七年级数学上:1.3有理数的加减法单元测试题(人教新课标)
- 格式:doc
- 大小:77.00 KB
- 文档页数:4
1.3 有理数的加减法一、选择题1.计算−3+(−1)的正确结果是()A.2 B.-2 C.4 D.-42.某城市一月份某一天的天气预报中,最低气温为−6℃,最高气温为2℃,这一天这个城市的温差为()A.8℃B.−8℃C.6℃D.2℃3.不改变原式的值,将1-(+2)-(-3)+(-4)写成省略加号和括号的形式是()A.-1-2+3-4 B.1-2-3-4C.1-2+3-4 D.1-2-3—44.超市出售的某种品牌的大米袋上,标有质量为(50±0.4) kg的字样,从超市中任意拿出两袋大米,它们的质量最多相差()A.0.4 kg B.0.6 kg C.0.8 kg D.1 kg5.绝对值大于1且小于5的所有整数的和是()A.7 B.-7 C.0 D.56.若有理数a,b,满足|a|=﹣a,|b|=b,a+b<0,则a,b的取值正确的是()A.a=2,b=﹣1 B.a=﹣1,b=2C.a=﹣2,b=1 D.a=﹣1,b=﹣27.若m是-6的相反数,且m+n=-11,则n的值是()A.-5 B.5 C.-17 D.178.若|a|=8,|b|=5,且a+b>0,则a-b的值为()A.13或-1 B.13或3 C.3或-3 D.–3或-13二、填空题9.计算|−12|−12的结果是.10.A、B、C三点相对于海平面分别是-13m,6m,-21m,那么最高的地方比最低的地方高m.11.绝对值不大于3的所有整数的和为.12.小刚在计算21+n的时候,误将“+”看成“-”结果得-10,则21+n的值为.13.已知|m|=5,|n|=2,且n<0,则m+n的值是.三、解答题14.计算:(1)﹣3﹣4+19﹣11;(2)﹣9+(﹣3 34 )+3 34 ;(3)−12+(−16)−(−14)−(+23) ;(4)|﹣2 12 |﹣(﹣2.5)+1﹣|1﹣2 12 |;(5)8+(﹣ 14 )﹣5﹣(﹣0.25);(6)[1.4﹣(﹣3.6+5.2)﹣4.3]﹣(﹣1.5).15.五袋白糖以每袋50kg 为标准,超过的记为正,不足的记为负,称量记录如下:+4.5,-4,+2.3,-3.5,+2.5.这五袋白糖共超过多少kg ?总重量是多少kg ?16.有理数a 既不是正数,也不是负数,b 是最小的正整数,c 表示下列一组数:-2,1.5,0,130%, - 27 ,860,-3.4中非正数的个数,则a+b+c 等于多少?17.若|a|=5,|b|=3,(1)求a+b 的值;(2)若|a+b|=a+b ,求a ﹣b 的值.参考答案1.D2.A3.C4.C5.C6.C7.C8.B9.010.2711.012.5213.3或﹣714.(1)解:﹣3﹣4+19﹣11=19-18=1;(2)解:﹣9+(﹣3 34 )+3 34 =﹣9﹣3 34 +3 34 =-9;(3)解: −12+(−16)−(−14)−(+23)=−612−212+312−812= −1312 ;(4)解:|﹣2 12 |﹣(﹣2.5)+1﹣|1﹣2 12 |=2.5+2.5+1−|−1.5|=2.5+2.5+1−1.5=4.5;(5)解:8+(﹣ 14 )﹣5﹣(﹣0.25)=8-0.25-5+0.25=3;(6)解:[1.4﹣(﹣3.6+5.2)﹣4.3]﹣(﹣1.5)=(1.4+3.6-5.2-4.3)+1.5=-4.5+1.5=-3.15.解:白糖以每袋50千克为标准,超过的记为正,不足的记为负,称量记录如下:+4.5,﹣4,+2.3,﹣3.5,+2.5.这五袋白糖共超过(4.5﹣4+2.3﹣3.5+2.5)=1.8千克,故这五袋白糖共超过1.8千克;总重量是5×50+1.8=251.8千克,故五袋白糖的总重量是251.8千克.16.解:根据“有理数a既不是正数,也不是负数”,可得到a是0;b是最小的正整数,则b是1;-2,1.5,0,130%,- 27,860,-3.4这组数中,是非正数的有:-2,0,- 27,-3.4,一共有4个;所以a+b+c=5.17.解:(1)∵|a|=5,|b|=3,∴a=±5,b=±3,当a=5,b=3时,a+b=8;当a=5,b=﹣3时,a+b=2;当a=﹣5,b=3时,a+b=﹣2;当a=﹣5,b=﹣3时,a+b=﹣8.(2)由|a+b|=a+b可得,a=5,b=3或a=5,b=﹣3.当a=5,b=3时,a﹣b=2,当a=5,b=﹣3时,a﹣b=8.。
人教版七年级数学测试卷(考试题)第一章 有理数 1.3 有理数的加减法 1.3. 2 有理数的减法第2课时 有理数的加减混合运算1.⎪⎭⎫ ⎝⎛+121与⎪⎭⎫⎝⎛-41的和的符号是________,和是________,和的绝对值是________,差的符号是________,差是________,差的绝对值是________.2.把(-8)-(-1)+(+3)-(-2)转化为只含有加法的算式:____________________. 3.把(+3)-(-2)+(-4)-(+5)写成省略括号的代数和的形式为:_________________. 4.-3,+4,-7的代数和比它们的绝对值的和小( ) A .-8 B .-14 C .20 D .-205.7-3-4+18-11=(7+18)+(-3-4-11)是应用了( )A .加法交换律B .加法结合律C .分配律D .加法的交换律与结合律 6.若0<b ,则b a -,a ,b a +的大小关系是( ) A .b a a b a +<<- B .b a b a a +<-< C .a b a b a <-<+ D .b a a b a -<<+ 7.41-的相反数与绝对值等于41的数的和应等于( )A .21B .0C .21-D .21或0.8.计算: (1)()()3.3463.3416+-+---;(2)()()227103-+---+----; (3)21416132-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛---; (4)4-3.8-[(-2.5-1.2+4)-6.9]. (5)326543210-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛---; (6)()212115.2212--+---; (7) 13-[26-(-21)+(-18)]; (8)[1.4-(-3.6+5.2)-4.3]-(-1.5);(9)()()⎪⎭⎫ ⎝⎛-+-+--⎪⎭⎫ ⎝⎛++-54512549; (10)⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+-43573.875.141343125.2.9.用计算器计算:(1)-24+3.2-16-3.5+0.3; (2)(-2.4)-(-4.7)-(+O.5)+(-3.2);(3)3250-(-2563)+560-(+7820);(4)(-73.45)+23.36-(-86.32)-98.31.10.一种零件,标明直径的要求是04.003.050+-φ,这种零件的合格品最大的直径是多少?最少的直径是多少?如果直径是49.8,合格吗?11.七名学生的体重,以48.0 kg 为标准,把超过标准体重的千克数记为正数,不足的千(1)最接近标准体重的学生体重是多少? (2)最高体重与最低体重相差多少? (3)求七名学生的平均体重;(4)按体重的轻重排列时,恰好居中的是哪个学生?附赠材料:怎样提高做题效率一读二画三抠怎样“快而不乱”做好阅读题阅读是一个获取信息的过程,阅读质量的高低取决于捕捉信息的多少。
2022-2023学年人教版七年级数学上册《1.3有理数的加减法》同步达标测试题(附答案)一.选择题(共8小题,满分40分)1.计算﹣3﹣2的结果是()A.﹣1B.1C.﹣5D.52.若|m|=2,|n|=3,且m>n,则m+n的值是()A.﹣1B.﹣5C.1或﹣5D.﹣1或﹣53.若两个数的和为负数,则这两个数满足()A.都是负数B.都是正数C.至少一个是负数D.恰好一正一负4.某地一天早晨的气温是﹣2℃,中午温度上升了6℃,半夜比中午又下降了8℃,则半夜的气温是()A.﹣2℃B.﹣4℃C.﹣6℃D.﹣8℃5.若|m|=5,|n|=3且m+n的绝对值等于它的相反数,则m﹣n的值是()A.﹣2或﹣8B.2或﹣8C.2或8D.﹣2或86.下面说法中正确的有()(1)一个数与它的绝对值的和一定不是负数.(2)一个数减去它的相反数,它们的差是原数的2倍.(3)零减去一个数一定是负数.(4)正数减负数一定是负数.(5)数轴上原点两侧的数互为相反数.A.2个B.3个C.4个D.5个7.设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a+b+c等于()A.﹣1B.0C.1D.28.下列运算中正确的是()A.8+[14+(﹣9)]=15B.(﹣2.5)+[5+(﹣2.5)]=5C.[3+(﹣3)]+(﹣2)=﹣2D.3.14+[(﹣8)+3.14]=﹣8二.填空题(共8小题,满分40分)9.矿井下A,B,C三处的高度分别是﹣37m,﹣129m,﹣71.3m,那么最高处比最低处高m.10.计算:﹣26﹣(﹣15)=.11.小明在计算1﹣3+5﹣7+9﹣11+13﹣15+17时,不小心把一个运算符号写错了(“+”错写成“﹣”或“﹣”错写成“+”),结果算成了﹣17,则原式从左往右数,第个运算符号写错了.12.厂家检测10个足球的质量,每个足球的标准质量为265克,将每个足球超过克数记为正数,不足克数记为负数,这10个足球称重后的记录为:+1,+1,﹣1.3,+1.5,﹣1,+1.2,+1.3,﹣1.2,+1.4,+1.1.这十个足球的质量共是克.13.计算=.14.已知|x|=2,|y|=1,且|x﹣y|=y﹣x,则x﹣y=.15.若a的相反数等于它本身,b是到原点的距离等于2的负数,c是最大的负整数,则a ﹣b+c的值为.16.计算:1﹣2﹣3+4+5﹣6﹣7+8+......+2020+2021=.三.解答题(共6小题,满分40分)17.计算:20+(﹣14)﹣(﹣18)+13.18.计算:﹣﹣|﹣|﹣(﹣)+1.19.计算:1.5﹣(﹣4)+3.75﹣(+8).20.计算.(1)(﹣4)﹣(+13)+(﹣5)﹣(﹣9)+7;(2)0﹣+(+)+(﹣)+2;(3)﹣|﹣1|﹣(+2)﹣(﹣2.75);(4)(﹣3.125)+(+4.75)+(﹣9)+(+5)+(﹣4).21.阅读下面文字:对于(﹣5)+(﹣9)+17+(﹣3)可以如下计算:原式=[(﹣5)+(﹣)]+[(﹣9)+(﹣)]+(17+)+[(﹣3)+(﹣)]=[(﹣5)+(﹣9)+17+(﹣3)]+[(﹣)+(﹣)++(﹣)]=0+(﹣1)=﹣1上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,计算:.22.某领导慰问高速公路养护小组,乘车从服务区出发,沿东西向公路巡视,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,﹣9,+7,﹣15,﹣3,+11,(1)求该领导乘车最后到达的地方?(2)行驶1千米耗油0.5升,则这次巡视共耗油多少升?(3)若领导在这6个巡视点发放苹果慰问品,以50kg为标准,超过的记为正数,不足的记为负数,这6个巡视点的苹果重量记为5,﹣6,﹣4,9,﹣8,3(单位:kg),求发放苹果的总重量.参考答案一.选择题(共8小题,满分40分)1.解:﹣3﹣2=﹣5.故选:C.2.解:∵|m|=2,|n|=3,∴m=±2,n=±3,∵m>n,∴当m=2,n=﹣3时,m+n=2﹣3=﹣1;当m=﹣2,n=﹣3时,m+n=﹣2﹣3=﹣5;故选:D.3.解:两个数的和为负数,这两个数都是负数或有一个是负数且负数的绝对值比另一个数的绝对值大;故选:C.4.解:﹣2+6﹣8=4﹣8=﹣4(℃).答:半夜的气温是﹣4℃.故选:B.5.解:∵|m|=5,|n|=3,∴m=±5,n=±3,∵m+n的绝对值等于它的相反数,∴m+n<0,∴①m=﹣5,n=﹣3,②m=﹣5,n=3,当m=﹣5,n=﹣3时,m﹣n=﹣5﹣(﹣3)=﹣2;当m=﹣5,n=3时,m﹣n=﹣5﹣3=﹣8,综上所述:m﹣n=﹣8或﹣2,故选:A.6.解:(1)一个数与它的绝对值的和一定不是负数.正确,(2)一个数减去它的相反数,它们的差是原数的2倍,正确,(3)零减去一个数不一定是负数,如0﹣(﹣3)=3,故不正确,(4)正数减负数一定是正数.如3﹣(﹣4)=7,故不正确,(5)数轴上原点两侧的数不一定互为相反数,如5和﹣4,不是互为相反数.不正确.故选:A.7.解:依题意得:a=1,b=﹣1,c=0,∴a+b+c=1+(﹣1)+0=0.故选:B.8.解:A、原式=8+5=13,故A不符合题意.B、原式=﹣2.5+2.5=0,故B不符合题意.C、原式=0+(﹣2)=﹣2,故C符合题意.D、原式=3.14+3.14+(﹣8)=﹣1.72,故D不符合题意.故选:C.二.填空题(共8小题,满分40分)9.解:∵最高处:﹣37米,最低处:﹣129米,最高处比最低处高:﹣37﹣(﹣129)=92(米),故答案为:92.10.解:原式=﹣26+15=﹣11.故答案为:﹣11.11.解:∵1﹣3+5﹣7+9﹣11+13﹣15+17=9,9>﹣17,∴小明不小心把“+”写成“﹣”,∵9﹣(﹣17)=26,26÷2=13,∴小明将+13写错为﹣13,故答案为:6.12.解:+1+1﹣1.3+1.5﹣1+1.2+1.3﹣1.2+1.4+1.1=5(克),265×10+5=2655(克),所以这十个足球的质量一共是2655克,故答案为:2655.13.解:原式=1=1=1.故答案为:1.14.解:∵|x|=2,|y|=1,且|x﹣y|=y﹣x,∴x=﹣2,y=1或y=﹣1,∴x﹣y=﹣2﹣1=﹣3或x﹣y=﹣2+1=﹣1.故答案为:﹣3或﹣1.15.解:∵a是相反数等于它本身的数,b是到原点的距离等于2的负数,c是最大的负整数,∴a=0,b=﹣2,c=﹣1,∴a﹣b+c=0+2﹣1=1.故答案为:1.16.解:∵1﹣2﹣3+4=0,5﹣6﹣7+8=0,•,∴算式中从第一个数字开始,依次每四个数的代数和为0,∵2020÷4=505,∴前2020个数字的代数和为0.∴1﹣2﹣3+4+5﹣6﹣7+8+......+2020+2021=2021.故答案为:2021.三.解答题(共6小题,满分40分)17.解:20+(﹣14)﹣(﹣18)+13,=20﹣14+18+13,=6+31,=37.18.解:﹣﹣|﹣|﹣(﹣)+1=﹣﹣++1=(﹣)+(﹣+)+1=+(﹣2)+1=﹣.19.解:原式=1++4++3+﹣8﹣=﹣7+8=1.20.解:(1)原式=(﹣4)+(﹣13)+(﹣5)+9+7=[(﹣4)+(﹣13)+(﹣5)]+(9+7)=(﹣22)+16=﹣6;(2)原式=0+(﹣)++(﹣)+2=[(﹣)+(﹣)]++2=(﹣1)+3=2;(3)原式=﹣1+(﹣2)+2=﹣1+(﹣2+2)=+(﹣1+)=+(﹣1)=﹣;(4)原式=(﹣3)+4+(﹣9)+5﹣4=[(﹣3)+(﹣9)]+(4+5)﹣4=(﹣13)+10﹣4=﹣3﹣4=﹣7.21.解:原式=﹣2020﹣+2019+﹣2018﹣+2017+=﹣2020+2019﹣2018+2017﹣+﹣+=﹣1﹣1+﹣=﹣2﹣=.22.解:(1)17+(﹣9)+7+(﹣15)+(﹣3)+11=8(千米),答:该领导乘车最后到达的地方在东边8千米处;(2)|+17|+|﹣9|+|+7|+|﹣15|+|﹣3|+|+11|=62(千米),0.5×62=31(升),答:这次巡视共耗油31升;(3)5+(﹣6)+(﹣4)+9+(﹣8)+3=﹣1(千克),50×6+(﹣1)=299(千克),答:发放苹果的总重量为299千克.。
