变频器参数设定口诀及其名词解释
- 格式:doc
- 大小:25.00 KB
- 文档页数:4
变频器器参数设置大全变频器是一种用于控制电动机运行速度和扭矩的设备,主要通过改变电机的供电频率和电压来实现。
在使用变频器时,正确的参数设置对于设备的运行效果至关重要。
以下是变频器参数设置的一些重要参数及其解释:1.主控制参数主控制参数决定了变频器的运行模式和控制方式。
常见的主控制参数包括:-控制模式:选择正确的控制模式,如速度控制、扭矩控制或位置控制等,根据实际需求进行设置。
-倍数模式:选择是否需要倍数运行,若选择了倍数运行,则会根据设定的倍数对电机的速度进行调节。
-运行频率范围:设定变频器的运行频率范围,通常为电机额定频率的±10%。
-运行频率上限:设定变频器的最大运行频率,即电机的最高转速。
2.输出参数输出参数决定了变频器的输出功率和电压等级。
常见的输出参数包括:-输出功率:设定变频器的输出功率,通常为电机的额定功率。
-输出电压:根据电机的额定电压选择合适的输出电压。
3.速度参数速度参数用于设定电机的运行速度及相关控制参数。
常见的速度参数包括:-目标速度:设定电机的运行目标速度,可以设定为固定值或通过外部输入控制。
-加速时间:设定电机从静止状态加速到目标速度所需的时间,较短的加速时间可以提高设备的响应速度。
-减速时间:设定电机从目标速度减速到静止状态所需的时间,根据实际需求进行设置。
4.过载保护参数过载保护参数用于保护变频器和电机免受过载运行的影响。
常见的过载保护参数包括:-过载保护等级:根据电机的额定功率选择适当的过载保护等级,过载保护等级通常为电机额定功率的倍数。
-过载保护时间:设定电机在过载状态下可以持续运行的时间,超过设定的时间将自动停机以避免损坏电机。
5.故障报警参数故障报警参数用于设定变频器故障发生时的报警方式和保护措施。
常见的故障报警参数包括:-故障报警类型:设定故障报警的类型,如过流、过压、过载、短路等。
-故障报警动作:设定故障报警时采取的措施,如停机、降速、输出故障代码等。
变频器参数的设定⏹频率信号参数:设定变频器运行频率:通用型变频器可以从以下几个方面来获得运行频率。
操作面板:⏹在变频器的显示面板上,都有频率增加和频率减少按键,通过它可以改变变频器的运行频率,这是一种数字设定频率的方式,由于这种方式不能在现场实时修改变频器的运行频率,因此,其应用范围受到一定的限制。
只能在单电机拖动且不经常修改运行频率的场合中使用。
模拟端子通用型变频器:⏹模拟端子基本都有电压输入和电流输入两种,电压输入有0~5VDC,0~10VDC,-5~5VDC,-10~10VDC等几种;电流输入基本上有0~20mA和4~20mA两种,可以任意设定其中的一种或多种输入,变频器内部用10位以上的A/D把它转换成数字量。
应用这种方式设定变频器的运行频率可以实现外控操作,且在现场可以实时修改,但是众所周知模拟量在传输过程中易受干扰,特别是电压信号,更易受干扰,造成系统运行不稳定,这里建议用电流信号;另外用模拟量设定运行频率,在纸机传动控制系统中还要解决速度同步问题。
数字端子:⏹这种设定频率的方式,各种品牌的变频器叫法不一,如ABB变频器叫电动电位器,而富士变频器叫上升/下降功能等,其实际上就是利用变频器本身的多功能数字输入端子来改变变频器的运行频率,且升/降速的速率可调。
这种方式在纸机传动系统中以八缸纸机应用最为典型。
通讯方式:⏹这种以串行通讯的方式设定变频器的运行频率在大型纸机传动系统中应用最为广泛。
常见的有RS-485或CAN总线等。
⏹当然,在通用型变频器的频率设定方式中,常见的是以上4种,这4种方式也并非独立存在,它们可以组合使用,例如ABB800系列变频器在设定频率时就可以用模拟量的代数和,多个模拟量的最大值,多个模拟量的最小值,模拟量的乘积,模拟量与通讯量的和等多种组合方式,在使用中,应根据实际情况,灵活运用。
