1.4有理数的加减例题与讲解
- 格式:doc
- 大小:2.09 MB
- 文档页数:6
1.4 有理数的加减知识点一 有理数加法法则1. 同号两数相加,取与加数相同的符号,并把绝对值相加2. 异号两数相加,绝对值相等时和为0,;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3. 一个数与0相加,扔得这个数。
【注意】(1)有理数加法运算要求按照“一定,二求,三和差”的原则计算,即第一步确定和的符号;第二步分别求加数的绝对值;第三部分析绝对值相加还是相减(2)法则的叙述体现了分类思想。
有理数加法共分三种情况:同号两数相加、异号两束相加、一个数与0相加。
其中“异号两数相加”又分为绝对值相等的异号两数相加(即互为相反数的两个数相加)和绝对值不相等的异号两数相加。
(3)同号两数相加,可推广到三个或三个以上同号数相加。
例1 计算(1))3()7(-+- (2))6()4(-++ (3)312)312(+- (4)0)2.3(+-知识点二 有理数减法法则法则:减去一个数,等于加上这个数的相反数【注意】(1)有理数减法法则的作用是将有理数的减法转化为加法;(1)将减法装化为加法时,注意两变:一是减号变加号;二是减数变为其相反数。
例2 计算(1))5(3-- (2)210-(3))7()3(--- (4))6.3(2.5+- (5)[])3()8()5(--+--知识点三 有理数加法的运算律小学学过的加法运算律在有理数范围内仍然适用(1)加法交换律:a b b a +=+(2)加法结合律:)()(c b a c b a ++=++例3 计算(1))9()7()4(5)2(-+++-++- (2)83)432()851()432(+-+-++知识点四 有理数加减混合运算的方法和步骤★方法和步骤:(1)减法转化成加法;(2)省略加号和括号;(3)运用加法运算律;(4)利用加法法则计算出结果。
简单地讲,就是一统一,二省略,三运用,四计算。
例4 把)2()4()5()3(---++--写成省略加号和括号的形式,并把表示和的算式读出来。
1.4有理数的加减法(基础)知识讲解(总7页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除有理数的加减法(基础)【学习目标】1.掌握有理数加法的意义,法则及运算律,并会使用运算律简算;2.掌握有理数减法的法则和运算技巧,认识减法与加法的内在联系;3.熟练将加减混合运算统一成加法运算,理解运算符号和性质符号的意义,运用加法运算律合理简算,并会解决简单的实际问题.【要点梳理】要点一、有理数的加法1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.要点诠释:利用法则进行加法运算的步骤:(1)判断两个加数的符号是同号、异号,还是有一个加数为零,以此来选择用哪条法则.(2)确定和的符号(是“+”还是“-”).(3)求各加数的绝对值,并确定和的绝对值(加数的绝对值是相加还是相减).3.有理数加法运算律加法交换律文字语言两个数相加,交换加数的位置,和不变符号语言a+b=b+a加法结合律文字语言三个数相加,先把前两个数相加,或者先把后两个数相加,和不变符号语言(a+b)+c=a+(b+c)要点二、有理数的减法1.定义:已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,例如:(-5)+=7,求,减法是加法的逆运算.要点诠释:(1)任意两个数都可以进行减法运算.(2)几个有理数相减,差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值.2.法则:减去一个数,等于加这个数的相反数,即有:()a b a b-=+-.要点诠释:将减法转化为加法时,注意同时进行的两变,一变是减法变加法;二变是把减数变为它的相反数”.如:要点三、有理数加减混合运算将加减法统一成加法运算,适当应用加法运算律简化计算.【典型例题】类型一、有理数的加法运算1.计算:(1)(+20)+(+12); (2)1223⎛⎫⎛⎫-+-⎪ ⎪⎝⎭⎝⎭; (3)(+2)+(-11);(4)+(+; (5)+(+; (6)(-5)+0.【总结升华】绝对值不等的异号两数相加,是有理数加法的难点,在应用法则时,一定要先确定符号,再计算绝对值.举一反三:【变式1】计算:113343⎛⎫⎛⎫-++⎪ ⎪⎝⎭⎝⎭(+10)+(-11);⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭12-1+-23类型二、有理数的减法运算2.计算:(1)(-32)-(+5);(2)(+2)-(-25).【思路点拨】此题是有理数的减法运算,先按照减法法则将减法转化为加法,再按照有理数的加法进行计算.【答案与解析】法一:法二:(1)原式=-32-5=-32+(-5)=-37;(2)原式=2+25=27【总结升华】算式中的“+”或“-”既可以看作运算符号按法则进行计算,也可以看作是性质符号按多重符号化简进行计算.类型三、有理数的加减混合运算3.计算,能用简便方法的用简便方法计算.(1) 26-18+5-16 ; (2)(+7)+(-21)+(-7)+(+21)(3) ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21111-1+1++7+-2+-832432(4) 113.587(5)5(7)3( 1.587)24⎛⎫⎛⎫--+-++-+-+ ⎪ ⎪⎝⎭⎝⎭(5)132.2532 1.87584+-+(6)1355354624618-++-【总结升华】在进行加减混合的运算时,(1)先将各式中的减法运算转化为加法运算;(2)观察各加数之间的关系,再运用“技巧”适当交换加数的位置,注意交换时各加数的带着符号一起交换.举一反三:【变式】用简便方法计算: (1)+++(++(++ (2) 2)324(83)65()851(43-++-+-+类型四、有理数的加减混合运算在实际中的应用4.