1.3有理数的加减法同步测试题一、选择题1.小马虎在下面计算中只做对了一道题,他做对的题目是( )A.(-3)+5=-2 B.(-7)+(-7)=0C.(-6)+(-3)=-9 D.9+(-9)=12. .用字母表示有理数的减法法则正确的是( )A.a-b=a+b B.a-b=a+(-b)C.a-b=-a+b D.a-b=a-(-b)3. 下列式子可读作“负10,负6,正3,负7的和”的是( )A.-10+(-6)+(+3)-(-7) B.-10-6+3-7C.-10-(-6)-3-(-7) D.-10-(-6)-(-3)-(-7)4. 某村有几块麦田,今年的收成与去年相比(增产为正,减产为负)的情况如下(单位为kg):+32,-17,-32,+13,+15,+4,-15,则今年小麦的总产量与去年相比( )A.增产2千克B.减产2千克C.增产12千克D.与去年的产量相同5. 冰箱冷冻室的温度为-6℃,此时房屋内的温度为20℃,则房屋内的温度比冰箱冷冻室的温度高( )A.26℃B.14℃C.-26℃D.-14℃6. 0减去一个数等于( )A.这个数B.0 C.这个数的相反数D.负数7. 在数1,2,3,4,…,405前分别加“+”或“-”,使所得数字之和为非负数,则所得非负数最小为( ) A.0 B.1 C.2 D.38. 已知a,b在数轴上的位置如图所示,则a-b的结果的符号为( )A .正B .负C .0D .无法确定9. 下列说法正确的是( )A .两个数之差一定小于被减数B .减去一个负数,差一定大于被减数C .减去一个正数,差不一定大于被减数D .0减去任何数,差都是负数10. 计算(-2.29)+8+(-7.71)时,下列简便运算正确的是( )A .[(-2.29)+8]+(-7.71)B .(-2.29)+[8+(-7.71)]C .(-8)+(2.29+7.71)D .[(-2.29)+(-7.71)]+811.把(-8)-(+4)+(-5)-(-2)写成省略括号的和的形式是( )A .-8+4-5+2B .-8-4-5+2C .-8-4+5+2D .8-4-5+212. 7-3-4+18-11=(7+18)+(-3-4-11)是应用了( )A .加法交换律B .加法结合律C .分配律D .加法的交换律和结合二、填空题13.计算(+1)+(-2)+(+3)+(-4)+…+(+9)+(-10)的结果是_______.14. 已知a +x =2015,b +y =-2020,则a +b +x +y =_______.15.绝对值大于1而小于6的所有整数的和是____.16. 已知有理数+3,-8,-10,+12,请你通过有理数的加减混合运算,使其运算结果最大,则列式为_______ __________________.17. 如果a =-14,b =-2,c =-34,则a +(-b)-|-c|的值为__ __. 18. 在( )里写出每一步变形过程的依据.(-4)+(+18)-(-3)-(+13)+(-2)=(-4)+(+18)+(+3)+(-13)+(-2)(________________)=[(-4)+(-13)+(-2)]+[(+18)+(+3)](_____________)=(-19)+(+21)(________________)=2.(______ __________)19. 若a -(-b)=0,则a 与 b 的关系是____________.20. 已知|x|=5,y =3,则 x -y 的值为________.三、解答题21. (1)20-(-7)-|-2|; (2)12-(-18)+(-7)-15;(3)-213-56-12+116; (4)|-212|-(-2.5)+1-|1-212|;(5)16+(-25)+24-35; (6)314+(-235)+534-825;(7)(-12)+|0-5|+|-4|+(-9); (8)312-(-214)+(-13)-0.25+(+16). 22.若a 、b 、c 是有理数,|a|=3,|b|=10,|c|=5,且a 、b 异号,b 、c 同号,求a -b -(-c)的值.23.某只股票上周末的收盘价格是10.00元,本周一到周五的收盘情况如下表:(“+”表示股票比前一天上涨,“-”表示股票比前一天下跌)上周末周一周二周三周四周五收盘价10.00 +0.28 -2.36 +1.80 -0.35 +0.08(1)周一至周五这只股票每天的收盘价各是多少元?(2)本周末的收盘价比上周末收盘价是上涨了,还是下跌了多少?(3)这五天的收盘价中哪天的最高?哪天的最低?相差多少?24.已知A,B两点在数轴上分别表示的数为m,n.(1)对照数轴填写下表:m 6 -6 -6 -6 2 -1.5n 4 0 4 -4 -8 -1.5A,B两点间的距离(2)若A,B两点间的距离记为d,试问d与m,n有何数量关系?并用文字描述出来;(3)已知A,B在数轴上分别表示的数为x和-1,则A,B两点间的距离d可表示为____________,如果d =3,求x的值.参考答案一、选择题1.小马虎在下面计算中只做对了一道题,他做对的题目是( C )A.(-3)+5=-2 B.(-7)+(-7)=0C.(-6)+(-3)=-9 D.9+(-9)=12. .用字母表示有理数的减法法则正确的是( B )A.a-b=a+b B.a-b=a+(-b)C.a-b=-a+b D.a-b=a-(-b)3. 下列式子可读作“负10,负6,正3,负7的和”的是( B )A.-10+(-6)+(+3)-(-7) B.-10-6+3-7C.-10-(-6)-3-(-7) D.-10-(-6)-(-3)-(-7)4. 某村有几块麦田,今年的收成与去年相比(增产为正,减产为负)的情况如下(单位为kg):+32,-17,-32,+13,+15,+4,-15,则今年小麦的总产量与去年相比( D )A.增产2千克B.减产2千克C.增产12千克D.与去年的产量相同5. 冰箱冷冻室的温度为-6℃,此时房屋内的温度为20℃,则房屋内的温度比冰箱冷冻室的温度高( A )A.26℃B.14℃C.-26℃D.-14℃6. 0减去一个数等于( C )A.这个数B.0 C.这个数的相反数D.负数7. 在数1,2,3,4,…,405前分别加“+”或“-”,使所得数字之和为非负数,则所得非负数最小为( B ) A.0 B.1 C.2 D.38. 已知a,b在数轴上的位置如图所示,则a-b的结果的符号为( B )A.正B.负C.0 D.无法确定9. 下列说法正确的是( B )A.两个数之差一定小于被减数B.减去一个负数,差一定大于被减数C.减去一个正数,差不一定大于被减数D.0减去任何数,差都是负数10. 计算(-2.29)+8+(-7.71)时,下列简便运算正确的是( D )A.[(-2.29)+8]+(-7.71) B.(-2.29)+[8+(-7.71)]C.(-8)+(2.29+7.71) D.[(-2.29)+(-7.71)]+811.把(-8)-(+4)+(-5)-(-2)写成省略括号的和的形式是( B )A.-8+4-5+2 B.-8-4-5+2C.-8-4+5+2 D.8-4-5+212. 7-3-4+18-11=(7+18)+(-3-4-11)是应用了( D )A .加法交换律B .加法结合律C .分配律D .加法的交换律和结合律二、填空题13.计算(+1)+(-2)+(+3)+(-4)+…+(+9)+(-10)的结果是__-5_____.14. 已知a +x =2015,b +y =-2020,则a +b +x +y =____-5___.15.绝对值大于1而小于6的所有整数的和是__0__.16. 已知有理数+3,-8,-10,+12,请你通过有理数的加减混合运算,使其运算结果最大,则列式为_________ (+12)+(+3)-(-8)-(-10) __________________.17. 如果a =-14,b =-2,c =-34,则a +(-b)-|-c|的值为__ 1 __. 18. 在( )里写出每一步变形过程的依据.(-4)+(+18)-(-3)-(+13)+(-2)=(-4)+(+18)+(+3)+(-13)+(-2)(____ 统一为加法____________)=[(-4)+(-13)+(-2)]+[(+18)+(+3)](_加法的交换律、结合律___)=(-19)+(+21)(____有理数加法法则__)=2.(______ 有理数加法法则______)19. 若a -(-b)=0,则a 与 b 的关系是___互为相反数_________.20. 已知|x|=5,y =3,则 x -y 的值为__2或-8______.三、解答题21. (1)20-(-7)-|-2|; (2)12-(-18)+(-7)-15;(3)-213-56-12+116; (4)|-212|-(-2.5)+1-|1-212|;(5)16+(-25)+24-35; (6)314+(-235)+534-825;(7)(-12)+|0-5|+|-4|+(-9); (8)312-(-214)+(-13)-0.25+(+16). 解:(1)原式=20+7-2=25.(2)原式=12+18-7-15=30-22=8.(3)原式=-213-12+(116-56)=-213-12+13=-2-12=-212. (4)原式=212+2.5+1-112=4.5. (5)原式=16+24+[(-25)+(-35)]=40+(-60)=-20.(6)原式=314+534+[(-235)+(-825)]=9+(-11)=-2. (7)原式=-12+5+4+(-9)=-12. (8)原式=(214-14)+(312-13+16)=2+(336-26+16)=2+313=513. 22.若a 、b 、c 是有理数,|a|=3,|b|=10,|c|=5,且a 、b 异号,b 、c 同号,求a -b -(-c)的值.解:由题 意,得当a =-3,b =10,c =5时,a -b -(-c)=-3-10-(-5)=-8;当a=3,b=-10,c=-5时,a-b-(-c)=3-(-10)-5=8.23.某只股票上周末的收盘价格是10.00元,本周一到周五的收盘情况如下表:(“+”表示股票比前一天上涨,“-”表示股票比前一天下跌)上周末周一周二周三周四周五收盘价10.00 +0.28 -2.36 +1.80 -0.35 +0.08(1)周一至周五这只股票每天的收盘价各是多少元?(2)本周末的收盘价比上周末收盘价是上涨了,还是下跌了多少?(3)这五天的收盘价中哪天的最高?哪天的最低?相差多少?解:(1)10+0.28=10.28(元);10.28-2.36=7.92(元);7.92+1.80=9.72(元);9.72-0.35=9.37(元);9.37+0.08=9.45(元).所以,周一至周五这只股票每天的收盘价分别为10.28元、7.92元、9.72元、9.37元、9.45元.(2)10.00-9.45=0.55(元),本周末收盘价比上周末的收盘价下跌了0.55元.(3)周一最高,周二最低,因为10.28-7.92=2.36(元),所以相差2.36元.24.已知A,B两点在数轴上分别表示的数为m,n.(1)对照数轴填写下表:m 6 -6 -6 -6 2 -1.5n 4 0 4 -4 -8 -1.5A,B两点间的距离 2 6 10 2 10 0(2)若A,B两点间的距离记为d,试问d与m,n有何数量关系?并用文字描述出来;(3)已知A,B在数轴上分别表示的数为x和-1,则A,B两点间的距离d可表示为___|x+1|__________,如果d=3,求x的值.解:(2)d=|m-n|,数轴上两个点之间的距离,等于这两个点表示的数的差的绝对值(3)|x+1| 当d=3时,|x-(-1)|=3,所以x=2或-4。
