以考虑重复情况;现在底边是11,我们要保证的是两边之和大于第三边,这样我们要取出的数字和大于11.情况如下:一边长度取11,另一边可能取1〜11总共11种情况;一边长度取10,另一边可能取2〜10总共9种情况;• ♦♦♦• •一边长度取6,另一边只能取6总共1种;下面边长比6小的情况都和前面的重复,所以总共有1+3+5+7+9+11=36种。
第六讲找规律填数1、会找简单数列的规律;2、掌握几种简单的数列,会解决一些简单的应用问题;3、培养学员推理分析问题能力,养成良好的学习习惯。
根据已知的数之间的关系,进行合理的分析、推理,找出规律,得到应该填的数。
把一些数按一定的规律排列起来,让我们填上空缺的数,这就需要我们仔细观察前后两个数、上下两个数或间隔的两个数之间的关系,找出规律,并填出空缺的数。
把一些数按一定的规律排列成数表,让我们填上空缺的数,这就需要我们仔细观察上下、左右、对角上的数之间的关系,找出规律,并填出空缺的数。
填好之后,要检验其合理性。
找到规律后,在括号内填入合适的数。
① 35,(),29,26,(),()② 9,18,27,(),(),()③ 1,2,4,7,11,(),()④ 3,6,8,11,13,(),()【解析】① 35,( 32 ),29,26,( 23 ),( 20 )② 9,18,27,(36 ),( 45 ),( 54 )③ 1,2,4,7,11,( 16 ),( 22 )④ 3,6,8,11,13,( 16 ),( 18 )找规律填数。
【解析】中心数等于四个角上四个数字的和。
所以?处填0。
讲演者:得分:讲演者:得分:找规律填数。
【解析】下面两个数的和等于上面的数。
找到规律后,在括号内填入合适的数。
① 198,297,396,(),()② 3142,1423,4231,(),()③ 1,2,3,5,8,( 13 ),( 21 ),34④ 1,3,7,13,21,(),()【解析】① 198,297,396,( 495 ),( 594 )② 3142,1423,4231,( 2314 ),( 3142 )③ 1,2,3,5,8,( 13 ),( 21 ),34④ 1,3,7,13,21,( 31 ),( 43 )找规律填出空缺的数。
【解析】上面一个数比下面一个数多2,右面一个数比左面一个数多5。
22+2=24,22+5=27。
名校真题测试卷6 (找规律篇)时间:15分钟满分5分姓名_________ 测试成绩_________1 (06年清华附中考题)如果将八个数14,30,33,35,39,75,143,169平均分成两组,使得这两组数的乘积相等,那么分组的情况是什么?2 (05年三帆中学考题)观察1+3=4 ;4+5=9 ;9+7=16 ;16+9=25 ;25+11=36 这五道算式,找出规律,然后填写20012+()=200223(06年西城实验考题)一串分数:12123412345612812 ,,,,,,,,,,,,.....,,,......,33,55557777779991111其中的第2000个分数是 .4 (06年东城二中考题)在2、3两数之间,第一次写上5,第二次在2、5和5、3之间分别写上7、8(如下所示),每次都在已写上的两个相邻数之间写上这两个相邻数之和.这样的过程共重复了六次,问所有数之和是多少? 2......7......5......8 (3)5 (04年人大附中考题)请你从01、02、03、…、98、99中选取一些数,使得对于任何由0~9当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的数字,是你所选出的那些数中当中的一个。
为了达到这些目的。
(1)请你说明:11这个数必须选出来;(2)请你说明:37和73这两个数当中至少要选出一个;(3)你能选出55个数满足要求吗?【附答案】1 【解】分解质因数,找出质因数再分开,所以分组为33、35、30、169和14、39、75、143。
2 【解】上面的规律是:右边的数和左边第一个数的差正好是奇数数列3、5、7、9、11……,所以下面括号中填的数字为奇数列中的第2001个,即4003。
3 【解】分母为3的有2个,分母为4个,分母为7的为6个,这样个数2+4+6+8…88=1980<2000,这样2000个分数的分母为89,所以分数为20/89。