小虫从点O 出发在一条直线上来回爬行,向右爬行的路程记为正,向左爬行的路程记为负,爬行的各段路程依次为:+5,-3,+10,-8,-6,+12,-10.(单位:cm )(1) 小虫最后是否回到出发地O 为什么(2) 小虫离开O 点最远时是多少(3) 在爬行过程中,如果每爬行1 cm 奖励1粒芝麻,则小虫一共可以得到多少粒芝麻【思路点拨】题目中给出的各数由两部分组成:一是性质符号,表示的爬行的方向,二是绝对值部分,表示爬行的路程大小.所以若直接将它们相加得到的和也包括两层含义:方向和路程大小;若只把它们的绝对值相加,则最后结果只表示路程的大小.【总结升华】利用有理数的加减混合运算可以解决很多现实生活中的实际问题,这就需要我们认真观察、大胆分析和设想.举一反三:【变式1】华英中学七年级(14)班的学生分成五组进行答题游戏,每组的基本分为100分,答第1组 第2组 第3组 第4组 第5组100 150 350 -400 -100(2)第一名超过第五名多少分【变式2】某产粮专业户出售粮食8袋,每袋重量(单位:千克)如下:197,202,197,203,200,196,201,198.计算出售的粮食总共多少千克【巩固练习】有理数的加减法(基础)一、选择题1.某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高( ).A.-10℃ B.-6℃ C.6℃ D.10℃2.如果□+2=0,那么“□”内填的数的是( ).A.2 B.-2 C.0 D.-13.两个有理数相加,和小于其中一个加数而大于另一个加数,需满足()A.两个数都是正数 B.两个数都是负数C.一个是正数,另一个是负数 D.至少有一个数是零4.下列说法中正确的是A.正数加负数,和为0B.两个正数相加和为正;两个负数相加和为负C.两个有理数相加,等于它们的绝对值相加D.两个数的和为负数,则这两个数一定是负数5.下列说法正确的是( )A.零减去一个数,仍得这个数B.负数减去负数,结果是负数C.正数减去负数,结果是正数D.被减数一定大于差6.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±kg,(25±kg,(25±kg的字样,从中任意拿出两袋,它们的质量最多相差 ( )A. B. C. D.7.(呼和浩特) -3+5的相反数是( ).A.2 B.-2 C.-8 D.8二、填空题a b c c在数轴上对应点位置如图所示,用“>”或“<”1.有理数,,(1)|a|______|b|;(2)a+b+c______0:(3)a-b+c______0;(4)a+c______b;(5)c-b______a.2. 如果a>0,b<0,a+b<0,那么a,b,- b,-a大小关系是3.某月股票M开盘价20元,上午10点跌元,下午收盘时又涨了元,则股票这天的收盘价是_______.4.列出一个满足下列条件的算式:(1)所有的加数都是负数,和为-5,________;(2)一个加数是0,和是-5________;(3)至少有一个加数是正整数,和是-5,________.5. 数学活动课上,王老师给同学们出了一道题:规定一种新运算“☆”对于任意两个有理数a和b,有a☆b=a-b+1,请你根据新运算,计算(2☆3)☆2的值是 .6.(吉林)如图所示,数轴上A、B两点所表示的有理数的和是_________.三、解答题1.计算题(1)232(1)(1)( 1.75)343-----+-(2)132.1253(5)(3.2)58-+---+(3)21772953323+---(4)231321234243--++-+(5)2312()()3255---+--+-(6)123456782001200220032004-+-+-+-+--+-+2. 已知:|a|=2,|b|=3,求a+b的值.3. 某人用400元购买了8套儿童服装,准备以一定的价格出售,如果以每套55元的价格为标准,超出的记为正数,不足的记为负数,记录如下:(单位:元)+2,-3,+2,-1,-2,+1,-2,0(1)当他卖完这8套服装后的总收入是多少(2)盈利(或亏损)了多少元。
1.4有理数的加减(一)—有理数的加法有理数加法运算法则题型一:有理数加法法则【例题1】(2021·安徽马鞍山市·七年级期末)计算25-+的结果是( )A .7-B .3-C .3D .7【答案】C【分析】根据有理数的加法法则,异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,计算选出正确答案.【详解】解:(-2)+5=5-2=3.故选择:C .【点睛】本题考查了有理数的加法,熟练掌握有理数的加法法则是解题关键.变式训练【变式1-1】.(2020·涡阳县高炉镇普九学校七年级月考)23-+的计算结果是( )A .-5B .-1C .1D .-6【答案】C【分析】根据有理数的加法运算法则进行计算.【详解】解:231-+=.故选:C .【点睛】本题考查有理数的加法,解题的关键是掌握有理数的加法运算法则.1【变式1-2】(2017·安徽九年级专题练习)计算32-+的结果是( )A .1-B .1C .5D .5-【答案】A【分析】异号两数相加,取-3的符号,用3-2计算即可.【详解】-3+2=-(3-2)=-1.故选择:A .【点睛】本题考查有理数的加法,掌握加法法则是解题的关键..【变式1-3】(2021·天津北辰区·九年级二模)计算()53-+的结果是( )A .1-B .2-C .2D .15【答案】B【分析】根据有理数加法法则计算即可得答案.【详解】()53-+=-2,故选:B .【点睛】本题考查有理数的加法,熟练掌握运算法则是解题关键有理数加法运算律题型二:有理数加法运算率【例题2】(2020·辽宁锦州市·七年级期中)小红解题时,将式子()()()8384-+-++-先变成()()()8834-++-+-éùéùëûëû再计算结果,则小红运用了( ).A .