第四章 刚体力学
- 格式:ppt
- 大小:6.54 MB
- 文档页数:47
17-4图18-4 图F F ρ-O 04 第四章 刚体力学一、选择题:1、如图4-18所示,一圆盘绕通过盘心且与盘面垂直的轴o 以角速度ω针转动。
今将两大小相等、方向相反、但不在同一条直线上的力F 和F -盘面同时作用到圆盘上,则圆盘的角速度:[ ] (A )必然减少 (B )必然增大(C )不会变化 (D )如何变化,不能确定 2、如图4-17所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B端置于粗糙的水平地面上而静止,杆身与竖直方向成θ角,则A 端对墙壁的压力大小为:[ ](A )θcos 41mg (B )θmgtg 21 (C )θsin mg (D )不能唯一确定 3、某转轮直径m d 4.0=,以角量表示的转动方程为t t t 4323+-=θ(SI ),则:[ ](A )从s t 2=到s t 4=这段时间内,其平均角加速度为2.6-s rad ;(B )从s t 2=到s t 4=这段时间内,其平均角加速度为2.12-s rad ;(C )在s t 2=时,轮缘上一点的加速度大小等于2.42.3-s m ;(D )在s t 2=时,轮缘上一点的加速度大小等于2.84.6-s m 。
4、如图4-2所示,一倔强系数为k 轮(转动惯量为J ),下端连接一质量为m 的物体,问物体在运动过程中,下列哪个方程能成立?[ ] (A )ky mg = (B )02=-T mg(C )my T mg =-1 (D )y R J J βR T T ''⋅==-)(21 5、 关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ ]6、有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A) 只有(1)是正确的.(B) (1) 、(2)正确,(3) 、(4) 错误.(C) (1)、(2) 、(3) 都正确,(4)错误.(D) (1) 、(2) 、(3) 、(4)都正确. [ ]7、有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则(A) J A >J B . (B) J A <J B .1-4 图5-4图19-4 图 (C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ ]8、一力N j i F )53(ϖϖϖ+=,其作用点的矢径为m j i r )34(ϖϖϖ-=,则该力对坐标原点的力矩为:[ ] (A )m N k ⋅-ϖ3 (B )m N k ⋅ϖ29 (C )m N k ⋅ϖ19 (D )m N k ⋅ϖ39、一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度ω (A) 必然增大. (B) 必然减少. (C) 不会改变. (D) 如何变化,不能确定. [ ]10、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ ]11、如图4-19所示P 、Q 、R 、S l RS QR PQ ===,则系统对o o '轴的转动惯量为:[ ](A )250ml (B )214ml(C )210ml (D )29ml12、如图4-1所示,A 、B 为两个相同的绕着轻绳的定滑轮,A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且Mg F =。
第四章 刚体的转动§4-1 刚体的定轴转动1. 研究对象:刚体,即物体内任意两质点间的距离在运动中保持不变。
(不变质点组)。
2. 对刚体运动的分类:(1)平动:刚体内任何一条给定直线在刚体运动过程中方向不变。
所有点的运动相同。
(2)定轴转动:刚体中所有点都绕一固定直线作圆周运动。
(3)刚体的平面运动:这种运动可分解为质心的平动和以质心为轴的转动。
(4)刚体的空间运动:这种运动可分解为平动、轴的运动、绕轴的转动。
3. 角量和线量的关系:r S θ=,r v ω=,r a βτ=,rv r a n 22==ω 规定:ω 方向与刚体转动方向成右手螺旋关系,于是ω由于:dt d ωβ =,所以角加速度的方向也在转轴上。
若以ω为正方向,β为正表示加速,β为负表示减速。
以后将学到的力矩的方向、动量矩的方向等都在转轴上。
4. 力矩:力矩就是综合描述这三要素的一个物理量。
定义:f r M⨯=大小:θsin ⋅⋅=⋅=r f d f M 分量值:ατcos fr r f M z =⋅=f 在转动平面内。
若f 不在转动平面内,将f分解为平行于转轴和垂直于转轴两部分。
平行于转轴部分对刚体的转动无贡献。
几个力同时作用于刚体,它们的合力矩是这几个力的力矩的矢量合: ∑=i M M(注意:不是合力的力矩,而是力矩的矢量合。
力矩的矢量合≠合力的力矩。
) 例:求匀质园盘在水平面上转动时所受的摩擦力矩。
解:取rdr dm πσ2⋅=gdm df ⋅=μ rdf dM f =mgR gR dr gr dM M Rf f μπμσπμσ32322320====⎰⎰§4-2 转动动能 转动惯量 转动定律1. 转动动能: ∑∑∑===i i i i ii i i i k r m r m v m E 22222)(212121ωω 2. 转动惯量J :(单位:Kg.m 2)对于质量为离散型分布的刚体:∑=iii rm J 2;对于质量为连续型分布的刚体:dm r J M⎰=2(1)J 由三个因素决定:质量的大小、质量分布、转轴的位置。
大学物理刚体力学总结大学物理刚体力学总结大学物理刚体力学总结篇一:大学物理力学总结大学物理力学公式总结 ? 第一章(质点运动学)1. r=r(t)=x(t)i+y(t)j+z(t)k Δr=r(t+Δt)- r(t) 一般地|Δr|?Δr2. v= a= dt dx d??d?? d2??dt3. 匀加速运动:a=常矢 v0=vx+vy+vz r=r0+v0t+at2 ????4. 匀加速直线运动:v= v0+at x= v02 v2-v02=2ax 215. 抛体运动:ax=0 ay=-g vx=v0cs vy=v0sinθ-gt x=v0csθ?t y=v0sinθ?tgt2 216. 圆周运动:角速度= dt Rdθ v 角加速度dt dω 加速度 a=an+at 法相加速度an==Rω2 ,指向圆心 Rv2 切向加速度at=Rα ,沿切线方向dt d??7. 伽利略速度变换:v=v’+u ? 第二章(牛顿运动定律)1. 牛顿运动定律: 第一定律:惯性和力的概念,惯性系的定义第二定律:F=, p=mv dtd?? 当m为常量时,F=ma 第三定律:F12=-F21 力的叠加原理:F=F1+F2+……2. 常见的几种力:重力:G=mg 弹簧弹力:f=-kx3. 用牛顿定律解题的基本思路:1) 认物体 2) 看运动 3) 查受力(画示力图) 4) 列方程(一般用分量式) ? 第三章(动量与角动量)1. 动量定理:合外力的冲量等于质点(或质点系)动量的增量,即 Fdt=dp2. 动量守恒定律:系统所受合外力为零时, p= ??????=常矢量3. 质心的概念:质心的位矢 rc= ???????? 离散分布) m 或 rc = ??dmm (连续分布)4. 质心运动定理:质点系所受的合外力等于其总质量乘以质心的加速度,即 F=mac5. 质心参考系:质心在其中静止的平动参考系,即零动量参考系。
6. 质点的角动量:对于某一点, L=r×p=mr×v7. 角动量定理:M= dtd?? 其中M 为合外力距,M=r×F,他和L 都是对同一定点说的。