4 【解】:第一次写后和增加5,第二次写后的和增加15,第三次写后和增加45,第四次写后和增加135,第五次写后和增加405,……它们的差依次为5、15、45、135、405……为等比数列,公比为3。
它们的和为5+15+45+135+405+1215=1820,所以第六次后,和为1820+2+3=1825。
5 【解】 (1),11,22,33,…99,这就9个数都是必选的,因为如果组成这个无穷长数的就是1~9某个单一的数比如111…11…,只出现11,因此11必选,同理要求前述9个数必选。
(2),比如这个数3737…37…,同时出现且只出现37和37,这就要求37和73必须选出一个来。
(3),同37的例子,01和10必选其一,02和20必选其一,……09和90必选其一,选出9个12和21必选其一,13和31必选其一,……19和91必选其一,选出8个。
23和32必选其一,24和42必选其一,……29和92必选其一,选出7个。
………89和98必选其一,选出1个。
如果我们只选两个中的小数这样将会选出9+8+7+6+5+4+3+2+1=45个。
再加上11~99这9个数就是54个。
第六讲 小升初专项训练 找规律篇一、小升初考试热点及命题方向找规律问题在小升初考试中几乎每年必考,但考题的分值较低,多以填空题型出现。
在刚刚结束的06年小升初选拔考试中,人大附中,首师附中,十一学校,西城实验,三帆,西外,东城二中和五中都涉及并考察了这一类题型。
二、2007年考点预测07年的这一题型必然将继续出现,题型的出题热点在利用通项表达式(即字母表示)总结出已知条件中等式的内在规律和联系,这一类题型主要考察学生根据已有条件进行归纳与猜想的能力,希望同学们多加练习。
1 与周期相关的找规律问题【例1】、(★★)7n 化小数后,小数点后若干位数字和为1992,求n 为多少? 【解】7n 化小数后,循环数字和都为27,这样1992÷27=73…21,所以n=6。
【例2】、(★★)将八个数从左到右排成-行,从第3个数开始,每个数都恰好等于它前面两个数之和.如果第7个数与第8个数分别是81,131,那么第1个数是【来源】 1993年小学数学奥林匹克初赛B 卷第5题【解】 第8个数=第6个数+第7个数所以,第6个数=第8个数-第7个数=131—81=50同理,第5个数=81—50=31,第4个数=50—31=19,第3个数:31—19=12,第2个数=19- 12= 7,第1个数=12- 7= 5.【例3】、(★★★)某人连续打工24天,赚得190元(日工资10元,星期六做半天工,发半工资,星期日休息,无工资).已知他打工是从1月下旬的某一天开始的,这个月的1号恰好是星期日. 问:这人打工结束的那一天是2月几日?【来源】第五届“华杯赛”初赛第16题【解】因为3×7<24<4×7,所以24天中星期六和星期日的个数,都只能是3或4.又,190是10的整数倍。
所以24天中的星期六的天数是偶数.再由240-190=50(元),便可知道,这24天中恰有4个星期六、3个星期日.星期日总是紧接在星期六之后的,因此,这人打工结束的那一天必定是星期六.由此逆推回去,便可知道开始的那一天是星期四.因为1月1日是星期日,所以1月22日也是星期日,从而1月下旬唯一的一个星期四是1月26日.从1月26日往后算,可知第24天是2月18日,这就是打工结束的日子.2 图表中的找规律问题【例4】、(★★)将自然数1,2,3,4,…按箭头所指方向顺序排列(如图),依次在2, 3,5,7,10,…等数的位置处拐弯.(1)如果2算作第-次拐弯处,那么,第45次拐弯处的数是 .(2)从1978到2010的自然数中,恰在拐弯处的数是.【来源】北京市第十二届“迎春杯”决赛第三题第3题【解】 (1)仿照E1—026,画23条竖线,23条横线,第45次拐弯处的数是23×23+1=530(2)拐弯处的数是n×n+1或n×(n+1)+1(n是自然数).由于44×44+1=1937<1978,45×45十1=2026>2010,44×45+1=1981在1978、2010之间.所以恰在拐弯处的数是1981.