加法的交换律和结合律B .加法的交换律C .加法的结合律D .无法判断【答案】A【分析】根据有理数加法运算性质分析,即可得到答案.【详解】将式子()()()8384-+-++-先变成()()()8834-++-+-éùéùëûëû再计算结果,则小红运用了:加法的交换律和结合律故选:A .【点睛】本题考查了有理数加法运算的知识;解题的关键是熟练掌握有理数加法运算性质,从而完成求2解.变式训练【变式2-1】(2019·利辛县阚疃金石中学)下列运用加法交换律正确的是( )A .-3-8+9-11=-3-8+11-9B .-3+8-9-11=-11+3+8-9C .-8+5-2+13=-8-2+5+13D .-8+5-2-13=-8+5+2-13【答案】C【分析】加法交换律+=+a b b a ,在有理数中交换律使用时需要带着符号一起移动.【详解】A 选项,右边11和9的符号与左边不一致,错误;B 选项,右边3的符号与左边不一致,错误;C 选项 ,-8+5-2+13=-8-2+5+13,左右一致,正确;D 选项,右边2的符号与左边不一致,错误;故选C.【点睛】本题考查有理数加法运算律,理解运算律在有理数中的区别是解题的关键,交换过程中相同数字的符号不发生改变.【变式2-2】(2020·四川师范大学实验外国语学校七年级月考)()()2.8 3.6 3.6-+-+【答案】-2.8【分析】利用加法结合律进行计算即可.【详解】()()2.8 3.6 3.6-+-+=()()2.8 3.6 3.6-+-+éùëû 2.80=-+ 2.8=-.【点睛】本题考查了有理数加法运算,灵活运用加法结合律进行简便运算是解答本题的关键.【变式2-3】(2019·全国七年级课时练习)计算:1(3)8-+(-2.16)+814+318+(-3.84)+(-0.25)+45.【答案】425.【分析】根据加法的交换律和结合律可把互为相反数的项、相加得整数的项先相加,所得结果再根据加法法则计算即可.【详解】解:原式=()()()111433 2.16 3.8480.258845éùæöéù-++-+-++-+éùç÷êúëûêúèøëûëû =0+(-6)+8+45=425.有理数加法符合问题—结合数轴题型三:有理数加法符合问题—结合数轴【例题3】(2020·安岳)有理数a 、b 在数轴上的位置如图所示,且|a |<|b |,下列各式中正确的个数是( )①a +b <0;②b ﹣a >0;③11b a>- ;④3a ﹣b >0;⑤﹣a ﹣b >0.A .2个B .3个C .4个D .5个【答案】C【分析】数轴上右边的点表示的数总大于左边的点表示的数.原点左边的数为负数,原点右边的数为正数.从图中可以看出b <0<a ,|b|>|a|,再根据有理数的运算法则判断即可.【详解】根据数轴上a ,b 两点的位置可知,b <0<a ,|b|>|a|,①根据有理数的加法法则,可知a+b <0,故正确; ②∵b <a ,∴b-a <0,故错误;③∵|a |<|b |,∴11||||a b >∵1b<0,10a -<,11||||b b =,11||||a a -=根据两个负数比较大小,绝对值大的反而小∴11b a>-,故正确;④3a ﹣b=3a +(- b )∵3a>0,-b>0∴3a ﹣b>0,故正确;⑤∵﹣a >b∴- a ﹣b>0.3故①③④⑤正确,选C.【点睛】本题考查根据点在数轴的位置判断式子的正负,本部分的题主要根据,数轴上左边的点表示的数总比右边的点表示的数要小,及有理数的运算规律来判断式子的大小.变式训练【变式3-1】(2020·江西省于都中学七年级月考)有理数a 、b 在数轴上的位置如图所示,现有下列结论:①0a b +<;②0b a ->;③11b a>-;④30a b ->⑤0a b -->.其中正确的有( )A .①②③B .③④⑤C .①②③④D .①③④⑤【答案】D【分析】根据有理数a 、b 在数轴上的位置判断出a 、b 的取值范围,进而根据有理数的大小关系计算即可得出结论.【详解】由图可知0a >,0b a b <<,,+0<000a b b a a b a b \<-->-->,,3,,11b a>-因此②错误,①③④⑤正确故选:D .【点睛】本题考查实数与数轴、有理数的大小比较等知识,是基础考点,难度较易,掌握相关知识是解题关键.【变式3-2】(2020·北大附属嘉兴实验学校七年级月考)如图,若0a c +=,则该数轴的原点可能为( )A .A 点B .B 点C .C 点D .D 点【答案】B【分析】由0a c +=,a c ¹可知数a 与数c 互为相反数,可得B 是数轴的原点.【详解】解:∵0a c +=,并根据图可知a c ¹∴数a 与数c 互为相反数,∴该数轴的原点可能为点B .故选:B .【点睛】本题考查数轴上的点的特点和相反数的性质,熟悉相关性质是解题的关键.【变式3-3】(2010·江苏宿迁市·中考真题)有理数a 、b 在数轴上的位置如图所示,则+a b 的值()A .大于0B .小于0C .小于aD .大于b【答案】A【分析】先根据数轴的特点判断出a ,b 的符号,再根据其与原点的距离判断出其绝对值的大小,然后根据有理数的加法法则得出结果.【详解】根据a ,b 两点在数轴上的位置可知,a <0,b >0,且|b|>|a|,所以a+b >0.故选A .【点睛】此题考查数轴,绝对值,有理数的加法法则.解题关键在于用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.题型四:有理数加法符合问题—结合绝对值【例题4】(2017·山东德州市·七年级期末)若3, 2 ,a b ==且0,a b -<则+a b 的值等于 ( )A .1或5B .1或-5C .-1或-5D .-1或5【答案】C【分析】根据题意,利用绝对值的代数意义然后结合0,a b -<求出a 与b 的值,代入原式计算即可求出值.【详解】解:∵3,2,a b ==∴3a =±,2b =±,∵0,a b -<∴=-3a ,2b =±,∴+a b =32=1-+-或+a b =()32=5-+--.