2.2 控制命令:⏹它包括控制电机的起动/停止,电机的运行方向等。
起动/停止:⏹当系统准备就绪后(通电),变频器处于待机状态,电机并没有运转。
台达变频器参数设置必设参数:(MODE--菜单, ENTER--确认)最高操作频率P03-- (出厂设定值:60HZ)电机额定电流P52-- (根据电机铭牌电流设置,已问过官方不是百分比)电子热动电驿P58-- 00 以标准型电机动作 (这个一定要设)(变频器端子默认功能:M0—正转,M1—反转,M2—复位,GND—公共端)一、面板操作频率给定:P00--04 面板旋钮给定运转命令:P01--00 面板RUN控制三、模拟电压控制:(变频器端子:AVI,GND)频率给定:P00--01 模拟信号0-10V给定(AVI)运转命令:P01--01 运转指令由外部端子控制,键盘STOP 键有效模拟电压0-10V上下限:P128-- 最小频率对应AVI输入电压值P129--最大频率对应AVI输入电压值四、模拟电流控制:(变频器端子:ACI,GND)频率给定:P00--02 模拟信号4-20ma给定(ACI)运转命令:P01--01 运转指令由外部端子控制,键盘STOP 键有效模拟电流4-20mA上下限:P131--9.2 最小频率对应ACI输入电流值P132--11.2 最大频率对应ACI输入电流值计算公式:(毫安=(16÷40x压力)+4 ,40是传感器量程)(9.2-11.2对应 13-18MPa,稳定在15,16MPa)(传感器接线:上面有1,2,3,4角,1角是电源线,2角是信号线)五、多段速控制:频率给定:P00--00运转命令:P01--01P40 用默认值06(M3)P41 用默认值07(M4)变频器控制面板的主频率设置为15赫兹P17第一段速度设置设置为30赫兹P18第二段速度设置设置为35赫兹P19第三段速度设置设置为45赫兹六、重置设定P76 :设为09时是所有的参数值重置为50Hz的出厂设定值设为10时是所有的参数值重置为60Hz的出厂设定值(不用这个)七、自动转矩补偿增益P54:(范围:0-10,出厂设定值:00)开机显示画面选择P64-- 00显示实际运转频率02 显示输出电压06 显示设定频率09 显示电机运转电流二、端子控制频率给定:P00--04 面板旋钮给定运转命令:P01--01 外部端子控制八、故障代码OC-过电流 OV--过电压 OL--过载LV-电压不足 OH--过热 PHL--电源欠相【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。
变频器主要设置参数1、运行方式:主要是带编码器和不带编码器(编码器比较精确一些),其中分别还有是矢量控制还是V/F控制(力矩大时最好用矢量控制比较稳定)2、控制方式:有变频器自带的那个操作面板控制正反转还是用端子控制正反转这个是必须要设定的参数3、频率来源设定:是面板直接给还是模拟量给4、再有是停车方式:自由停车一般用于带抱闸的电机,减速停车相反5、其他还需要设电机的一些参数进行自学习,保证电机的最佳状态。
有些变频器再最开始需要设定某参数,使所有参数都允许改写和高级菜单功能变频器功能参数很多,一般都有数十甚至上百个参数供用户选择。
实际应用中,没必要对每一参数都进行设置和调试,多数只要采用出厂设定值即可。
但有些参数由于和实际使用情况有很大关系,且有的还相互关联,因此要根据实际进行设定和调试。
因各类型变频器功能有差异,而相同功能参数的名称也不一致,为叙述方便,本文以富士变频器基本参数名称为例。
由于基本参数是各类型变频器几乎都有的,完全可以做到触类旁通。
一、加减速时间加速时间就是输出频率从0上升到最大频率所需时间,减速时间是指从最大频率下降到0所需时间。
通常用频率设定信号上升、下降来确定加减速时间。