1.3 有理数的加减法 同步练习一、单选题1.比﹣1小2的数是( )A .3B .1C .﹣2D .﹣3 2.计算1﹣3+5﹣7+9=(1+5+9)+(﹣3﹣7)是应用了( )A .加法交换律B .加法结合律C .分配律D .加法交换律与结合律3.0减去任何一个数,一定是( )A .这个数本身B .这个数的相反数C .这个数的绝对值D .0 4.计算1122--的结果是( ) A .0 B .1 C .﹣1 D .145.已知一个数的绝对值是5,另一个数的绝对值是3,若两数之和的绝对值等于两数之和,则两数之差不可能为( )A .2B .8C .-2D .0 6.计算5372688⎛⎫-+- ⎪⎝⎭的值为( ) A .23- B .5212- C .1324- D .111424- 7.把(+3)﹣(+5)﹣(﹣1)+(﹣7)写成省略括号的和的形式是( ). A .﹣3﹣5+1﹣7 B .3﹣5﹣1﹣7 C .3﹣5+1﹣7 D .3+5+1﹣7 8.已知 1b a 0-<<< ,那么 a b,a b,a 1,a 1+-+- 的大小关系是( ) A .a b a b a 1a 1+<-<-<+B .a 1a b a b a 1+>+>->-C .a 1a b a b a 1-<+<-<+D .a b a b a 1a 1+>->+>- 9.下列算式:①6-(-6)=0;②(-2)-(+2)=0;③(-7)-|-7|=0;④0- (-12)=12.其中正确的有( )A .1个B .2个C .3个D .4个 10.下列结论不正确的是( )A .若a >0,b >0,则a +b >0B .若a <0,b <0,则a +b <0C.若a>0,b<0,且|a|>|b|,则a+b>0 D.若a<0,b>0,且|a|>|b|,则a+b>0 二、填空题11.-212与-3的和与-5.5的差是____.12.世界上最高的山峰是珠穆朗玛峰,其海拔高度是8844米,吐鲁番盆地的海拔高度大约是-155米.珠穆朗玛峰与吐鲁番盆地两处高度相差________________米.13.计算:(-0.25)-134⎛⎫-⎪⎝⎭+2.75-172⎛⎫+⎪⎝⎭=___.14.某工厂在2018年第一季度的效益如下:一月份获利润150万元,二月份比一月份少获利润70万元,三月份亏损5万元.则:(1)一月份比三月份多获利润____万元;(2)第一季度该工厂共获利润____万元.15.电子青蛙落在数轴上的某一点0P,第一步从0P向左跳1个单位到1P,第二步由1P向右跳2个单位到2P,第三步由2P向左跳3个单位到3P,第四步由3P向右跳4个单位到4P,……,按以上规律跳了2014步时,电子青蛙落在数轴上的点是19.5,则电子青蛙的初始位置0P点所表示的数是________.三、解答题16.一辆货车从超市出发,向东走了3 km到达小彬家,继续向东走了1.5 km到达小颖家,然后向西走了9.5 km到达小明家,最后回到超市.(1)请你以超市为原点,以向东的方向为正方向,用一个单位长度表示1 km,在数轴上表示出小彬家、小颖家、小明家的位置;(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?17.计算:(1)0-(-12);(2)52-(-2.5);(3)34⎛⎫-⎪⎝⎭-12⎛⎫+⎪⎝⎭;(4)218-312;(5)7.2-(-2.8)+(-5).18.10袋小麦以每袋150千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:-6、-3、-1、-2、+7、+3、+4、-3、-2、+1与标准质量相比较,这10袋小麦总计超过或不足多少千克?10袋小麦总质量是多少千克?每袋小麦的平均质量是多少千克?参考答案1.D2.D3.B4.A5.D6.B7.C8.C9.A10.D11.012.8999.13.-1.7514.155 22515.-987.516.(1)略;(2)小明家距小彬家8km;(3)货车一共行驶了19千米.17.(1)12;(2)5;(3)114-;(4)318-;(5)518.不足标准2千克;总质量1498千克;平均质量149.8千克;。
第一章 有理数1.3 有理数的加减法1.有理数的加法(1)有理数加法法则:①同号两数相加,取___________的符号,并把___________相加;②绝对值不相等的异号两数相加,取绝对值较___________的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得___________. ③一个数同0相加,仍得这个数. (2)用字母表示有理数加法法则: ①同号两数相加:若a >0,b >0,则a b +=___________; 若a <0,b <0,则a b +=___________. ②异号两数相加:若a >0,b <0,且||||a b >时,则a b +=___________; 若a >0,b <0,且||||a b <时,则a b +=___________; 若a >0,b <0,且a b =时,则a +b =___________. ③a +0=___________. (3)有理数的加法运算律: ①加法交换律:文字语言:两个数相加,交换加数的位置,和___________. 符号语言:a +b =___________. ②加法结合律:文字语言:三个数相加,先把前两个数相加,或者先把后两个数相加,和___________. 符号语言:(a +b )+c =___________. 2.有理数的减法:(1)有理数的减法法则:减去一个数,等于加上这个数的___________. 即a –b =a +(–b ).(2)对于有理数的减法运算,应先转化为___________,再根据有理数加法法则计算,即加法与减法是互逆运算.(3)有理数减法的三种情况:①减去一个正数等于加上一个负数;②减去一个负数等于加上一个正数;③任何数减去0仍得这个数,0减去一个数等于这个数的相反数.1.(1)相同,绝对值,大,02.(1)相反数 (2)加法一、有理数的加法法则有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0. 3.一个数同0相加,仍得这个数.1)5+8;(2)8+(–21);(3)102+0.【解析】(1)5+8=13;(2)8+(–21)=–(21–8)=–13; (3)102+0=102.二、有理数的加法运算律加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变. 表达式:a+b=b+a .加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变. 表达式:(a+b )+c=a+(b+c )(1)交换律;(2)结合律.【答案】(1)a +b =b +a ;(2)(a +b )+c =a +(b +c )【解析】根据有理数的加法运算律,可得答案为:(1)交换律:a +b =b +a ;(2)结合律:(a +b )+c =a +(b +c ).【名师点睛】在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律: (1)互为相反数的两个数先相加——“相反数结合法”; (2)符号相同的两个数先相加——“同号结合法”; (3)分母相同的数先相加——“同分母结合法”; (4)几个数相加得到整数,先相加——“凑整法”; (5)整数与整数、小数与小数相加——“同形结合法”.三、有理数的减法法则1.有理数减法法则:减去一个数,等于加这个数的相反数. 字母表示:a –b =a +(–b ).2.有理数减法法则是一个转化法则,把减数变为它的相反数,从而将减法转化为加法.可见,引进负数后的加减法运算,可以统一为加法运算来解决.1)(–3)–(–7);(2)11()43--. 【解析】(1)(–3)–(–7)=(–3)+7=4; (2)11()43--=1143+=712. 【名师点睛】运用法则时,应注意“两变,一不变”.“两变”:一是运算符号“–”变为“+”;二是减数变成它的相反数.一不变:被减数和减数的位置不能交换,即减法没有交换律.四、利用特殊规律解有关分数的计算题1.一个有理数由符号和绝对值两部分组成,所以进行加法运算时,要先确定符号,后确定绝对值. 2.当一个加数为负数时,这个负数必须用括号括起来,即两个符号要用括号隔开,如(–2)+(–1)中–1必须用括号括起来,不要写成–2+–1这样的形式.3.将减法变为加法时,注意“两变”和“一不变”.“两变”即改变运算符号(减变加)和改变减数的性质符号(变为相反数);“一不变”即被减数和减数的位置不能变换. 4.两数相减,当被减数大于减数时,差为正数;当被减数小于减数时,差为负数.5.根据题目特点,灵活将算式变形,对不同算式采取运算顺序重新组合、因数分解、裂项等不同的方法,达到优化解题过程、简化计算、解决问题的目的.5231591736342--+-.【答案】原式5231591736342=----++--5231(59173)()6342=--+-+--+-5433(59317)()6664=---++---+3(1717)(2)4=-++-+1014=-114=-.【解析】带分数相加,可将带分数中整数部分与分数部分拆开分别相加.【名师点睛】利用规律特点,灵活解分数计算题,需要认真观察,注意经常训练,提高思维的灵活性.五、有理数与相反数、绝对值的综合考查1.互为相反数的两个数的和为0. 2.绝对值具有非负性.|x –3|与|y +2|互为相反数,求x +y +3的值.【答案】4【解析】因为|x –3|与|y +2|互为相反数, 所以|x –3|+|y +2|=0,所以|x–3|=0,|y+2|=0,即x–3=0,y+2=0,所以x=3,y=–2.所以x+y+3=3+(–2)+3=4.六、有理数运算的应用用正负数可以表示相反意义的量,有理数的运算在生活中的应用十分广泛,其中,有理数的加法、减法及乘法运用较多.做题时,要认真分析,列出算式,并准确计算.8箱橘子,以每箱15千克为标准,超过的千克数记为正数,不足的千克数记为负数,现记录如下(单位:千克):1.2,–0.8,2.3,1.7,–1.5,–2.7,2,–0.2,则这8箱橘子的总重量是多少?【答案】1.2+(–0.8)+2.3+1.7+(–1.5)+(–2.7)+2+(–0.2)=1.2–0.8+2.3+1.7–1.5–2.7+2–0.2=(1.2–0.2)+(2.3+1.7+2)+(–0.8–2.7–1.5)=1+6–5=2.则15×8+2=122(千克).答:这8箱橘子的总重量是122千克.【解析】本题运用有理数的加法、乘法解决问题.先求出总增减量,再求出8箱橘子的总标准重量,两者之和便为这8箱橘子的实际总重量.8千米,到达“华能”修理部,又向北走了3.5千米,到达“捷达”修理部,继续向北走了7.5千米,到达“志远”修理部,最后又回到批发部.(1)以批发部为原点,以向南方向为正方向,用1个单位长度表示1千米,你能够在数轴上表示出“华能”“捷达”“志远”三家修理部的位置吗?(2)“志远”修理部距“捷达”修理部多远?(3)货车一共行驶了多少千米?【答案】详见解析.【解析】(1)能.三家修理部的位置如下图所示.(2)由数轴可知“志远”修理部距“捷达”修理部4.5–(–3)=4.5+3=7.5(千米).(3)货车共行驶了|8|+|–3.5|+|–7.5|+|–3|=8+3.5+7.5+3=22(千米).答:货车一共行驶了22千米.1.一个数加–0.6和为–0.36,那么这个数是A.–0.24 B.–0.96 C.0.24 D.0.962.把+3–(+2)–(–4)+(–1)写成省略括号的和的形式是A.–3–2+4–1 B.3–2+4–1 C.3–2–4–1 D.3+2–4–13.下列算式正确的是:A.(–14)–(+5)=–9 B.0–(–3)=3 C.(–3)–(–3)=–6 D.︱5–3︱=–(5–3) 4.下列结论中,正确的是A.有理数减法中,被减数不一定比减数大B.减去一个数,等于加上这个数C.零减去一个数,仍得这个数D.两个相反数相减得05.有理数a、b在数轴上的位置如图所示,则a+b的值A.大于0 B.小于0 C.等于0 D.大于b6.如果两个数的和是负数,那么这两个数A.同是正数B.同为负数C.至少有一个为正数D.至少有一个为负数7.计算│–4+1│的结果是A.–5 B.–3 C.3 D.58.比–2208大1的数是A.–2207 B.–2009 C.2007 D.20099.绝对值大于1且小于4的所有整数的和是A.6 B.–6 C.0 D.4 10.0–(–2017)=___________.11.计算:5–(–6)=___________.12.计算:–9+5=___________.13.计算:2113()() 3838---+-.1.在下列执行异号两数相加的步骤中,错误的是①求两个有理数的绝对值;②比较两个有理数绝对值的大小;③将绝对值较大数的符号作为结果的符号;④将两个有理数绝对值的和作为结果的绝对值A.①B.②C.③D.④2.在学习“有理数的加法与减法运算”时,我们做过如下观察:“小亮操控遥控车模沿东西方向做定向行驶练习,规定初始位置为0,向东行驶为正,向西行驶为负.先向西行驶3m,再向东行驶1m,这时车模的位置表示什么数?”用算式表示以上过程和结果的是A.(–3)–(+1)=–4 B.(–3)+(+1)=–2C.(+3)+(–1)=+2 D.(+3)+(+1)=+43.计算12+16+112+120+130+…+19900的值为A.110099B100.1C99.100D99.4.甲、乙、丙三地的海拔高度分别为20m、–15m和–10m,那么最高的地方比最低的地方高__________m.5.若a是最小的正整数,b是绝对值最小的数,c是相反数等于它本身的数,d是到原点的距离等于2的负数,e是最大的负整数,则a+b+c+d+e=__________.6.若室内温度是20°C,室外温度是−5°C,则室内温度比室外温度高_______°C.7.计算:–14+23+(–23).8.计算:(9)(10)(2)(8)(3)+-++---++.9.a=4,b=2018,a b+≠a+b,试计算a+b的值.10.足球循环赛中,红队胜黄队4︰1,黄队胜蓝队1︰0,蓝队胜红队1︰0,计算各队的净胜球数.11.计算:(1)–(–2)+(–3);(2)(–5.3)+|–2.5|+(–3.2)–(+4.8).1.