故选:C .【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.变式训练【变式4-1】(2020·黑龙江齐齐哈尔市·七年级期末)若|a|=3,|b|=4且a b >,则a b +=_______.【答案】-1或-7【分析】根据3a =,b 4=,a >b ,得出a 、b 的值,再代入计算即可.【详解】解:∵3a =,b 4=,∴a=±3,b=±4,又∵a >b ,∴a=3,b=-4或a=-3,b=-4,当a=3,b=-4时,a+b=3+(-4)=-1,当a=-3,b=-4时,a+b=(-3)+(-4)=-7,因此a+b 的值为:-1或-7.故答案为:-1或-7.【点睛】本题考查了有理数的加法,绝对值的意义,掌握有理数加法的计算方法是正确计算的前提,根据绝对值的意义求出a 、b 的值是得出答案的关键.【变式4-2】(2021·黑龙江哈尔滨市·七年级期末)已知:2a -=,||6b =,且a b >,则a b +=__.【答案】8-.【分析】根据绝对值的性质求出b ,再根据有理数的加法计算即可.【详解】解:2a -=Q ,||6b =,且a b >,2a \=-,6b =-,2(6)8a b \+=-+-=-,故答案为:8-.【点睛】本题考查了有理数的加法,绝对值的性质,熟练掌握运算法则是解题的关键.【变式4-3】(2019·江苏省南通市北城中学七年级期末)如果 a+b+c =0,且|a|>|b|>|c|.则下列式子中可能成立的是( )A .c >0,a <0B .c <0,b >0C .b >0,c <0D .b=0【答案】A【分析】根据有理数的加法,一对相反数的和为0,可得a 、b 、c 中至少有一个为正数,至少有一个为负数,又|a|>|b|>|c|,那么|a|=|b|+|c|,进而得出可能存在的情况.【详解】解:∵a+b+c=0,∴a 、b 、c 中至少有一个为正数,至少有一个为负数,∵|a|>|b|>|c|,∴|a|=|b|+|c|,∴可能c 、b 为正数,a 为负数;也可能c 、b 为负数,a 为正数.故选:A .【点睛】本题主要考查的是有理数的加法,绝对值的意义,掌握有理数的加法法则是解题的关键.题型五:有理数加法的实际应用【例题5】(2020·四川阿坝藏族羌族自治州·中考真题)气温由-5℃上升了4℃时的气温是( )A .-1℃B .1℃C .-9℃D .9℃【答案】A【分析】根据题意列出算式,计算即可.【详解】解:根据题意,得-5+4=-1,则气温由-5℃上升了4℃时的气温是-1℃.故选:A .【点睛】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.变式训练【变式5-1】(2018·湖北武汉市·中考真题)温度由﹣4℃上升7℃是( )A .3℃B .﹣3℃C .11℃D .﹣11℃【答案】A【详解】【分析】根据题意列出算式,再利用加法法则进行计算即可得.【详解】-4+7=3,所以温度由﹣4℃上升7℃是3℃,故选A .【点睛】本题主要考查有理数的加法,解题的关键是熟练掌握有理数的加法法则.【变式5-2】(2019·马鞍山市第十二中学七年级期中)华罗庚说:“数学是中国人民擅长的学科”,中国是最早认识负数并进行运算的国家.在古代数学名著《九章算术》里,就记载了利用算筹实施“正负数”的方法.如左图,表示的是()34+-的过程,按照这种方法,右图表示的过程是在计算()A .()52+-B .()52-+C .()()52-+-D .52+【答案】A【分析】由左图可以看出白色表示正数,黑色表示负数,观察右图即可列式.【详解】解:由左图知:白色表示正数,黑色表示负数,所以右图表示的过程应是在计算()52+-,故选:A .【点睛】此题考查了有理数的加法,解题的关键是:理解左图表示的计算.【变式5-3】(2020·浙江杭州市·七年级期末)记运入仓库的大米吨数为正,则( 3.5)( 2.5)++-表示( )A .先运入大米3.5吨,后运入大米2.5吨B .先运出大米3.5吨,后运入大米2.5吨C .先运入大米3.5吨,后运出大米2.5吨D .先运出大米3.5吨,后运出大米2.5吨【答案】C【分析】先理解“正”和“负”的相对性,得到运入和运出分别记作正和负,从而得到算式的意义.【详解】解:∵运入仓库的大米吨数为正,则运出仓库的大米吨数为负,∴( 3.5)( 2.5)++-表示:先运入大米3.5吨,后运出大米2.5吨,故选:C .【点睛】此题考查正数和负数问题,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.题型六:有理数加法的综合运用【例题6】(2020·颍上县第五中学七年级月考)某检修小组乘汽车从A 地出发,沿一条东西方向的公路检修线路,如果规定向东行驶为正,向西行驶为负,到收工时所走的路程单位(km )如下:10+4+2+3+-8-2-12-85+(1)在第 次纪录时距A 地最远.(2)求收工时距A 地多远?(3)若汽车耗油0.4L/km ,汽油价格为6.7元/L ,则小王共花费了多少元钱?【答案】(1)4;(2)收工时距A 地6km ;(3)小王共花费了144.72元钱【分析】(1)分别写出各次记录时距离A 地的距离,然后判断即可;(2)把所有行驶记录相加,再根据正数和负数的意义解答;(3)把所有行驶记录的绝对值相加,再乘以0.4,最后乘以6.7计算即可得解.【详解】解:(1)第1次到第9次记录时距离A 的分别为:10,14,16,19,11,9,3,11,6,所以,距A 地最远时是第4次;故答案为:4.(2)10+4+2+3-8-2-12-8+5=-6(km ),︱-6︱=6,答:收工时距A 地6km .(3)︱+10︱+︱+4︱+︱+2︱+︱+3︱+︱-8︱+︱-2︱+︱-12︱+︱-8︱+︱+5︱=54(km )54×0.4×6.7=144.72(元)答:小王共花费了144.72元钱.【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.