在电动机加速时须限制频率设定的上升率以防止过电流,减速时则限制下降率以防止过电压。
加速时间设定要求:将加速电流限制在变频器过电流容量以下,不使过流失速而引起变频器跳闸;减速时间设定要点是:防止平滑电路电压过大,不使再生过压失速而使变频器跳闸。
加减速时间可根据负载计算出来,但在调试中常采取按负载和经验先设定较长加减速时间,通过起、停电动机观察有无过电流、过电压报警;然后将加减速设定时间逐渐缩短,以运转中不发生报警为原则,重复操作几次,便可确定出最佳加减速时间。
二、转矩提升转矩提升又叫转矩补偿,是为补偿因电动机定子绕组电阻所引起的低速时转矩降低,而把低频率范围f/V增大的方法。
设定为自动时,可使加速时的电压自动提升以补偿起动转矩,使电动机加速顺利进行。
变频器常用10个参数设置1.最低运行频率:即电机运行的最小转速,电机在低转速下运行时,其散热性能很差,电机长时间运行在低转速下,会导致电机烧毁。
而且低速时,其电缆中的电流也会增大,也会导致电缆发热。
2.最高运行频率:一般的变频器最大频率到60Hz ,有的甚至到400 Hz ,高频率将使电机高速运转,这对普通电机来说,其轴承不能长时间的超额定转速运行,电机的转子是否能承受这样的离心力。
3.加减速时间加速时间就是输出频率从0 上升到最大频率所需时间,减速时间是指从最大频率下降到0 所需时间。
通常用频率设定信号上升、下降来确定加减速时间。
在电动机加速时须限制频率设定的上升率以防止过电流,减速时则限制下降率以防止过电压。
加速时间设定要求:将加速电流限制在变频器过电流容量以下,不使过流失速而引起变频器跳闸;减速时间设定要点是:防止平滑电路电压过大,不使再生过压失速而使变频器跳闸。
加减速时间可根据负载计算出来,但在调试中常采取按负载和经验先设定较长加减速时间,通过起、停电动机观察有无过电流、过电压报警;然后将加减速设定时间逐渐缩短,以运转中不发生报警为原则,重复操作几次,便可确定出最佳加减速时间。
4.转矩提升又叫转矩补偿,是为补偿因电动机定子绕组电阻所引起的低速时转矩降低,而把低频率范围f/V 增大的方法。
设定为自动时,可使加速时的电压自动提升以补偿起动转矩,使电动机加速顺利进行。
如采用手动补偿时,根据负载特性,尤其是负载的起动特性,通过试验可选出较佳曲线。
对于变转矩负载,如选择不当会出现低速时的输出电压过高,而浪费电能的现象,甚至还会出现电动机带负载起动时电流大,而转速上不去的现象。
5.电子热过载保护本功能为保护电动机过热而设置,它是变频器内CPU 根据运转电流值和频率计算出电动机的温升,从而进行过热保护。
本功能只适用于“一拖一”场合,而在“一拖多”时,则应在各台电动机上加装热继电器。
电子热保护设定值(%)=[ 电动机额定电流(A)/ 变频器额定输出电流(A)]×100% 。
变频器的参数设置
1、对于变频器参数的设置,有很多不同的设置参数,其中常用的有以下几种:
2、初始化:在变频器参数设置前,需要先进行初始化操作,将变频器中所有设置参数清除,以保证参数设置的准确性。
3、输入电压和频率:在变频器的参数设置中,需要先设置输入电压和电流的相关参数,以确保变频器的运行稳定,防止出现过载或电源损坏的情况发生。
4、转速控制:在变频器参数设置中,需要进行转速控制的设置,以设定电机的转速,保证电机的最佳运行效果。
5、增量频率设置:增量频率是指在其中一固定频率时每次变频器启动所增加的频率值,一般设置在0.2HZ~2HZ之间,可以根据实际的电机工作需求,进行具体的设置。
6、启动减速:变频器需要设置启动减速功能,以避免电机启动时出现大电流瞬间加载,导致损坏变频器。
7、坐标调整:设置变频器时,需要根据电机的实际坐标进行调整,以实现电机的最佳运行效果。
8、输出电流调整:在变频器参数设置中,需要调整输出电流,以使电机在不同工况下都能正常工作,同时保证变频器的正常运行。