(2019•孝感)计算–19+20等于A.–39 B.–1 C.1 D.392.(2019•天水)已知|a|=1,b是2的相反数,则a+b的值为A.–3 B.–1 C.–1或–3 D.1或–33.(2019•成都)比–3大5的数是A.–15 B.–8 C.2 D.84.(2019•淄博)比–2小1的数是A.–3 B.–1 C.1 D.35.(2019•金华)某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是A.星期一B.星期二C.星期三D.星期四6.(2019•随州)2017年,随州学子尤东梅参加《最强大脑》节目,成功完成了高难度的项目挑战,展现了惊人的记忆力.在2019年的《最强大脑》节目中,也有很多具有挑战性的比赛项目,其中《幻圆》这个项目充分体现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则图中两空白圆圈内应填写的数字从左到右依次为__________.7.(2019•乐山)某地某天早晨的气温是–2℃,到中午升高了6℃,晚上又降低了7℃.那么晚上的温度是__________℃.1.【答案】C【解析】根据加数+加数=和,可得–0.36–(–0.6)=–0.36+0.6=0.24.故选C.【名师点睛】此题主要考查了有理数的加减法,解题的关键是根据加减法的互逆性,把加法转化为减法,再利用减去一个数等于加上这个数的相反数,即可计算,比较简单.2.【答案】A【解析】先把加减法统一成加法,再省略括号和加号,即可将一个加减混合运算的式子写成省略加号的和的形式,可得+3–(+2)–(–4)+(–1)=+3–2+4–1.故选A.【名师点睛】本题考查了有理数的加减混合运算,注意将一个加减混合运算的式子写成省略加号的和的形式时,必须统一成加法后,才能省略括号和加号.3.【答案】B【解析】根据有理数的减法,减去一个数等于加上这个数的相反数,可知:(–14)–(+5)=(–14)+(–5)=–19;0–(–3)=0+(+3)=3;(–3)–(–3)=(–3)+3=0;︱5–3︱=5–3=2.故选B.4.【答案】A【解析】根据有理数的减法法则依次分析即可判断.A.有理数减法中,被减数不一定比减数大,本选项正确;B.减去一个数,等于加上这个数的相反数,本选项错误;C.零减去一个数,得这个数的相反数,本选项错误;D.两个相反数相加得0,本选项错误;故选A.【名师点睛】解答本题的关键是熟练掌握有理数的减法法则:减去一个数等于加上这个数的相反数. 5.【答案】A【解析】异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.根据数轴可得b的绝对值大于a的绝对值,则和取b的符号.6.【答案】D【解析】因为两个数的和为负数数,所以至少要有一个负数,故选D.【名师点睛】本题考查了有理数的加法法则,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.7.【答案】C【解析】│–4+1│=│–3│=3,故选C.8.【答案】A【解析】–2208+1=–(2208–1)=–2207.故选A.9.【答案】C【解析】绝对值大于1小于4的整数有:±2;±3.–2+2+3+(–3)=0.故选C.10.【答案】2017【解析】0–(–2017)=0+2017=2017.11.【答案】11【解析】5–(–6)=5+6=11.12.【答案】–4【解析】–9+5=–(9–5)=–4.13.【答案】1 2【解析】21132113211311 ()()1 38383838338822---+-=-+-=+--=-=.1.【答案】D【解析】①求两个有理数的绝对值;②比较两个有理数绝对值的大小;③将绝对值较大数的符号作为结果的符号;④将两个有理数绝对值的差作为结果的绝对值;故选D.【名师点睛】本题主要考查的是异号两数相加的计算法则,属于基础题型.理解计算法则是解题的关键.2.【答案】B【解析】由题意可得:(–3)+(+1)=–2.故选B.【名师点睛】本题主要考查了有理数的加法的应用,根据题意,正确列出算式是解题的关键.3.【答案】B【解析】原式=11111 1223344599100 ++++⋯+⨯⨯⨯⨯⨯=111111112233499100-+-+-+⋯+-, =1–1100=99100. 故选B .【名师点睛】此题主要考查了有理数的加法,正确分解分数将原式变形是解题关键.4.【答案】35【解析】最高甲,最低乙,所以最高比最低高()2015201535--=+=.故答案为:35. 5.【答案】–2【解析】因为a 是最小的正整数,b 是绝对值最小的数,c 是相反数等于它本身的数,d 是到原点的距离等于2的负数,e 是最大的负整数,所以a =1,b =0,c =0,d =–2,e =–1,所以a +b +c +d +e =1+0+0–2–1=–2.故答案为:–2.【名师点睛】本题考查了有理数的基础知识及有理数的加法运算,根据题意求得a =1,b =0,c =0,d =–2,e =–1,再利用有理数的加法法则计算.6.【答案】25【解析】用室内温度减去室外温度,即20–(–5)=20+5=25(°C ),故答案为:25.7.【答案】–14【解析】–14+23+(–23)=–14; 8.【答案】8【解析】原式=[(9)(8)(3)][(10)(2)](20)(12)8++++++-+-=++-=. 9.【答案】a +b 的值为–2014或–2022. 【解析】因为a =4,所以a =±4.因为b =2018,所以b =±2018. 因为a b +≠a +b ,所以=–(a +b ),所以a +b <0.当a =4,b =–2018时,a +b =4+(–2018)=–2014.当a =–4,b =–2018时,a +b =(–4)+(–2018)=–2022.当b =2018时,不符合题意.a b +所以a+b的值为–2014或–2022.10.【答案】红队净胜球数为2;黄队净胜球数为–2;蓝队净胜球数为0.【解析】每个队的进球总数记为正数,失球总数记为负数,这两数的和为该队的净胜球数.三场比赛中,红队共进4球,失2球,净胜球数为:(+4)+(–1)+(–1)=4+(–2)=2;黄队共进2球,失4球,净胜球数为:(+1)+(+1)+(–4)=2+(–4)=–2.蓝队共进1球,失1球,净胜球数为1+(–1)=0.11.【答案】(1)–1;(2)–10.8.【解析】(1)原式=2–3=–1;(2)原式=–5.3+2.5–3.2–4.8=–5.3–3.2+2.5–4.8=–8.5+2.5–4.8=–6–4.8=–10.8.1.【答案】C【解析】–19+20=1.故选C.【名师点睛】此题主要考查了有理数的加减运算,正确掌握运算法则是解题关键.2.【答案】C【解析】因为|a|=1,b是2的相反数,所以a=1或a=–1,b=–2,当a=1时,a+b=1–2=–1;当a=–1时,a+b=–1–2=–3;综上,a+b的值为–1或–3,故选C.【名师点睛】本题主要考查有理数的加法,解题的关键是根据相反数和绝对值的性质得出a、b的值.3.【答案】C【解析】–3+5=2.故选C.【名师点睛】本题考查了有理数加法运算,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.4.【答案】A【解析】–2–1=–(1+2)=–3.故选A.【名师点睛】本题考查了有理数的减法运算,熟记运算法则是解题的关键.5.【答案】C【解析】星期一温差10–3=7℃;星期二温差12–0=12℃;星期三温差11–(–2)=13℃;星期四温差9–(–3)=12℃;故选C.【名师点睛】本题考查有理数的减法;能够理解题意,准确计算有理数减法是解题的关键.6.【答案】2;9【解析】设图中两空白圆圈内应填写的数字从左到右依次为a,b.因为外圆两直径上的四个数字之和相等,所以4+6+7+8=a+3+b+11①,因为内、外两个圆周上的四个数字之和相等,所以3+6+b+7=a+4+11+8②,联立①②解得:a=2,b=9,所以图中两空白圆圈内应填写的数字从左到右依次为2,9,故答案为:2;9.【名师点睛】此题比较简单,主要考查了有理数的加法,主要依据题中的要求①②列式即可以求解.7.【答案】–3【解析】–2+6–7=–3,故答案为:–3.【名师点睛】本题主要考查有理数的加减法,正确列出算式是解题的关键.。
有理数的加减法学习时间: 年 月 日一.相信你都能选对(每小题2分,共16分)1、下列计算结果等于2的是( )A 、│-7│+│+5│B 、│(-7)+(+5)│C 、│+7│+│-4│D 、│(+7)-(-4)│2、1减负4的结果为( )A 、-3,B 、3,C 、-5,D 、53、食品店一天周只各天的盈亏情况如下( 盈余为正,亏损为负,单位:元)132,-12,-100,127,-97,137,98则这一周的盈亏情况是( )A 、盈了B 、亏了C 、不盈不亏,D 、以上都不对。
4、下列式子成立的是( )A 、055=--+)()(,B 、550=-,C 、055=---)()(,D 、505=--)(。
6、一个数大于另一个数的绝对值,则这两个数的和是( )A.负数B.正数C.非负数D.非正数 7、如果两个数的和为正数,那么( )A.这两个加数都是正数B.一个数为正,另一个为0C.两个数一正一负,且正数绝对值大D.必属于上面三种之一 8、下列结论不正确的是( )A.若a>0,b>0,则a+b>0B.若a<0,b<0,则a+b<0C.若a>0,b<0,则|a|>|b|,则a+b>0D.若a<0,b>0,且|a|>|b|,则a+b>0 二、相信你填得又快又准(每小题2分,共16分)9、-4-_______=23,( )-(-10)=20。
10、比-6小-3的数是______。
11、冬季的某一天,甲地最低温度是-15℃,乙地最低温度是15℃,甲地比乙地低___℃.12、把(+5)+(+1)-(-7)+(-3)-(+8)写成省略括号的和的形式是 。
13、海拔-200m 比-300m 高 ;从海拔200m 下降到-50m ,下降了 。
14、已知甲数是9的相反数,乙数比甲数的相反数大5,则乙数比甲数大 。
15、存折中原有750元,取出360元,又存入278元,现在存折中还有 元。
人教版7年级数学考试题测试题人教版初中数学1.3 有理数的加减法1.3.1 有理数的加法5分钟训练(预习类训练,可用于课前)1.有理数的加法法则.(1)同号两数相加,取相同的______,并把绝对值______;(2)绝对值不相等的异号两数相加,取绝对值的加数的符号,并用较大的绝对值减去______的绝对值;(3)互为相反数的两个数相加得_______;(4)一个数同零相加仍得________.思路解析:法则有同号、异号、零三种情况分别运算.答案:(1)符号相加(2)较大较小(3)0(4)这个数本身2.小学里学过的加法交换律、结合律在有理数运算中仍然适用.利用加法运算律可以使运算简便.(1)同号结合法:先把正数与负数分别结合以后再_______.(2)凑整结合法:先把某些加数结合凑为_______再相加.(3)相反数结合法:先把互为________的数结合起来.(4)同分母结合法:遇有分数,先把_______结合起来.思路解析:利用运算法,把数的加法、进行分类运算、简化计算.答案:(1)相加(2)整数(3)相反数(4)同分母分数3.计算下列各题:(1)(+3)+(-12)=________;(2)(+20)+(+32)=________;(3)(-312)+(-23)=_______;(4)(-20072006)+0=________.思路解析:根据有理数的加法法则进行. (1)(+3)+(-12)=-(12-3)=-9;(2)(+20)+(+32)=+(20+32)=52;(3)(-312)+(-23)=-(312+23)=-416;(4)(-20072006)+0=-20072006.答案:(1)-9 (2)52 (3)-416(4)-2007200610分钟训练(强化类训练,可用于课中)1.判断题:(1)两个有理数的和为正数时,这两个数都是正数;()(2)两个数的和的绝对值一定等于这两个数绝对值的和;()(3)如果两个数的和为负,那么这两个加数中至少有一个是负数;()(4)两数之和必大于任何一个加数;()(5)如果两个有理数的和比其中任何一个加数都大,那么这两个数都是正数. ()思路解析:(1)异号两数相加,当正数的绝对值较大时,和也是正数.(2)异号两数相加时,和的绝对值等于这两数绝对值之差.(4)当两个加数中有一个负数或0时,它们的和必小于或等于另一个加数.答案:(1)×(2)×(3)√(4)×(5)√2. 计算:(1)(-718)+(-16);(2)(-1.13)+(+1.12);(3)(-237)+237;(4)0+(-4).思路解析:利用有理数的加法法则进行有理数的加法的基本步骤:第一步要判断是同号两数相加还是异号两数相加;第二步要判断结果是正号还是负号;第三步要判断用绝对值的和算还是用绝对值的差算答案:(1)-5/9 (2)-0.01 (3)0 (4)-43. 计算:(1)(+17)+(-32)+(-16)+(+24)+(-1);(2)(+653)+(-523)+(+425)+(-113).思路解析:运用有理数加法的运算律可以简化运算,在多个有理数相加时,往往实际运用交换律,又运用结合律.解:(1)原式=(+17)+(+24)+(-32)+(-16)+(-1)=(+41)+(-49)=-8;(2)原式=(+635)+(+425)+(-523)+(-113)=11-7=44.计算:88+95+92+89+86+91+90+88+92+90+86+92+87+89+91+93+88+94+91+87. 思路解析:注意到数字都在90左右波动,可将之两两组合,或取整数90的20倍,再将差数求和.答案:原式=90×2+(-2+5+2-1-4+1-2+2-4+2-3-1+1+3-2+4+1-3)=1 7995.8袋大米,以每袋50千克为准,超过的千克数记作正数,分别为-2,+1,+5,+6,-3,-5,+5,-3.