变式训练【变式6-1】(2021·吉林延边朝鲜族自治州·七年级期末)2020年,全球受到“新冠”疫情的严重影响,我国在这场没有硝烟的战场上取得了阶段性胜利.为做好防护工作,某校7年级6个班计划各采购400只应急口罩.若某班采购到450只,就记作+50;购买380只,就记作-20.各班的采购情况如下:班级1班2班3班4班5班6班差值(只)+50-100+100+50+20-30(1)采购量最多的班比采购量最少的班多多少只?(2)这6个班共采购应急口罩多少只?【答案】(1)200只;(2)2490只【分析】(1)根据题意列式计算求解即可(2)根据有理数的加法列式计算求解即可【详解】解:(1)根据题意:()100100200--=(只).∴采购量最多的班比采购量最少的班多200只.(2)()()5010010050203040062490+-++++-+⨯=(只)【点睛】本题考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是具有相反意义的量.【变式6-2】(2018·苏州新草桥中学七年级月考)某汽车厂计划半年内每月生产汽车20辆,由于另有任务,每月上班人数不一定相等,实际每月生产量与计划量相比情况如下表(增加为正,减少为负):月份一二三四五六增减/辆3+2-1-4+2+5-(1)生产量最多的一月比生产量最少的一月多生产多少辆?(2)半年内总生产量是多少?比计划多了还是少了,多或少了多少?【答案】(1)9辆;(2)半年内生产总量121辆;比计划多了;多了1辆【分析】(1)由上表可知,产量最多的月份是四月,产量最少的月份是六月,把两月的产量相减即可;(2)把表格记录相加,然后再加上120即可得出总的生产量,在与计划生产量作比较即可【详解】(1)由表格可知,生产最多的一个月为四月份,共生产了20424+=辆生产最少的一个月为六月份,共生产了20515-=辆所以生产量最多的月份比生产量最少的月份多生产24159-=辆(2)半年内生产的总量为()321425206121--++-+⨯=辆计划每月生产20辆,则半年共生产206120⨯=辆Q 1211201-=\半年内生产的总量为121辆,比计划多了,多了1辆【点睛】本题考查了有理数的加法在实际生活中的应用,读懂表格,准确计算是关键.【变式6-3】(2021·湖北襄阳市·七年级期末)快递员骑车从快递公司出发,先向北骑行200m 到达A 小区,继续向北骑行400m 到达B 小区,然后向南骑行1000m 到达C 小区,最后回到快递公司.(1)以快递公司为原点,以向南方向为正方向,用1cm 表示100m 画出数轴,并在该数轴上表示出、、A B C 三个小区的位置;(2)C 小区离B 小区有多远;(3)快递员一共骑行了多少干米?【答案】(1)见解析;(2)1000米;(3)2千米.【分析】(1)根据已知条件在数轴上表示出来即可;(2)根据题意列出算式,即可得出答案;(3)根据题意列出算式,即可得出答案.【详解】解:(1)如图所示:(2)快递员从B 小区向南骑行1000m 到达C 小区所以C 小区离B 小区的距离是:1000m ;(3)∵2410420+++=∴快递小哥一共骑行了201002000´=(米)2=(千米).【点睛】本题考查了数轴,有理数的加减的应用,能读懂题意是解此题的关键.题型七:有理数加法的创新应用—填图问题【例题7】(2020·四川省德阳中学校七年级月考)“幻方”在中国古代称为“河图”、“洛书”,又叫“纵横图”.其主要性质是在一个由若干个排列整齐的数组成的正方形中,图中任意一横行,一纵行及对角线的几个数之和都相等.图(l )所示是一个33⨯幻方.有人建议向火星发射如图(2)所示的幻方图案,如果火星上有智能生物,那么他们可以从这种“数学语言”了解到地球上也有智能生物(人).图(3)是一个未完成的33⨯幻方,请你类比图(l )推算图(3)中P 处所对应的数字是( )A .1B .2C .3D .4【答案】B 【分析】设第1列第3行的数字为x,P 处对应的数字为p,根据每一横行、每一竖列以及斜对角线上的点数的和相等,可得x+1+(-2)=x +(-3)+p ,可得P 处数字.【详解】解:设第1列第3行的数字为x,P 处对应的数字为p,根据题意得,x+(-2)+1=x+(-3)+p ,解得p=2,故选:B .【点睛】本题通过九方格考查了有理数的加法.九方格题目趣味性较强,本题的关键是找准每一横行、每一竖列以及两条斜对角线上的数字的和相等,据此列方程求解.变式训练【变式7-1】(2019·西安临潼区骊山初级中学七年级月考)如图,在一个由六个圆圈组成的三角形里,把-1,-2,-3,-4,-5,-6这6个数分别填入图中圆圈里,要求三角形每条边上的三个数的和S 都相等,那么S 的最大值是( )A .-9B .-10C .-12D .-13【答案】A 【分析】三角形每条边上的三个数的和S ,那么3S 是三角形的三个顶点的数字要重复一次的总和,故三个顶点的数字数字最大时,S 取最大值.【详解】解:六个数的和为:()()()()()()12345621-+-+-+-+-+-=-,最大三个数的和为:()()()1236-+-+-=-,,S=[(21)(6)]39-+-¸=-.填数如图:故选:A .【点睛】考查了有理数的加法, 注重考察学生的思维能力, 中等难度 .【变式7-2】(2019·浙江七年级月考)如图所示球体上画出了三个圆,在图中的六个“□”里分别填入1,2,3,4,5,6,使得每个圆周上四个数相加的和都相等.(1)这个相等的和等于_____;(2)在图中将所有的“□”填完整.【答案】(1)14;(2)见解析.【分析】(1)观察图形可知,1,2,3,4,5,6,在三个圆中各用到2次,先求出它们的和的2倍,再除以3即为所求;(2)让每个圆的相对的2个数字的和为7,进行填写即可.【详解】解:(1)(1+2+3+4+5+6)×2÷3=21×2÷3=14;(2)如图所示:故答案为14.