【解】根据“任意三个连续的小圆圈内三个数的连乘积都是891”,可知任意一个小圆圈中的数和与它相隔2个小圆圈的小圆圈中的数是相同的.于是,B=891÷(9×9)=11.【例5】(★★★)自然数如下表的规则排列:求:(1)上起第10行,左起第13列的数;(2)数127应排在上起第几行,左起第几列?【解】:本题考察学生“观察—归纳—猜想”的能力.此表排列特点:①第一列的每一个数都是完全平方数,并且恰好等于所在行数的平方;②第一行第n 个数是(n-1)2+1,②第n 行中,以第一个数至第n 个数依次递减1;④从第2列起该列中从第一个数至第n 个数依次递增1.由此(1)〔(13-1)2+1〕+9=154;(2)127=112+6=〔(12-1)2+1〕+5,即左起12列,上起第6行位置.3 较复杂的数列找规律【例6】、(★★★)设1,3,9,27,81,243是6个给定的数。
从这六个数中每次或者取1个,或者取几个不同的数求和(每一个数只能取1次),可以得到一个新数,这样共得到63个新数。
把它们从小到大一次排列起来是1,3,4,9,10,12,…,第60个数是______。
【来源】1989年小学数学奥林匹克初赛第15题【解】最大的(即第63个数)是1+3+9+27+81+243=364第60个数(倒数第4个数)是364-1-3=360。
【例7】、(★★★)在两位数10,11,…,98,99中,将每个被7除余2的数的个位与十位之间添加-个小数点,其余的数不变.问:经过这样改变之后,所有数的和是多少?【来源】 第五届“华杯赛”初赛第15题【解】原来的总和是10+11+…+98+99=290)9910(⨯+=4905,被7除余2的两位数是7×2+2=16,7×3+2=23,…,7×13十2=93.共12个数.这些数按题中要求添加小数点以后,都变为原数的101,因此这-手续使总和减少了(16+23+…+93)×(1-101)=212)9316(⨯+×109=588.6所以,经过改变之后,所有数的和是4905—588.6=4316.4.【例8】、(★★★)小明每分钟吹-次肥皂泡,每次恰好吹出100个.肥皂泡吹出之后,经过1分钟有-半破了,经过2分钟还有201没有破,经过2分半钟全部肥皂泡都破了·小明在第20次吹出100个新的肥皂泡的时候,没有破的肥皂泡共有 个.【来源】 1990年小学数学奥林匹克决赛第8题【解】小明在第20次吹出100个新的肥皂泡的时候,第17次之前(包括第17次)吹出的肥皂泡全破了.此时没有破的肥皂泡共有 100+100×201+100×21=155(个).4 与斐波那契数列相关的找规律【引言】:有个人想知道,一年之内一对兔子能繁殖多少对?于是就筑了一道围墙把一对兔子关在里面。
已知一对兔子每个月可以生一对小兔子,而一对兔子出生后在第二个月就开始生小兔子。
假如一年内没有发生死亡现象,那么,一对兔子一年内能繁殖成多少对?现在我们先来找出兔子的繁殖规律,在第一个月,有一对成年兔子,第二个月它们生下一对小兔,因此有二对兔子,一对成年,一对未成年;到第三个月,第一对兔子生下一对小兔,第二对已成年,因此有三对兔子,二对成年,一对未成年。
月月如此。
第1个月到第6个月兔子的对数是:1,2,3,5,8,13。
我们不难发现,上面这组数有这样一个规律:即从第3个数起,每一个数都是前面两个数的和。
若继续按这规律写下去,一直写到第12个数,就得:1,2,3,5,8,13,21,34,55,89,144,233。
显然,第12个数就是一年内兔子的总对数。
所以一年内1对兔子能繁殖成233对。
在解决这个有趣的代数问题过程中,斐波那契得到了一个数列。
人们为纪念他这一发现,在这个数列前面增加一项“1”后得到数列:1,1,2,3,5,8,13,21,34,55,89,……叫做“斐波那契数列”,这个数列的任意一项都叫做“斐波那契数”。
【例9】(★★)数学家泽林斯基在一次国际性的数学会议上提出树生长的问题:如果一棵树苗在一年以后长出一条新枝,然后休息一年。
再在下一年又长出一条新枝,并且每一条树枝都按照这个规律长出新枝。
那么,第1年它只有主干,第2年有两枝,问15年后这棵树有多少分枝(假设没有任何死亡)?【解】 1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584绝对是一棵大树。