问8袋大米总共重多少千克.若每千克大米1.9元,这8袋大米值多少元? 思路解析:注意这里以每袋50千克为准,故共重:50×8+(-2)+1+5+6+(-3)+(-5)+5+(-3)=404(千克),价值为404×1.9=767.6(元).答案: 8袋大米总共重404千克,这8袋大米值767.6元.快乐时光鲍比十分淘气,整天缠着妈妈不是要这,就是要那,嘴里也不停地叫着:“妈妈,妈妈!”有一次,妈妈被吵得不耐烦了,就对鲍比说:“你再叫一声‘妈妈’,我就把你扔出去!”鲍比不再做声了.过了一会儿,妈妈把他抱到床上睡觉,鲍比又开口道:“太太,我能喝点饮料吗?”30分钟训练(巩固类训练,可用于课后)1.计算下列各式:(1)(-7)+512+(-312)+4;(2)(-5)+223+(-12)+(-223).思路解析:应根据数字的特征,利用加法的交换律来解之.解:(1)原式=(-7)+4+512+(-312)-3+2=-1;(2)原式=(-5)+(-12)+223+(-223)=-512.2.计算下列各式:(1)(-557)+(-612)+(-1427)+(+16.5);(2)(-423)+38+(-56)+(-58)+(334).思路解析:先进行合理分组.即同分母的数分为一组. 答案:(1)-10 (2)-23.要使下列各式成立,有理数x应取什么值?(1)-[-(-7)]+x=0;(2)x+(-512)=2.5;(3)x+[-(-1113)]=1113.思路解析:应先移项,将数字合并.或已知两个数的和与一个加数,求另一个加数,用减法. 答案:(1)x=7 (2)x=8 (3)x=04.某产粮专业户出售余粮20袋,每袋重量如下:(单位千克)199、201、197、203、200、195、197、199、202、196、203、198、201、200、197、196、204、199、201、198.用简便方法计算出售的余粮总共多少千克?思路解析:把这20个数逐一相加是很麻烦的,而且容易出错注意到,这20个数都在200(千克)左右,若以200为准,超过的千克数记作正数,不足的千克数记作负数,那么通过计算差额来求总和则简便得多.解:以200(千克)为基准,超过的千克数记作正数,不足的千克数记作负数,则这20个数的差的累计是:(-1)+(+1)+(-3)+(+3)+0+(-5)+(-3)+(-1)+(+2)+(-4)+(+3)+(-2)+(+1)+0+(-3)+(-4)+(+4)+ (-1)+(+1)+(-2)=-14.200×20+(-14)=4 000-14=3 986(千克)答:余粮总共有3 986千克.5.下表为某公司股票在本周内每日的涨跌情况(股价上涨记为“+”,下跌记为“-”):星期一二三四五每股涨跌+4.35 -3.20 -0.35 -2.75 +1.15计算本周内该公司股票总的变化是上涨还是下降,上涨或下降的值是多少元?思路解析:把每日涨跌值相加即可,注意若和为正,则为上涨,反之为下跌答案:本周该公司股票下跌0.80元.6.一位同学沿着一条东西向的跑道,先走了20米,又走了30米,能否确定他现在位于原来位置的哪个方向,相距多少米?思路解析:我们知道,求两次运动的总结果,可以用加法来解答.可是上述问题并未指出行走方向.根据我们所学过的用正负数来表示相反意义量,设向东为正,则向西为负.解:(1)若两次都是向东走,则一共向东走了50米,表示:(+20)+(+30)=+50;(2)若两次都是向西走,则一共向西走了50米,表示:(-20)+(-30)= -50;(3)若第一次向东走20米,第二次向西走30米,则最后位于原来位置的西方10米,表示:(+20)+(-30)= -10;(4)若第一次向西走20米,第二次向东走30米,则最后位于原来位置的东方10米,表示:(- 20)+(+30)= +10以上两种情形都具有类似的情形,即方向上是相反的,且结果具有类似之处.7.我国古代有一道有趣的数学题:“井深十米,一只小蜗牛从井底向上爬,白天向上爬2米,夜间又掉下1米,问小蜗牛几天可爬出深井?”你能用有理数加法的知识解决这个古老的问题吗?千万别落入陷阱哦!思路解析:这里注意最后一个白天蜗牛已经爬上井口,夜间就不会掉下了!解:8[(+2)+(-1)+[(+2)+(-1)]++[(+2)+(-1)] 天+(+2)=10(米).8.若|y -3|+|2x -4|=0,求3x +y 的值.思路解析:根据绝对值的性质可以得到|y -3|≥0,|2x -4|≥0,所以只有当y -3=0且2x -4=0时,|y -3|+|2x -4|=0才成立.解:由y -3=0得y =3,由2x -4=0,得x =2.则3x +y 易求.附赠材料:以学生为第一要务目标我们教育工作的最终目标只有一个:学生。
人教版七年级数学上册:1.3有理数的加减法测试题(一)一、选择题1.计算(-3)+5的结果等于()A.2B.-2C.8D.-82.比-2小1的数是()A.-1B.-3C.1D.33.计算(-20)+17的结果是()A.-3B.3C.-2017D.20174.比-1小2015的数是()A.-2014B.2016C.-2016D.20145.下列说法不正确的个数是()①两个有理数的和可能等于零;②两个有理数的和可能等于其中一个加数;③两个有理数的和为正数时,这两个数都是正数;④两个有理数的和为负数时,这两个数都是正数.A.1个B.2个C.3个D.4个6.下列算式中:①2-(-2)=0;②(-3)-(+3)=0;③(-3)-|-3|=0;④0-(-1)=1.其中正确的有()A.1个B.2个C.3个D.4个7.算式-3-5不能读作()A.-3与-5的差B.-3与5的差C.3的相反数与5的差D.-3减去58.一个数减去2等于-3,则这个数是()A.-5B.-1C.1D.59.如图是一个三角形的算法图,每个方框里有一个数,这个数等于它所在边的两个圆圈里的数的和,则图中①②③三个圆圈里的数依次是()A.19,7,14B.11,20,19C.14,7,19D.7,14,1910.古希腊数学家帕普斯是丢潘图是最得意的一个学生,有一天他向老师请教一个问题:有4个数,把其中每3个相加,其和分别是22,24,27,20,则这个四个数是()A.3,8,9,10B.10,7,3,12C.9,7,4,11D.9,6,5,1111.与-3的差为0的数是()A.3B.-3C.-D.二、填空题12.计算:-1+8= ______ .13.计算1+4+9+16+25+…的前29项的和是 ______ .14.大于-3.5且不大于4的整数的和是 ______ .15.计算:-9+6= ______ .16.比1小2的数是 ______ .17.计算7+(-2)的结果为 ______ .三、解答题18.计算题(1)5.6+4.4+(-8.1)(2)(-7)+(-4)+(+9)+(-5)(3)+(-)+(4)5(5)(-9)+15(6)(-18)+(+53)+(-53.6)+(+18)+(-100)人教版七年级数学上册:1.3有理数的加减法测试题答案和解析【答案】1.A2.B3.A4.C5.B6.A7.A 8.B 9.C 10.C 11.B12.713.855514.415.-316.-117.518.解:(1)5.6+4.4+(-8.1)=10-8.1=1.9;(2)(-7)+(-4)+(+9)+(-5)=-7-4+9-5=-16+9=-7;(3)+(-)+=(-)+(--)+=0-1+=-;(4)5=(5+4)+(-5-)=10-6=4;(5)(-9)+15=(-9-15)+[(15-3)-22.5]=-25+[12.5-22.5]=-25-10=-35;(6)(-18)+(+53)+(-53.6)+(+18)+(-100)=(-18+18)+(+53-53.6)+(-100)=0+0-100=-100.【解析】1. 解:(-3)+5=5-3=2.故选:A.依据有理数的加法法则计算即可.本题主要考查的是有理数的加法法则,掌握有理数的加法法则是解题的关键.2. 解:-2-1=-3,故选:B.根据有理数的减法,即可解答.本题考查了有理数的减法,解决本题的关键是列出算式.3. 解:原式=-(20-17)=-3,故选A原式利用异号两数相加的法则计算即可得到结果.此题考查了有理数的加法,熟练掌握加法法则是解本题的关键.4. 解:根据题意得:-1-2015=-2016,故选C根据题意列出算式,利用有理数的减法法则计算即可得到结果.此题考查了有理数的减法,熟练掌握减法法则是解本题的关键.5. 解:①互为相反数的两个数相加和为0,所以两个有理数的和可能等于零,说法正确;②一个数同0相加,仍得这个数,所以两个有理数的和可能等于其中一个加数,说法正确;③两个有理数的和为正数时,可能这两个数都是正数;可能一正一负;还可能一个是正数,一个是0;所以原说法错误;④两个有理数的和为负数时,这两个数不能都是正数,所以原说法错误;故选B.有理数的加法法则:同号两数相加,取相同的符号,并把它们的绝对值相加;绝对值不等的异号两数相加,取绝对值较大的数的符号作为结果的符号,再用较大的绝对值减去较小的绝对值;互为相反数的两个数相加和为0;一个数同0相加,仍得这个数.根据这个法则进行解答即可.本题考查了有理数的加法法则,是基础知识要熟练掌握.6. 解:①2-(-2)=2+2=4,故本小题错误;②(-3)-(+3)=-3-3=-6,故本小题错误;③(-3)-|-3|=-3-3=-6,故本小题错误;④0-(-1)=0+1=1,故本小题正确;综上所述,正确的有④共1个.故选A.根据有理数的减法运算法则对各小题分别进行计算即可继续进行判断.本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.7. 解:-3-5不能读作:-3与-5的差.故选A.根据有理数的减法运算的读法解答.本题考查了有理数的减法,是基础题,熟记并理解有理数的减法与加法的意义是解题的关键.8. 解:由题意,得:-3+2=-1,∴这个数是-1,故选B.根据加法是减法的逆运算,将两数相加即可.本题主要考查有理数的减法,解决此题时,可以运用其逆运算计算.9. 解:如图,设①、②、③三处对应的数依次是x,y,z,则,解得.故选C.设①、②、③三处对应的数依次是x、y和z,根据每个方框里有一个数,这个数等于它所在边的两个圆圈里的数的和,列方程组求解.本题考查的是有理数的加法,解题关键是能够根据题意列出三元一次方程组,并且能熟练运用消元法解方程组,难度一般.10. 解:设a、b、c、d为这4个数,且a>b>c>d,则有,解得:a=11,b=9,c=7,d=4.故选C.设出4个数,按照题意列出方程组,即可得出结论.本题考查的有理数的加法,解题的关键是按大小顺序设出4个数,联立方程组得出结论.11. 解:根据题意得:0+(-3)=-3,则与-3的差为0的数是-3,故选B.根据差与减数之和确定出被减数即可.此题考查了有理数的减法,熟练掌握有理数减法法则是解本题的关键.12. 解:原式=+(8-1)=7,故答案为:7原式利用异号两数相加的法则计算即可得到结果.此题考查了有理数的加法,熟练掌握加法法则是解本题的关键.13. 解:12+22+32+42+52+…+292+…+n2=0×1+1+1×2+2+2×3+3+3×4+4+4×5+5+…(n-1)n+n=(1+2+3+4+5+…+n)+[0×1+1×2+2×3+3×4+…+(n-1)n]=+{(1×2×3-0×1×2)+(2×3×4-1×2×3)+(3×4×5-2×3×4)+…+[(n-1)•n•(n+1)-(n-2)•(n-1)•n]}=+[(n-1)•n•(n+1)]=,∴当n=29时,原式==8555.故答案为 8555.根据每一项分别是12、22、32、42、52可找到规律,整理可得原式关于n的一个函数式,即可解题.本题考查了学生发现规律并且整理的能力,本题中整理出原式关于n的解析式是解题的关键.14. 解:大于-3.5且小于4的整数是-3、-2、-1、0、1、2、3、4,∴大于-3.5且小于4的整数的和为:-3-2-1+0+1+2+3+4=4.故答案为4.先找出符合条件的整数,然后把它们相加即可.此题考查了有理数的加法,解题时正确写出符合条件的整数是关键.15. 解:原式=-(9-6)=-3,故答案为:-3.根据有理数的加法,可得答案.本题考查了有理数的加法,熟记有理数的加法是解题关键.16. 解:比1小2的数是1-2=1+(-2)=-1.关键是理解题中“小”的意思,根据法则,列式计算.本题主要考查了有理数的减法的应用.17. 解:7+(-2)=5.故答案为:5.绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.考查了有理数加法法则:在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.18.(1)从左往右依此计算即可求解;(2)先化简,再计算加减法;(3)(4)(5)根据加法交换律和结合律计算即可求解;(6)先算相反数的加法,再相加即可求解.考查了有理数加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.。