【点睛】本题考查了有理数的加法,根据题意得到1,2,3,4,5,6,在三个圆中各用到2次是解决第(1)题的关键,让每个圆的相对的2个数字的和为7是解决第(2)题的关键.【变式7-3】(2020·全国七年级单元测试)试一试:在图的9个方格中分别填入1,2,3,4,5,6,7,8,9,使得每行的三个数、每列的三个数、斜对角的三个数之和都相等.【答案】见解析【分析】方格正中间的数必为这9个数按从小到大的顺序排列后正中间的数5,进而最大的数9和最小的数1加上5.就组成一列,然后是8、5、2,注意9和2应该相邻,接着是7、5、3,最后是6、5、4,再保证每行、每列及对角线上各数之和都相等即可.【详解】解:由题意可得:方格正中间的数必为这9个数按从小到大的顺序排列后正中间的数5则最大数9、最小的数1和5可以组成一列;8,5,2可以最为一条对角线且9和2相邻;6、5、4构成另一条对角线,最后3、5、7构成一行,故答案如图:.【点睛】本题考查了有理数的加法,解题关键在于根据题意确定方格正中间的数.【真题1】(2019·湖北孝感市·中考真题)计算1920-+等于()A .39-B .1-C .1D .39【答案】C【分析】根据有理数加法法则进行计算即可.【详解】-19+20=+(20-19)=1,故选C .【点睛】本题考查了有理数的加法,熟练掌握“绝对值不相等的异号两数相加,取绝对值较大的加数的符号,再用较大绝对值减去较小绝对值”是解题的关键.【真题2】(2019·四川成都市·中考真题)比3-大5的数是()A .15-B .8-C .2D .8【答案】C【分析】根据有理数的加减即可求解.【详解】由有理数的加减,-3+5=2,故选C【点睛】此题主要考查有理数的运算,解题的关键是熟知有理数的性质.【真题3】(2020·天津中考真题)计算()3020+-的结果等于()A .10B .10-C .50D .50-【答案】A【分析】根据有理数的加法运算法则计算即可.【详解】解:()3030002102=-=+-故选:A .【点睛】本题考查有理数的加法运算法则,熟记有理数的加法运算法则是解题的关键.【拓展1】(2015·山东济南市·七年级期中)定义一种运算☆,其规则为a ☆b=+,根据这个规则,计算2☆3的值是( )A .B .C .5D .6【答案】A【解析】试题分析:根据新定义可得:2☆3=115236+=.考点:新定义型题【拓展2】(2011·江西南昌市·中考真题)定义一种运算☆,其规则为a ☆b=+,根据这个规则,计算2☆3的值是( )A .B .C .5D .6【答案】A【解析】试题分析:根据新定义可得:2☆3=115236+=.考点:新定义型题【拓展3】(2018·广西贵港市·七年级期中)定义一种运算☆,其规则为 a ☆b=11a b+ ,根据这个规则,计算 2☆3 的值是( )A.56B.15C.5D.6【答案】A【详解】解:由题意得☆3,故选A.。
1.4 有理数的加减1.有理数的加法(1)有理数的加法法则①同号两数相加,取与加数相同的符号,并把绝对值相加.②异号两数相加,绝对值相等时和为零;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数与零相加,仍得这个数.(2)两个有理数相加的步骤第一步:有理数的加法法则分三种情况,进行有理数加法时,要先区别是哪种情况;第二步:确定和的符号;第三步:求每个加数的绝对值;第四步:根据具体的法则计算两个数的绝对值的和或差;第五步:写出最后的计算结果.析规律有理数的加法运算规律(1)有理数的加法法则是进行有理数运算的依据,进行加法运算时要先确定用哪条法则.(2)小学学过的加法中,和一定大于每一个加数,在数的范围扩大到有理数以后,这个结论就不成立了,只有两个正数的和必定大于每一个加数,而两个负数的和要小于每一个加数,一个非零数与零相加,得到的和等于非零加数.(3)如果两个数的和为0,那么这两个数互为相反数.即:如果a+b=0,那么a=-b.例如:(-3)+a=0,则a=3.(4)进行有理数的加法运算要遵循“一定二求三和差”的步骤,即第一步先确定和的符号,第二步再求加数的绝对值,第三步要分析确定是绝对值相加还是相减.【例1】计算:(1)(+8)+(+5);(2)(+2.5)+(-2.5);(3)(-17)+(+9);(4)(-4)+0.分析:根据有理数的加法法则,两数相加,只要确定它适合有理数加法法则的哪一种情况,再根据法则确定和的符号,然后根据法则求出和的绝对值.解:(1)(+8)+(+5)(同号两数相加)=+(8+5)(取与加数相同的符号,并把绝对值相加)=13.(2)(+2.5)+(-2.5)(异号两数相加,绝对值相等)=0(和为0).(3)(-17)+(+9)(异号两数相加,绝对值不等)=-(17-9)(取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值)=-8.(4)(-4)+0(一个数与零相加)=-4(仍得这个数).2.有理数的减法(1)有理数的减法法则减去一个数,等于加上这个数的相反数.用字母表示为a-b=a+(-b).(2)有理数减法运算的基本步骤①将减法转化为加法;②按有理数的加法法则运算.(3)法则理解①有理数的减法,不像小学里的那样直接减,而是把它转化为加法,借助于加法进行计算.其关键是正确地将减法转化为加法,再按有理数的加法法则计算.②学习有理数减法运算,关键在于处理好法则中两个“变”字,即注意两个符号的变化:一是运算符号——减号变为加号,二是性质符号——减数变成它的相反数.③其含义可以从以下两方面理解:(a)(b) ④并不是所有的减法运算都要转化为加法运算. 一般来说,当减数或被减数为负数,或两数“不够减”时才运用法则转化为加法运算. 解技巧 有理数的减法运算技巧 (1)可用口诀记忆法则:“减正变加负,减负变加正.” (2)带分数减法运算,可把带分数拆成整数和分数和的形式后再进行计算.(3)特别注意减法没有交换律.【例2】 计算:(1)3-(-5);(2)(-3)-(-7);(3)⎝⎛⎭⎫-213-516; (4)5.2-(+3.6).