9、温度控制:变频器需要进行温度控制的设置。
丹佛斯变频器参数设置丹佛斯变频器参数设置丹佛斯变频器是一种能够调节电机运行频率的设备,它能够实现电机的无级调速,使其按照不同的负载需求运行,达到节能降耗、提高生产效率的目的。
要想丹佛斯变频器达到最佳的运行效果,需要对其参数进行适当的设置。
本文将就丹佛斯变频器的参数设置进行详细介绍。
1.基本参数设置(1)工作/停止方式:选择工作方式时,需根据实际需要进行选择,一般有V/F控制、向量控制和直接转矩控制三种方式可选。
停止方式的设置也需根据实际需求确定,有自由停机、减速停机、急停等多种方式可选。
(2)电源输入:输入电压需与电机额定电压相同,同时还需进行频率设置。
(3)最大频率设置:最大频率设置应根据具体负载情况选择,通常应不大于电机额定转速。
(4)最小频率设置:最小频率的设置需考虑电机低速时的转矩输出,应根据实际负载和逆变器能力进行确定。
丹佛斯变频器支持多种通信协议,如MODBUS、PROFIBUS-DP、CANOPEN等。
通信参数主要包括通信地址、波特率、校验位等。
(1)加速时间和减速时间:加速时间和减速时间的设置需根据实际负载情况选择,不能过快或过慢,以免对电机造成损害。
(2)PID调节:在向量控制模式下,需进行PID(比例、积分、微分)参数的设置,以实现快速响应、精确控制的目的。
(3)倍率设置:可根据实际负载情况进行倍率设置,常见的倍率包括电压倍率和转矩倍率。
为了保护丹佛斯变频器和电机的安全运行,需对保护参数进行设置。
(1)过电流保护:可设置电机最大输出电流,以避免因负载过大而损坏电机。
(3)过压保护:当输入电压超过预设范围时,需自动停机以防止对电机造成伤害。
(5)过热保护:当丹佛斯变频器发生过热时,需自动停机,以避免设备损坏。
综上所述,丹佛斯变频器的参数设置需根据具体负载情况而定,需要谨慎选择和调整,以确保设备能够正常、安全、高效地运行。
变频器地址及参数设置一、前4台烘房使用的7台变频器,其地址分别为:1、导带驱动为ATV71,地址(图标FC2)为1,参数设置如下:1) [命令]/(Ctl-)中[给定1通道]/(Fr1)设为[CANopen]/(CAn);出厂设置为[AI1给定]/(AI1),见手册112页。
2) [命令]/(Ctl-)中[组合模式]/(CHCF)设为[组合通道]/(SIM);出厂设置SIM,见手册112页。
3) [通信]/(COM-)中[CANopen]/(CnO-),参数[CANopen地址]/(AdCO)设为1;出厂设置OFF,见手册213页。
4) [通信]/(COM-)中[CANopen]/(CnO-),参数[CANopen bit比特率]/(bdCO)设为250;出厂设置125kbps,见手册213页。
5)其它参数根据参数需要设定2、引风机驱动为ATV312,地址(图标FC1)为2,参数设置如下:1) [电机控制]/(drC-)中[选择的U/F电机1]/(UFt)设为[可变转距](P);出厂设置为[SVC](n),见手册42页。
2) [命令]/(CtL-)中[访问等级]/(LAC)设为[3级]/(L3);出厂设置[1级]/(L1),见手册56页。
3) [命令]/(CtL-)中[给定2通道]/(Fr2)设为[网络]/(nEt);出厂设置[否]/(nO),见手册56页。
4) [通信]/(COM-)中[CANopen地址]/(AdCO)设为2;出厂设置0,见手册92页。
5) [通信]/(COM-)中[CANopen bit比特率]/(bdCO)设为250;出厂设置125kbps,见手册92页。
6)其它参数根据参数需要设定。
3、循环风机驱动为ATV312,地址(图标FC3-FC7)分别为:3,4,5,6,7;参数设置和FC1一样。