七年级数学(上)单元测试单元:(1.3有理数的加减法)姓名:_________班级:____________一、精心选一选,慧眼识金!(每小题3分,共30分) 1. 计算:(-3)+(-3)=( ) A.-9 B.9 C.-6 D.6 2. 下列运算正确的是( ) A.(-3)+(-4)=-3+-4=…… B.(-3)+(-4)=-3+4=…… C.(-3)-(-4)=-3+4=…… D.(-3)-(-4)=-3-43. 某天的最高气温是11℃,最低气温是-1℃,则这一天的最高气温与最低气温的差是( ) A.2℃ B.-2℃ C.12℃ D.-12℃4. 如果两个数的和是负数,那么这两个数( ) A.同是正数 B.同为负数 C.至少有一个正数 D.至少有一个为负数5. 计算5-3+7-9+12=(5+7+12)+(-3-9)是应用了( ) A.加法交换律 B.加法结合律 C.分配律 D.加法交换律和结合律6.在“有理数的加法与减法运算”的学习过程中,我们做如下数学实验.“把笔尖放在数轴的原点处,先向左移动3个单位长度,再向右移动1个单位长度,这时笔尖的位置表示什么数?”用算式表示以上过程和结果的是( )A.4)1()3(-=+--B.2)1()3(-=++-C.2)1()3(+=-++D.4)1()3(+=+++ 7.如图,数轴的单位长度为1,如果B 、C 表示的数的和为2,那么A 、D 表示的数的和是( ) A.5 B.4 C.3 D.28.计算1+(-2)+3+(-4)+5+(-6)+...+19+(-20)得( ) A.10 B.-10 C.20D.-209.小明做这样一道题“计算:m +-)3(”,其中“m ”是被墨水污染看不清的一个数,他翻开后面的答案知该题计算的结果是等于6,那么“m ”表示的数是( ) A.3 B.-3 C..9 D.-3或910.已知整数...,,,4321a a a a 满足...32103423121+-=+-=+-==a a a a a a a ,,,依此类推,则2018a 的值为( )A.-1009B.-1008C..-2017D.-2016 二、耐心填一填,一锤定音(每小题3分,共24分) 11. 3-=_________.12. 比-1小2017的数是________.13. 河里水位第一天上升8cm ,第二天下降7cm ,第三天又下降9cm ,第四天又上升了3cm ,经测量此时的水位为62.6cm ,则河里初始水位值________.14.将一把刻度尺如图所示放在数轴上(数轴的单位长度是),刻度尺上的“”和“”分别对应数轴上的和,则的值为__________. 是否15.如图,丁丁做了一个程序图,当丁丁输入的数为6时,输出的结果=_________ 16.若,则的值为__________17.若5=a ,7=b ,且b a >,则b a +的值可能是____________。
人教版初中数学七年级上册第1章1.3《有理数的加减法》同步检测卷基础卷(时间:90分钟,满分:100分)一、选择题(每小题4分,共28分)1.两数相加,如果和不是正数,这两个数()A.都是负数B.都是正数C.一正一负D.至少有一为负2.若a为有理数,则∣a∣+a的结果为()A.正数B.负数C.不可能是负数D.正数、负数和零都有可能3.若∣x∣=∣y∣=1,则∣-x∣+∣-y∣的值是()A.0 B.1 C.2 D.±24.若a,b互为相反数,则a+b的值为()A.0 B.1 C.2 D.±25、绝对值大于2且小于5的所有整数的和是()A、7B、-7C、0D、46、下列说法中正确的是()A、最小的整数是0B、有理数分为正数和负数C、如果两个数的绝对值相等,那么这两个数相等D、互为相反数的两个数的绝对值相等7、校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在()A、在家B、在学校C、在书店D、不在上述地方二、填空题(每空2分,共34分)8.(1);(2);(3);(4);(5);(6)。
9.已知两个数是15和-21,这两个数的和的绝对值是___,绝对值的和是__。
10.绝对值小于3的所有整数的和是___。
11、加法交换律用字母表示为:______;加法结合律用字母表示为:___。
12、如果a>0,b>0,那么a+b___0;如果a<0,b<0,那么a+b___0;如果a>0,b<0,且∣a∣>∣b∣,那么a+b___0;如果a<0,b>0,且∣a∣<∣b∣,那么a+b___0。
13、有理数的减法法则,用字母表示为:a-b=____。
14、若∣x∣=∣y∣=1,则∣-x∣+∣-y∣的值是____.三、解答题(共38分)15、(14分)计算(1)-17+23+(-16)-(-7);(2)1+(-21)+∣-2-3∣-25。
1.3 有理数的加减法1.3.1 有理数的加法测试时间:20分钟一、选择题1.下列运算中,正确的是( )A.(+6)+(-13)=+7B.(+6)+(-13)=-19C.(+9.05)+(-9.05)=18.1D.(-3.75)+=-22.已知|a|=3,|b|=2,且|a+b|<|a|+|b|,则a+b的值是( )A.5或-5B.3或-3C.1D.1或-13.运用加法运算律计算+(-18)++(-6.8)+18+(-3.2)最适当的是( )A.+[(-18)+(-6.8)+(-3.2)]B.-+[(-18)+18+(-3.2)]C.-+-+[18+(-3.2)]D.+[(-18)+18]+[(-3.2)+(-6.8)]二、填空题4.已知a的相反数是2,b的绝对值是5,则a+b的值为.5.已知x,y,z三个有理数之和为0,若x=8,y=-5,则z= .6.计算:1+(-2)+3+(-4)+5+(-6 +…+2 013+ -2 014)+2 015+(-2 016)+2 017+(-2 018)= .三、解答题7.计算:(1)(-23)+(+58)+(-17);(2)(-2.8)+(-3.6)+(-1.5)+3.6;(3)+-+-+;(4)-2.5+(-3.26)+5.5+(+7.26).8.小虫从点A出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为(单位:cm):+5,-3,+10,-8,-6,+12,-10.(1)小虫最后是否回到出发点A?(2)在爬行过程中,如果每爬行1 cm奖励一粒芝麻,则小虫一共得到多少粒芝麻?1.3.2 有理数的减法测试时间:20分钟一、选择题1.-3,-14,7的和比它们的绝对值的和小( )A.-34B.-10C.10D.342.某日的最高气温为3 ℃,最低气温为-9 ℃,则这一天的最高气温比最低气温高( )A.-12 ℃B.-6 ℃ C 6 ℃D 12 ℃二、填空题3.式子-6-(-4)+(+7)-(-3)写成省略括号的代数和的形式是.4.如果一个数的实际值为a,测量值为b,我们把|a-b|称为绝对误差,-称为相对误差.若有一种零件实际长度为5.0 cm,测量得4.8 cm,则测量所产生的绝对误差是cm,相对误差是.三、解答题5.根据题意列出式子计算:(1)一个加数是1.8,和是-0.81,求另一个加数;(2)求-的绝对值的相反数与的相反数的差.6.请根据图示的对话解答下列问题.求:(1)a,b的值;(2)8-a+b-c的值.1.4 有理数的乘除法1.4.1 有理数的乘法测试时间:20分钟一、选择题1.4的倒数是( )A.-4B.4C.-D.2.给出下列说法:①1乘任何有理数都等于这个数本身;②0与任何有理数的积均为0;③-1乘任何有理数都等于这个有理数的相反数;④一个数的倒数与其本身相等的数是±1,其中正确的有( )A.1个B.2个C.3个D.4个3.如果两个有理数的积小于零,和大于零,那么这两个有理数 ( )A.符号相反B.符号相反,绝对值相等C.符号相反,且负数的绝对值较大D.符号相反,且正数的绝对值较大二、填空题4.计算:-×19-×15=.5.(1)规定运算☆:a☆b=a×b+1,则(-2 ☆3=;(2)规定运算◎:a◎b=ab+a+b+1,则(-3 ◎3=.6.探究与发现:两数之间有时很默契,请你观察下面的一组等式:(-1 ×=(-1)+;(-2 ×=(-2)+;(-3 ×=(-3)+;…按此规律,再写出符合这个规律的一个等式: .三、解答题7.计算:(1)(-2 × -67 ×5; 2 23×-× -12);(3)(-12 ×-;(4)--× -36).1.4.2 有理数的除法测试时间:20分钟一、选择题1.下列变形错误的是( )A.÷ -3 =3× -3)B.(-5 ÷-=-5× -2)C.8-(-2)=8+2D.2-7=(+2)+(-7)2.如果a+b<0,>0,那么下列结论成立的是( )A.a>0,b>0B.a<0,b<0C.a>0,b<0D.a<0,b>03.有理数a,b在数轴上的位置如图所示,则下列结论正确的是( )A.a+b>0B. a-b<0C.ab>0D.<0二、填空题4.计算:(-42 ÷12=;-18÷0 6=;-÷ -1.5)= ;-= ;-= ;--= .5.在数-5,-5,-1,2,4中任取两个数相除,所得商中最小数是.6.若三个有理数x、y、z满足xyz>0,则++= .三、解答题7.简便运算:(1)--÷-;(2)1×--×2+-÷1.8.计算:(1)-8+8÷-;(2)--÷-;(3)----÷ -5);(4)×--÷.1.5 有理数的乘方1.5.1 乘方测试时间:20分钟一、选择题1.与算式32+32+32的运算结果相等的是( )A.33B.23C.36D.382.在(-2)3、-|-2|3、-(-2)3、-23中,最大的是( )A.(-2)3B.-|-2|3C.-(-2)3D.-233.下列各组数中:①-52与(-5)2;② -3)3与-33;③-(-0.3)5与0.35;④0100与0200;⑤ -1)3与(-1)2,相等的共有( )A.1组B.2组C.3组D.4组二、填空题4.-24+(3-7)2-2× -1)2= ;-32+(-2)3×2=.5.21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,……用你发现的规律,确定22 016的个位数字是.6.按照如图所示的操作步骤,若输入的值为1,则输出的值为.三、解答题7.观察下面三行数:2,-4,8,-16,…;①-1,2,-4,8,…;②3,-3,9,-15,… ③(1)第①行数按什么规律排列?(2)第②、③行数与第①行数分别有什么关系?(3)取每行数的第9个数,计算这三个数的和.1.3 有理数的加减法1.3.1 有理数的加法测试时间:20分钟一、选择题1.D A项、B项的结果都应为-7;C项的结果应为0.2.D 由|a|=3,|b|=2得a=±3,b=±2,再根据|a+b|<|a|+|b|得a=3,b=-2或a=-3,b=2,所以a+b=1或-1.3.D 分母相同的两个数相加,互为相反数的两个数相加,和为整数的两个数相加可以减小运算量.二、填空题4.答案3或-7解析由题意得a=-2,b=5或-5,所以a+b=3或-7.5.答案-3解析由题意得x+y+z=0,把x=8,y=-5代入可得z=-3.6.答案-1 009解析原式=[1+(-2)]+[3+(-4)]+[5+(-6 ]+…+[2 013+ -2 014)]+[2 015+(-2 016)]+[2 017+(-2 018)]=-1 009.三、解答题7.解析(1)原式=[(-23)+(-17)]+(+58)=-40+58=18.(2)原式=[(-2.8)+(-1.5)]+[(-3.6)+3.6]=-4.3+0=-4.3.(3)原式=-+-=-+=-.(4)原式=(-2.5+5.5)+[(+7.26)+(-3.26)]=3+4=7.8.解析(1)是.(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=27-27=0,所以小虫最后回到出发点A.(2)小虫爬行的总路程为|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm).所以小虫一共得到54粒芝麻.1.3 有理数的加减法1.3.1 有理数的加法测试时间:20分钟一、选择题1.D A项、B项的结果都应为-7;C项的结果应为0.2.D 由|a|=3,|b|=2得a=±3,b=±2,再根据|a+b|<|a|+|b|得a=3,b=-2或a=-3,b=2,所以a+b=1或-1.3.D 分母相同的两个数相加,互为相反数的两个数相加,和为整数的两个数相加可以减小运算量.二、填空题4.答案3或-7解析由题意得a=-2,b=5或-5,所以a+b=3或-7.5.答案-3解析由题意得x+y+z=0,把x=8,y=-5代入可得z=-3.6.答案-1 009解析原式=[1+(-2)]+[3+(-4)]+[5+(-6 ]+…+[2 013+ -2 014)]+[2 015+(-2 016)]+[2 017+(-2 018)]=-1 009.三、解答题7.解析(1)原式=[(-23)+(-17)]+(+58)=-40+58=18.(2)原式=[(-2.8)+(-1.5)]+[(-3.6)+3.6]=-4.3+0=-4.3.(3)原式=-+-=-+=-.(4)原式=(-2.5+5.5)+[(+7.26)+(-3.26)]=3+4=7.8.解析(1)是.(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=27-27=0,所以小虫最后回到出发点A.(2)小虫爬行的总路程为|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm).所以小虫一共得到54粒芝麻.1.4 有理数的乘除法1.4.1 有理数的乘法测试时间:20分钟一、选择题1.D ∵4×=1,∴4的倒数是.2.D3.D 由于两个有理数的积小于零,因此两数异号,又由于两数的和大于零,因此这两数中正数的绝对值较大.二、填空题4.答案-26解析-×19-×15=-× 19+15=-×34=-26.5.答案(1)-5 (2)-8解析(1)(-2 ☆3= -2 ×3+1=-5.(2)(-3 ◎3= -3 ×3+ -3)+3+1=-8.6.答案(-4 ×=(-4)+(答案不唯一)解析观察上述算式发现:各等式左边第二个因数的分子与第一个因数互为相反数,分母比分子大1;右边为左边两因数相加.写出的符合上述规律的一个等式可以为(-4 ×=(-4)+.三、解答题7.解析(1)原式=(-2 ×5× -67)=(-10 × -67)=670.(2)原式=23×--=23×10=230(3)原式=(-12 ×+12×-12×=-3+10-6=1.(4)原式=36×-36×+36×=21-27+10=4.1.4.2 有理数的除法测试时间:20分钟一、选择题1.A ÷ -3)=×-≠3× -3).2.B 依据>0,可知a,b同号,然后依据a+b<0,可知a,b同为负.3.D 由数轴可知b<-1,0<a<1,所以a+b<0,a-b>0,ab<0,<0.