分析:有理数减法运算,按照减法法则,将减法转化为加法,然后按有理数加法进行计算.在做减法转换为加法时,一定要注意符号的变换.解:(1)3-(-5)=3+(+5)=8;(2)(-3)-(-7)=(-3)+(+7)=4;(3)⎝⎛⎭⎫-213-516=⎝⎛⎭⎫-213+⎝⎛⎭⎫-516=-712; (4)5.2-(+3.6)=5.2+(-3.6)=1.6.3.有理数加法的运算律(1)加法交换律:两数相加,交换加数的位置,和不变.用字母表示为:a +b =b +a .(2)加法结合律:三数相加,先把前两个数相加或先把后两个数相加,和不变.用字母表示为:(a +b )+c =a +(b +c ).【例3】 计算:(1)(-8)+⎝⎛⎭⎫-212+2+⎝⎛⎭⎫-12+12; (2)⎝⎛⎭⎫-13+⎝⎛⎭⎫+12+⎝⎛⎭⎫-23+⎝⎛⎭⎫+45+⎝⎛⎭⎫-12. 分析:进行三个以上的有理数加法运算时,常常运用加法的交换律和结合律,把同号的数相结合,把互为相反数的两个数相结合,把同号的数中的同分母的分数相结合,以达到计算简便、迅速的目的.解:(1)原式=(2+12)+⎣⎡⎦⎤(-8)+⎝⎛⎭⎫-212+⎝⎛⎭⎫-12=14+(-11)=3; (2)原式=⎣⎡⎦⎤⎝⎛⎭⎫-13+⎝⎛⎭⎫-23+⎣⎡⎦⎤⎝⎛⎭⎫+12+⎝⎛⎭⎫-12+45=-1+0+45=-15. 4.有理数的加、减混合运算(1)加减法统一成加法①有理数加减混合运算,可以通过有理数减法法则将减法转化为加法,统一成只有加法运算的和式.如:(-12)-(+8)+(-6)-(-5)=(-12)+(-8)+(-6)+(+5).②在和式里,通常把各个加数的括号省略不写,写成省略加号的和的形式.如:(-12)+(-8)+(-6)+(+5)=-12-8-6+5.③和式的读法:一是按这个式子表示的意义,读作“负12,负8,负6,正5的和”,即把各个数中间的符号作为后面的这个数的性质符号来读;二是按运算意义读作“负12减8减6加5”,即把各个数中间的符号作为运算符号来读.(2)有理数加、减混合运算的方法和步骤由于减法可以转化为加法,所以在进行有理数的加减混合运算时,首先要将混合运算的式子写成省略括号的和式的形式,然后按加法法则和运算律进行简便运算. 第一步:用减法法则将减法转化为加法; 第二步:运用加法法则、加法交换律、加法结合律进行简便运算. (3)进行有理数的加减混合运算的注意事项 ①交换加数的位置时,一定要连同加数前的符号一起移动; ②如果需要添括号,一定要连同加数前的符号一起括进括号内,并将原来已省略的括号写出来; ③省略加号和括号的“和”与小学里的“和”是有区别的,小学里的“和”是一个具体的数,并且和一定不小于任何一个加数,而这里的“和”则是表示的是有理数的加法运算,也表示相加的结果.有理数的“和”可以大于任何一个加数,也可以小于任何一个加数,和可能是正数、负数或零. 【例4-1】 把下列各式写成省略加号的和的形式:(1)(-26)-(-7)+(-10)-(-3);(2)(-30)-(-8)+(-12)-(-5).分析:先统一成加法,再省略括号和加号.在把加减混合运算的式子写成省略加号的和的形式时,符号容易变错,做这样的题目时,一定要注意符号的变化.解:(1)(-26)-(-7)+(-10)-(-3)=-26+(+7)+(-10)+(+3)=-26+7-10+3. (2)(-30)-(-8)+(-12)-(-5)=(-30)+(+8)+(-12)+(+5)=-30+8-12+5.【例4-2】 计算:(1)0-327-6+1167-537; (2)⎝⎛⎭⎫-12-⎝⎛⎭⎫-16+⎝⎛⎭⎫-23+⎝⎛⎭⎫-45; (3)(-5)-(-21)+(-12)+8-(-4)-18;(4)(+10.4)-7.5+12.7-(-3.6)+(-1.7)-2.5.分析:(1)本题是省略括号和加号后的和的形式,在五个加数中,考虑到-327,1167,-537三个加数分母都是7,便于运算,所以把这三个加数放在一起;(2)把加减混合运算统一成加法运算后结果为⎝⎛⎭⎫-12+⎝⎛⎭⎫+16+⎝⎛⎭⎫-23+⎝⎛⎭⎫-45,考虑到⎝⎛⎭⎫-12,⎝⎛⎭⎫-23,⎝⎛⎭⎫+16便于通分,把它们结合起来,可使计算较为简便;(3)统一成加法后,可采用同号结合法,即把正数与正数、负数与负数分别相加;(4)统一成加法后,可采用凑整结合法,即把相加得整数的加数先结合.解:(1)0-327-6+1167-537=(0-6)+⎝⎛⎭⎫-327+1167-537 =-6+⎝⎛⎭⎫+317=-267. (2)⎝⎛⎭⎫-12-⎝⎛⎭⎫-16+⎝⎛⎭⎫-23+⎝⎛⎭⎫-45 =⎝⎛⎭⎫-12+⎝⎛⎭⎫+16+⎝⎛⎭⎫-23+⎝⎛⎭⎫-45 =⎣⎡⎦⎤⎝⎛⎭⎫-12+⎝⎛⎭⎫+16+⎝⎛⎭⎫-23+⎝⎛⎭⎫-45 =(-1)+⎝⎛⎭⎫-45=-145. (3)(-5)-(-21)+(-12)+8-(-4)-18=-5+21-12+8+4-18=(21+8+4)+(-5-12-18)=33-35=-2.(4)(+10.4)-7.5+12.7-(-3.6)+(-1.7)-2.5=10.4-7.5+12.7+3.6-1.7-2.5=(10.4+3.6)+(12.7-1.7)+(-7.5-2.5)=14+11-10=15.5.含有字母的有理数加法的运算我们可以用字母表示有理数加法的运算法则:①同号两数相加:若a >0,b >0,则a +b =+(|a |+|b |);若a <0,b <0,则a +b =-(|a |+|b |).②异号两数相加:若a >0,b <0,且|a |=|b |,则a +b =0;若a >0,b <0,且|a |>|b |,则a +b =+(|a |-|b |);若a >0,b <0,且|a |<|b |,则a +b =-(|b |-|a |).③一个数与0相加:a +0=a .【例5-1】 根据加法法则填空:(1)如果a >0,b >0,那么a +b __________0;(2)如果a <0,b <0,那么a +b __________0;(3)如果a >0,b <0,|a |>|b |,那么a +b ________0;(4)如果a <0,b >0,|a |>|b |,那么a +b ________0.