二、填空题4.答案-;-30;;-3;-;5.答案-4解析在数-5,-5,-1,2,4中任取两个数相除,所得商中最小数是4÷ -1)=-4.6.答案3或-1解析当x、y、z都为正数时,原式=++=1+1+1=3;当x、y、z一正两负时,不妨令x>0,y<0,z<0,则原式=+-+-=1-1-1=-1.故原式的值为3或-1.三、解答题7.解析(1)原式=--× -42)=× -42)-× -42)+× -42)-× -42)=-35+18-14+27=-4.(2)原式=1×+×2-×=-×=×=.8.解析(1)原式=-8+8÷-=-8-×4=-41.(2)原式=--× -63)=-+14-9+21=12.5.(3)原式=(-30+28+30-33 ÷ -5)=(-5 ÷ -5)=1.(4)原式=15×-×=-126.1.5 有理数的乘方1.5.1 乘方测试时间:20分钟一、选择题1.A 32+32+32=27,33=27,23=8,36=729,38=6 561.选A.2.C (-2)3=-8,-|-2|3=-8,-(-2)3=8,-23=-8.选C.3.C ①中两数互为相反数;②中两数相等;③中两数相等;④中两数相等;⑤中两数互为相反数.二、填空题4.答案-2;-25解析-24+(3-7)2-2× -1)2=-16+16-2=-2;-32+(-2)3×2=-9-8×2=-25.5.答案 6解析每4个数的个位数字2,4,8,6为一个循环,2 016÷4=504,故22 016的个位数字是6.6.答案 4解析12×2-4=1×2-4=2-4=-2<0,(-2)2×2-4=4×2-4=8-4=4>0,故输出的值为4.三、解答题7.解析(1)后面一个数是前面一个数乘-2得到的.(2)第②行每个数是第①行相对位置上的数除以-2得到的;第③行每个数是第①行相对位置上的数加1得到的.(3)三个数的和为2× -2)8+2× -2)8÷ -2 +2× -2)8+1=2× -2)8-(-2)8+2× -2)8+1=(2-1+2 × -2)8+1=3×28+1=3×256+1=768+1=769。
人教新版初一上册数学有理数的加减法试题及答案(2)人教新版初一上册数学有理数的加减法试题参考答案一、选择题(共13小题)1.计算﹣10﹣8所得的结果是( )A.﹣2B.2C.18D.﹣18【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣10﹣8=﹣18.故选D.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.2.哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为( )A.5℃B.6℃C.7℃D.8℃【考点】有理数的减法.【专题】常规题型.【分析】根据有理数的减法,减去一个数等于加上这个数的相反数,可得答案.【解答】解:28﹣21=28+(﹣21)=7,故选:C.【点评】本题考查了有理数的减法,减去一个数等于加上这个数的相反数.3.某地某天的最高气温是8℃,最低气温是﹣2℃,则该地这一天的温差是( )A.﹣10℃B.﹣6℃C.6℃D.10℃【考点】有理数的减法.【专题】计算题.【分析】用最高温度减去最低温度,然后根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:8﹣(﹣2)=8+2=10(℃).故选D.【点评】本题考查了有理数的减法运算法则,熟记减去一个数等于加上这个数的相反数是解题的关键.4.比1小2的数是( )A.3B.1C.﹣1D.﹣2【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:1﹣2=﹣1.故选C.【点评】本题考查了有理数的减法,是基础题.5.如果崇左市市区某中午的气温是37℃,到下午下降了3℃,那么下午的气温是( )A.40℃B.38℃C.36℃D.34℃【考点】有理数的减法.【专题】应用题.【分析】用中午的温度减去下降的温度,然后根据有理数的减法运算法则进行计算即可得解.【解答】解:37℃﹣3℃=34℃.故选:D.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.6.计算,正确的结果为( )A. B. C. D.【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣ =﹣ .故选D.【点评】本题考查了有理数的减法运算是基础题,熟记法则是解题的关键.7.计算:1﹣(﹣ )=( )A. B.﹣ C. D.﹣【考点】有理数的减法.【分析】根据有理数的减法法则,即可解答.【解答】解:1﹣(﹣ )=1+ = .故选:C.【点评】本题考查了有理数的减法,解决本题的关键是熟记有理数的减法法则.8.﹣2﹣1的结果是( )A.﹣1B.﹣3C.1D.3【考点】有理数的减法.【分析】根据有理数的减法法则:减去一个数等于加上这个数的相反数把原式化为加法,根据有理数的加法法则计算即可.【解答】解:﹣2﹣1=﹣2+(﹣1)=﹣3,故选:B.【点评】有本题考查的是有理数的减法法则:减去一个数等于加上这个数的相反数,掌握法则是解题的关键.9.计算2﹣3的结果是( )A.﹣5B.﹣1C.1D.5【考点】有理数的减法.【分析】减去一个数等于加上这个数的相反数,再运用加法法则求和.【解答】解:2﹣3=2+(﹣3)=﹣1.故选B.【点评】考查了有理数的减法,解决此类问题的关键是将减法转换成加法.10.桂林冬季里某一天最高气温是7℃,最低气温是﹣1℃,这一天桂林的温差是( )A.﹣8℃B.6℃C.7℃D.8℃【考点】有理数的减法.【专题】应用题.【分析】根据“温差”=最高气温﹣最低气温计算即可.【解答】解:7﹣(﹣1)=7+1=8℃.故选D.【点评】此题考查了有理数的减法,解题的关键是:明确“温差”=最高气温﹣最低气温.11.如图,这是某用户银行存折中2012年11月到2013年5月间代扣电费的相关数据,从中可以看出扣缴电费最多的一次达到( )A.147.40元B.143.17元C.144.23元D.136.83元【考点】有理数的加减混合运算;有理数大小比较.【专题】应用题.【分析】根据存折中的数据进行解答.【解答】解:根据存折中的数据得到:扣缴电费最多的一次是日期为121105,金额是147.40元.故选:A.【点评】本题考查了有理数大小比较的应用.解题的关键是学生具备一定的读图能力.12.五个城市的国际标准时间(单位:时)在数轴上表示如图所示,我市2013年初中毕业学业检测与高中阶段学校招生考试于2015年6月16日上午9时开始,此时应是(A.纽约时间2015年6月16日晚上22时B.多伦多时间2015年6月15日晚上21时C.伦敦时间2015年6月16日凌晨1时D.汉城时间2015年6月16日上午8时【考点】有理数的加减混合运算.【专题】应用题.【分析】求出两地的时差,根据北京时间求出每个地方的时间,再判断即可.【解答】解:A、∵纽约时间与北京差:8+5=13个小时,9﹣13=﹣4,∴当北京时间2015年6月16日9时,纽约时间是2015年6月15日21时,故本选项错误;B、∵多伦多时间与北京差:8+4=12个小时,9﹣12=﹣3,∴当北京时间2015年6月16日9时,纽约时间是2015年6月15日22时,故本选项错误;C、∵伦敦时间与北京差:8﹣0=8个小时,9﹣8=1,∴当北京时间2015年6月16日9时,伦敦时间是2015年6月16日1时,故本选项正确;D、∵汉城时间与北京差:9﹣8=1个小时,9+1=10,∴当北京时间2015年6月16日9时,首尔时间是2015年6月16日10时,故本选项错误;故选C.【点评】主要考查了数轴,要注意数轴上两点间的距离公式是|a ﹣b|.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.13.与﹣3的差为0的数是( )A.3B.﹣3C.D.【考点】有理数的减法.【分析】与﹣3的差为0的数就是﹣3+0,据此即可求解.【解答】解:﹣3+0=﹣3.故选B.【点评】本题考查了有理数的减法运算,正确列出式子是关键.二、填空题(共5小题)14.计算:0﹣7= ﹣7 .【考点】有理数的减法.【分析】根据有理数的减法法则进行计算即可,减去一个数等于加上这个数的相反数.【解答】解:0﹣7=﹣7;故答案为:﹣7.【点评】此题考查了有理数的减法运算,熟练掌握减法法则是本题的关键,是一道基础题,较简单.15.计算:3﹣(﹣1)= 4 .【考点】有理数的减法.【分析】先根据有理数减法法则,把减法变成加法,再根据加法法则求出结果.【解答】解:3﹣(﹣1)=3+1=4,故答案为4.【点评】本题主要考查了有理数加减法则,能理解熟记法则是解题的关键.16.计算:3﹣4= ﹣1 .【考点】有理数的减法.【分析】本题是对有理数减法的考查,减去一个数等于加上这个数的相反数.【解答】解:3﹣4=3+(﹣4)=﹣1.故答案为:﹣1.【点评】有理数的减法法则:减去一个数等于加上这个数的相反数.17.计算:2000﹣2015= ﹣15 .【考点】有理数的减法.【专题】计算题.【分析】根据有理数的减法运算进行计算即可得解.【解答】解:2000﹣2015=﹣15.故答案为:﹣15.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.18. |﹣7﹣3|= 10 .【考点】有理数的减法;绝对值.【专题】计算题.【分析】根据有理数的减法运算法则和绝对值的性质进行计算即可得解.【解答】解:|﹣7﹣3|=|﹣10|=10.故答案为:10.【点评】本题考查了有理数的减法运算法则和绝对值的性质,是基础题,熟记法则和性质是解题的关键初一数学复习指导一、多看主要是指认真阅读数学课本。
七年级数学上册有理数加减乘除混合运算练习人教新课标版数学练(一)有理数加减法运算练一、加减法法则、运算律的复A。
同号两数相加,取绝对值相加,并把符号保持不变。
例如:(-3)+(-9)=(-12),85+(+15)=100.绝对值不相等的异号两数相加,取绝对值大的数的符号,并用绝对值小的数减去绝对值大的数。
例如:(-45)+(+23)=(-22),(-1.35)+6.35=5.一个数同自己相加,仍得这个数本身。
例如:(-9)+0=(-9),0+(+15)=15.B。
加法交换律:a + b = b + a,加法结合律:(a + b) + c =a + (b + c)。
例如:(-1.76)+(-19.15)+(-8.24)=(-29.15),23+(-17)+(+7)+(-13)=0.C。
有理数的减法可以转化为加法来进行,转化的“桥梁”是取相反数。
即a-b=a+(-b)。
例如:(-3)-(-5)=(-3)+5=2.D。
加减混合运算可以统一为加法运算。
即a+b-c=a+b+(-c)。
例如:(-3)-(+5)+(-4)-(-10)=(-3)+(-5)+(+4)+(+10)=6.把-2.4-(-3.5)+(-4.6)+(+3.5)写成省略加号的和的形式是-2.4+3.5-4.6+3.5,读作“负2.4加3.5减4.6加3.5”,也可以读作“负2.4减负3.5减4.6加3.5”。
二、综合提高题。
1.-99+100-97+98-95+96-。
+22.-1-2-3-4-。
-1002.一个病人每天下午需要测量一次血压,下表是病人星期一至星期五收缩压的变化情况,该病人上个星期日的收缩压为160单位。
星期一。
升30单位星期二。
降20单位星期三。
升17单位星期四。
升18单位星期五。
降20单位请计算星期五该病人的收缩压。
3.数学练(二)一、乘除法法则、运算律的复。
A.有理数的乘法法则:两数相乘,同号得正,异号得负,同时把绝对值相乘。
第一章第3节有理数的加减法达标测试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.计算:43-+=( ) A .-1B .1C .7D .-72.已知||6a =,||3b =,且||a b b a -=-,则a b +的值为( )A .9B .-9C .9或3D .-9或-3 3.计算:5+(﹣7)=( ) A .2 B .﹣2 C .12 D .﹣124.我国是最早认识负数,并进行相关运算的国家,在古代数学名著《九章算术》里,就记载了利用算筹实施“正负术”的方法,图(1)表示的是计算()34+-的过程.按照这种方法,图(2)表示的过程应是( )A .()()52-+-B .()52-+C .()52+-D .52+5.有理数a 、b 在数轴上对应的位置如图所示,则下列结论正确的是( )A .0a b +<B .0a b +>C .0a b -<D .0b a ->6.春节假期期间某一天早晨的气温是3C ︒-,中午上升了8C ︒,则中午的气温是( ) A .5C ︒- B .5C ︒ C .11C ︒ D .11C ︒-7.数轴上有A 、B 两点,点A 所表示的数是3,若点A 与点B 之间的距离是5,则点B 所表示的数是( ) A .2B .-8或2C .-2D .-2或88.今年3月份某市一天的最高气温是8℃,最低气温是6-℃,则这一天的温差是( ) A .14-℃ B .2℃ C .14℃ D .2-℃9.点A 在数轴上距原点4个单位长度,将点A 向左移4个单位长度,再向右移3个单位长度,此时该点所表示的数是( )10.下列运算正确的是()A.﹣2+(﹣5)=﹣(5﹣2)=﹣3 B.(+3)+(﹣8)=﹣(8﹣3)=﹣5C.(﹣9)﹣(﹣2)=﹣(9+2)=﹣11 D.(+6)+(﹣4)=+(6+4)=+10二、填空题11.点A在数轴上距原点4个单位长度,若一颗棋子从点A处沿着数轴向右移动3个单位长度到达点B,则数轴上点B表示的数是___________.12.绝对值大于1而小于5的所有正整数之和为______.13.如图数轴的单位长度为1,如果点A表示的数是﹣2,那么点B表示的数是________.14.某市为鼓励市民节约用水,特制定如下的收费标准:若每月每户用水不超过10立方米,则按3元/立方米的水价收费,并加收0.2元/立方米的污水处理费;若超过10立方米,则超过的部分按4元/立方米的水价收费,污水处理费不变.若小华家6月份的用水量为15立方米,那么小华家6月份的水费为__元;15.小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况(单位:元),本周内该股票收盘时的最高价是_________元.星期一二三四五每股涨跌+2 -0.5 +1.5 -1.8 +0.8三、解答题16.某超市2021年在某小区新开了一家连锁店,经过半年的经营,其盈亏情况如表(盈月份一二三四五六盈亏情况+20.8 +17.5 ﹣13.3 ﹣14.5 +2.7 ﹣18.4(1)该连锁店半年来的盈亏情况如何?(2)通过对这半年经营情况的分析,你认为该店是继续经营呢?还是应停业整顿?17.一名快递员从快递公司出发负责在东西方向的路上送快递,向东走了4千米到达小明家,继续走了1千米到达小红家,从小红家调头向西走了10千米到达小刚家,最后回到快递公司.(1)以快递公司为原点,向东的方向为正方向,用1个单位长度表示1千米,请你画出数轴,并在数轴上分别表示出小明家、小红家、小刚家的位置.(2)小明家和小刚家相距多远?(3)快递员从出发到最后回到快递公司一共走了多少千米?参考答案:1.A2.D3.B4.C5.A6.B7.D8.C9.D10.B11.-1或7##-1或7解:∵点A在数轴上距离原点4个单位长度,∴A表示的数为-4或4当A表示的数为-4时,当点A表示的数是-4,将A向右移动3个单位长度,此时点B表示的数是-4+3=-1;当点A表示的数是4,将A向右移动3个单位长度,此时点B表示的数是4+3=7;故答案为-1或7.12.解:绝对值大于1而小于5的所有正整数有:2、3、4,它们的和为:2+3+4=9,故答案为:9.13.解:根据题意得:点B表示的数是-2+4=2.故答案为:214.解:由题意,得10(3+0.2)+(15﹣10)(4+0.2)=53(元).故答案是:53.15解:星期一收盘价格为25+2=27元,星期二收盘价格为27-0.5=26.5元,星期三收盘价格为26.5+1.5=28元,星期四收盘价格为28-1.8=26.2元,星期五收盘价格为26.2+0.8=27元,∵28>27=27>26.5>26.2,∴本周内该股票收盘时的最高价是28元.故答案为:2816.(1)解:(+20.8)+(+17.5)+(-13.3)+(-14.5)+(+2.7)+(-18.4)=20.8+17.5-13.3-14.5+2.7-18.4=-5.2(万)答:该连锁店半年来亏了5.2万元.(2)根据(1)的计算结果可知,该连锁店半年来亏了5.2万元,因此我认为应停业整顿.17。
人教版七年级数学上册同步练习题 第一章有理数 1.3有理数的加减法一、选择题1.飞机原在3800米高空飞行,现先上升150米,又下降200米,这时飞机飞行的高度是( ) A .3 650米 B .3750米 C .3850米 D .3950米 2.某地区的气温在一段时间里,从-8 ℃先上升了5 ℃,然后又下降了7 ℃,那么此时的气温是( ).A .10 ℃B .-10 ℃C .4 ℃D .-4 ℃3.33+(-32)+7+(-8)的结果为( ).A .0B .2C .-1D .+54.如果0,0<>b a ,0<+b a ,则下列大小关系正确的是( ).A .a b a b <<-<-B .a b a b <-<-<C .b a b a -<<<-D .b a a b -<<-<5.下列说法正确的是( )。
A .两个数的和一定比两个数的差大B .两个数的差小于被减数C .相等的两个有理数之差为零D .绝对值相等的两个有理数之差为零6.某单位第一季度账面结余-1.3万元,第二季度每月收支情况为(收入为正):+4.1万元,+3.5万元,-2.4万元,则至第二季度末账面结余为( )A .-0.3万元B .3.9万元C .4.6万元D .5.7万元7.如果一个有理数与-7的和是正数,那么这个有理数一定是( )A .负数B .零C .7D .大于7的正数 8.下列四组数中,互为相反数的组合有( )①()3++与()3+-; ②()3--与()3-+;③3++与3--;④3+-与3-+; A .1组 B .2组 C .3组 D .4组9.如果a+b+c <0,那么( ).A .三个数中最少有两个负数B .三个数中有且只有一个负数C .三个数中两个是正数或者两个是负数D .三个数中最少有一个负数10.下列变化正确的是( )A .(-12)+(+18)+(-28)=[(-12)+(+28)]+(-18)B .(-12)+(+18)+(-28)=[(-18)+(+12)]+(-28)C .(-12)+(+18)+(-28)=[(-12)+(-28)]+(+18)D .以上变化都不对二、填空题11.甲、乙、丙三地的海拔高度分别为20m 、-15m 和-10m ,那么最高的地方比最低的地方高____ m .12.直接填得数:(1)()11.215⎛⎫-++ ⎪⎝⎭=_______;(2)13(3)(2)44-+-=_______; (3)13()34+-=_______;(4)25(3)(2)77+-=_______. 13.已知两个数556和283-,这两个数的相反数的和是____________. 14.101﹣102+103﹣104+…+199﹣200=______.15.已知从 1,2,…,9 中可以取出 m 个数,使得这 m 个数中任意两个数之 和不相等,则 m 的最大值为______.三、解答题16.某检修小组乘一辆汽车沿公路东西方向检修线路,约定向东为正.某天从A 地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,+3,﹣2,+12,+4,﹣2,+6.(1)计算收工时检修小组在A 地的哪一边?距A 地多远?(2)若每千米汽车耗油量为0.4升,求出发到收工汽车耗油多少升.17.一振子从点A 开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动的记录为(单位:mm):+10,-9,+8,-6,+7.5,-6,+8,-7.(1)求该振子停止时所在的位置距A 点多远?(2)如果每毫米需用时间0.02 s ,则完成8次振动共需要多少秒?18.计算:(1)-2-(+10);(2)0-(-3.6);(3)(-30)-(-6)-(+6)-(-15);(4)232(3)(2)(1)( 1.75)343-----+.19.计算(1)414)21(32)65(41-+-+-+-; (2)2111()()3642-+----; (3)74324.773276.3----; (4).25.032581413125.0-+-+ 20.已知|x +2|+|y -16|=0,求x ,y 的值.21.计算下列各题:(1)(-51)+(+12)+(-7)+(-11)+(+36)+(+17);(2)37.5+(+2857)+[(-4612)+(-2517)]. 22.计算:(1)2141232(0.2)13355⎡⎤⎛⎫-------- ⎪⎢⎥⎝⎭⎣⎦; (2)3311148824--+-. 23.某粮店有10袋玉米准备出售,称得的质量如下(单位:千克):182,178,177,182.5,183,184,181,185,178.5,180.(1)选一个数为基准数,用正、负数表示这10袋玉米的质量与它的差.(2)试计算这10袋玉米的总质量是多少千克?(3)若每千克玉米售价为0.9元,则这10袋玉米能卖多少元?【参考答案】1.B 2.B 3.A 4.D 5.C 6.B 7.D 8.D 9.D 10.C11.3512.0 6- 512-47 13.17614.-5015.516.(1)检修小组在A 地东边,距A 地48千米;(2)出发到收工检修小组耗油24.8升.17.(1) 该振子停止时距A 点右侧5.5 mm ;(2) 1.23 s. 18.(1)-12;(2)3.6(3)-15;(4)-1. 19.(1)615-; (2)1312- ; (3)-17 ; (4)283 20.x =-2,y =16.21.(1)-4(2)-53722.(1)4715;(2)1223.(1)+2,-2,-3,+2.5,+3,+4,+1,+5,-1.5,0; (2)1 811千克;(3)1 629.9元;。
七年级数学:1.3有理数的加减法测试题
1. 已知两个数的和为正数,则( )
A.一个加数为正,另一个加数为零
B . 两个加数都为正数
C.两个加数一正一负,且正数的绝对值大于负数的绝对值
D.以上三种都有可能
2. 若两个数相加,如果和小于每个加数,那么( )
A.这两个加数同为正数 B .这两个加数的符号不同
C .这两个加数同为负数
D .这两个加数中有一个为零
3. 笑笑超市一周内各天的盈亏情况如下:(盈余为正,亏损为负,单位:元):132,-12,-105,127,-87,137,98,则一周总的盈亏情况是( )
A. 盈了
B. 亏了
C. 不盈不亏
D. 以上都不对
4. 下列运算过程正确的是( )
A.(-3)+(-4)=-3+-4=…
B.(-3)+(-4)=-3+4=…
C.(-3)-(-4)=-3+4=…
D.(-3)-(-4)=-3-4=…
5. 如果室内温度为21℃,室外温度为-7℃,那么室外的温度比室内的温度低( ) A.-28℃ B.-14℃
C.14℃ D .28℃
6. 汽车从A 地出发向南行驶了48千米后到达B 地,又从B 地向北行驶20千米到达C 地,则A 地与C 地的距离是( )
A .68千米
B .28千米
C .48千米
D .20千米
7. x <0, y >0时,则x, x+y, x -y ,y 中最小的数是 ( )
A x B x -y C x+y D y
8.|x-1|+|y+3|=0, 则y -x -
12
的值是 ( ) A -412 B -212 C -112 D 112 9. 在正整数中,前50个偶数和减去50个奇数和的差是 ( )
A 50
B -50
C 100
D -100
10. 在1,—1,—2这三个数中,任意两数之和的最大值是 ( )
A 1 B 0 C -1 D -3
二、填空题
11. 计算:(-0.9)+(-2.7)= , 3.8-(+7)= .
12. 已知两数为 556和-823
,这两个数的相反数的和是 ,两数和的绝对值是 . 13. 绝对值不小于5的所有正整数的和为 .
14. 若m ,n 互为相反数,则|m-1+n|= .
15. 已知x.y ,z 三个有理数之和为0,若x=812,y=-512
,则z= .
16. 已知m 是6的相反数,n 比m 的相反数小2,则m-n 等于 。
17.在-13与23之间插入三个数,使这5个数中每相邻两个数之间的距离相等,则这三个数的和是 . 18.-13的绝对值的相反数与323
的相反数的和为______________。
三、解答题
19. 计算:
1.(-8)+(-15) 2.(-20)+15 3.16+(-25) 4.2.7+(-3.8) 5.
12()23+- 6.11()()43
-+-
20. 飞机的飞行高度是1200m ,上升400m ,又下降300m ,这时飞机高度是多少?
21. 若a 、b 、c 是有理数,|a|=3,|b|=10,|c|=5,且 a 、b 异号,b 、c 同号,求a -b -(﹣c)的值.
22. 某银行办储蓄业务:取出950元,存入500元,取出800元,存入1200元,取出1025元,存入2500元,取出200元,请你计算一下,银行的现款增加了多少?你能用有理数加减法表示出来吗?
23. 将-2,-1,0,1,2,3,4,5,6这9个数分别填入图方阵的9个空格中,使得横、竖、斜对角的3个数相加的和为6.
24.钟面上有1,2,3,…,11,12共12个数字.
(1) 试在这些数前标上正,负号,使它们的和为0.
(2) 在解题的过程中,你能总结什么规律?用文字叙述出来。
25. 如图所示是M 牌电脑的广告.
(1)M 牌电脑的销售额是否比N 牌多?要作判定应需什么资料?
(2)图中两条折线所能真正说明的是M 牌在什么方面领先?
26.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):
(1)生产量最多的一天比生产量最少的一天多生产多少辆?
(2)本周总生产量是多少?比原计划增加了还是减少了?增减数为多少? 参考答案
一、 选择题
1.D
2.C
3.A
4.C
5.D
6.B
7.B
8.A
9.A
10.B
二、填空题
11. -3.7,-3.2
12. 176,176
13. 15
14. 1
15. -3;
16. 2;
17. 15
18. -4
三、解答题
19.解:1.-23 2.-5 3.-9 4.-1.1 5.16-
6.712
- 20.1200+400+(-300)=1300(m )
21. 当a=﹣3 b=10 c=5 时 , a -b -(﹣c)=﹣3-10+5=﹣8 ; 当a=3 b=﹣10 c=﹣5时 ,a -b -(﹣c)=3-(﹣10)+(﹣5)=8.
22. 解:设存入为正,支出为负,得
-950+500+(-800)+1200+(-1025)+2500+(-200)=1325
答:银行存款增加了1325元.
23.解:
24. 解:―1―2―3―5-4+6―7―8―9+10+11+12
规律:先算出总和,在取半,在和为一半的数前加正号,其余的数前添负号.
25.(1)答案:不一定,要作出判定尚需2003年M 牌和N 牌的销售额.
(2)在销售额的增长率方面领先.
1 2 3 4 5 6 0 -2 -1
26. 解:⑴ 7-(-10)=17
⑵ 100×7+(-1+3-2+4+7-5-10)=696(辆)
答:⑴生产量最多的一天比生产量最少的一天多生产17辆;
⑵本周总生产量是696辆,比原计划减少了4辆.。