答案:(1)> (2)< (3)> (4)<【例5-2】 已知有理数a ,b ,c 在数轴上的对应点如图所示,且|a |>|b |>|c |,则(1)|a +(-b )|=__________;(2)|a +b |=__________;(3)|a +c |=__________;(4)|b +(-c )|=__________;(5)|b +c |=__________.答案:(1)|a |+|b | (2)|a |-|b | (3)|a |+|c | (4)|b |+|c | (5)|b |-|c |6.有理数加减混合运算的注意事项(1)运用加法交换律,在交换各数的位置时要连同它们前面的符号一起交换,千万不要把符号漏掉.(2)应用加法结合律时,应充分考虑同号加数结合、同分母或便于通分的加数结合、凑整的加数结合、互为相反数的加数结合等情形,从而选择适当的方法,使运算简便.(3)若分数、小数混在一块运算时,可以把它们统一成分数或小数再运算.(4)如果有大括号和小括号应当先进行小括号里的运算,再进行大括号里的运算.反之,进行有理数的加减混合运算,有时候需要添加括号,此时一定要连同加数的符号一起括进括号内,并将原来已省略的加号写进来.辨误区 拆分负的带分数负的带分数拆分为整数与分数的和时,易将负整数与负分数的和错拆为负整数与正分数的和.【例6】 计算:(1)(-837)+(-7.5)+(-2147)+(+312); (2)⎪⎪⎪⎪5111-3417+4417-111.分析:把分母不同的分数的加减混合运算统一成加法之后,应用运算律使同分母分数相加可以简化运算.解:(1)(-837)+(-7.5)+(-2147)+(+312) =-837-7.5-2147+312=-837-2147-7.5+312=(-837-2147)-(7.5-312) =-30-4=-34.(2)⎪⎪⎪⎪5111-3417+4417-111=5111-3417+4417-111=5111-111-3417+4417=(5111-111)-(3417-4417) =5+1=6.7.有理数加减法的运用学习有理数的加减法后,可以和前面学过的数轴、相反数、绝对值综合出题,把有理数的知识融合得更紧密,理解得更深刻.(1)有理数的加法与绝对值在有些计算中,含有绝对值符号,这就要用绝对值的概念,先去掉绝对值符号,再按有理数混合运算法则进行计算.几个非负数的和等于0,则每个加数必等于0.(2)有理数的加法与有理数的大小比较学习加法后,在比较大小的数中,出现了和的形式或差的形式(差可以化成和).特别是以字母表示的数.这就需要用加法法则来判断数的正负,或判断数对应的点在数轴上的位置关系,从而确定两个数的大小关系.(3)有理数加法在实际问题中的应用在实际问题中,要应用有理数的加法法则求解问题,注意运算技巧的使用.【例7-1】 若|x -3|与|y +3|互为相反数,求x +y 的值.解:根据题意得|x -3|+|y +3|=0.则x -3=0,y +3=0,所以x =3,y =-3.所以x +y =3+(-3)=0.【例7-2】 一小吃店一周中每天的盈亏情况如下(盈利为正):128.3元,-25.6元,-15元,-7元,36.5元,98元,27元,这一周总的盈亏情况如何?分析:正数表示盈利,负数表示亏损,这些数的代数和就是总的盈亏情况,如果代数和为正,则总的情况是盈利,否则是亏损.解:128.3+(-25.6)+(-15)+(-7)+36.5+98+27=(128.3+36.5+98+27)+(-25.6-15-7)=289.8-47.6=242.2.答:一周总的盈亏情况是盈利242.2元.【例7-3】 一农业银行某天上午9:00~12:00办理了7笔储蓄业务;取出9.5万元,存入5万元,取出8万元,存入12万元,存入25万元,取出10.25万元,取出2万元.这天上午该银行的现金增减情况怎样?分析:可以设存入为正,取出为负,用正、负数分别表示这7笔业务,求它们的和即可判断现金的增减情况.若结果为正数,则表明现金增加了;若结果为负数,则表明现金减少了.解:(-9.5)+(+5)+(-8)+(+12)+(+25)+(-10.25)+(-2)=[(-9.5)+(-8)+(-10.25)+(-2)]+[5+(+12)+(+25)]=-29.75+42=12.25(万元).答:这天上午该银行的现金增加了12.25万元.8.有理数减法的应用(1)有理数减法的应用比较常见的题型有:计算高度,计算温差,计算销售利润,计算距离,计算时差等.有理数减法的应用题虽然比较简单,但却能让大家主动地从数学角度运用所学知识和方法寻求解决问题的策略,充分体现课程标准所要求的“数学应用意识”.因此,我们要有意识地加强数学知识与现实生活联系密切的问题的训练,提高自己的能力.(2)利用有理数减法求数轴上两点间的距离求数轴上两点间的距离是有理数减法最典型的应用之一,数轴上任意两点之间的距离,都可以用数轴上表示这两点的有理数的差的绝对值来表示.【例8-1】如图所示的数轴上,表示-2和5的两点之间的距离是______,数轴上表示2和-5的两点之间的距离是______,数轴上表示-1和-3的两点之间的距离是______.解析:数轴上表示-2和5两点之间的距离是|-2-5|或|5-(-2)|;数轴上表示2和-5两点之间的距离是|2-(-5)|或|-5-2|;数轴上表示-1和-3的两点之间的距离是|-1-(-3)|或|-3-(-1)|.答案:77 2【例8-2】以地面为基准,A处高为+2.5米,B处高为-17.8米,C处高为-32.4米,问:(1)A处比B处高多少米?(2)B处与C处哪个地方高?高多少米?解:(1)+2.5-(-17.8)=2.5+17.8=20.3(米),所以A处比B处高20.3米.(2)-17.8-(-32.4)=-17.8+32.4=14.6(米),所以B处比C处高,高了14.6米.。