二、后2台烘房使用的9台变频器,其地址分别为:1、导带及出布驱动为ATV71,地址为1、8、9。
ABB变频器参数设置1. 主频率(Frequency):主频率是变频器输出电压和频率的主要参数。
它决定了电动机的运行速度,单位为Hz。
可以根据实际需求设置主频率,通常在50~60Hz之间。
3. 转矩控制(Torque control):转矩控制是指变频器控制电动机输出的转矩大小。
可以设置为恒定转矩控制、线性转矩控制或仿生转矩控制等,根据实际工况的需求进行调整。
4. 转矩限制(Torque limit):转矩限制参数用于设定电动机的最大输出转矩限制。
可以设置为百分比或具体数值,以限制电动机的负载能力。
5. 启动方式(Start mode):启动方式参数用于设定电动机启动时的运行方式。
可以设置为直接启动、异步启动或定步长启动等,根据电动机的特性和需要进行选择。
6. 内嵌保护(Built-in protection):ABB变频器具有多种内嵌的保护功能,可以设置过载保护、电流保护、欠压保护、过压保护等。
可以根据实际需求设置保护参数,以保障电动机和设备的安全运行。
7. 频率反馈(Frequency feedback):频率反馈参数用于设定变频器的控制方式。
可以设置为开环控制或闭环控制,开环控制适用于简单的控制要求,闭环控制适用于对速度精度要求较高的场合。
8. 输出电压(Output voltage):输出电压参数用于调整变频器输出电压的大小。
可以设置为百分比或具体数值,根据实际需求进行调整。
9. 过载能力(Overload capacity):过载能力参数用于调整电动机的额定负载能力。
可以设置为百分比或具体数值,以提高电动机的负载能力。
10. PID控制(PID control):PID控制是一种常见的控制算法,用于调节系统的输出。
可以根据实际需求设置PID控制参数,以提高控制精度和稳定性。
11. 过热保护(Overheat protection):过热保护参数用于设置电动机的温度保护阈值。
当电动机温度超过设定值时,变频器会进行保护措施,以避免电机损坏。
黄文鑫先生,大理欣鑫科技服务部工程师。
关键词:变频器参数调试
变频器功能参数很多,一般都有数十甚至上百个参数供用户选择。
实际应用中,没必要对每一参数都进行设置和调试,多数只要采用出厂设定值即可。
但有些参数由于和实际使用情况有很大关系,且有的还相互关联,因此要根据实际进行设定和调试。
因各类型变频器功能有差异,而相同功能参数的名称也不一致,为叙述方便,本文以富士变频器基本参数名称为例。
由于基本参数是各类型变频器几乎都有的,完全可以做到触类旁通。
一加减速时间
加速时间就是输出频率从0上升到最大频率所需时间,减速时间是指从最大频率下降到0所需时间。
通常用频率设定信号上升、下降来确定加减速时间。
在电动机加速时须限制频率设定的上升率以防止过电流,减速时则限制下降率以防止过电压。
加速时间设定要求:将加速电流限制在变频器过电流容量以下,不使过流失速而引起变频器跳闸;减速时间设定要点是:防止平滑电路电压过大,不使再生过压失速而使变频器跳闸。
加减速时间可根据负载计算出来,但在调试中常采取按负载和经验先设定较长加减速时间,通过起、停电动机观察有无过电流、过电压报警;然后将加减速设定时间逐渐缩短,以运转中不发生报警为原则,重复操作几次,便可确定出最佳加减速时间。
二转矩提升
又叫转矩补偿,是为补偿因电动机定子绕组电阻所引起的低速时转矩降低,而把低频率范围f/V增大的方法。
设定为自动时,可使加速时的电压自动提升以补偿起动转矩,使电动机加速顺利进行。
如采用手动补偿时,根据负载特性,尤其是负载的起动特性,通过试验可选出较佳曲线。
对于变转矩负载,如选择不当会出现低速时的输出电压过高,而浪费电能的现象,甚至还会出现电动机带负载起动时电流大,而转速上不去的现象。
三电子热过载保护
本功能为保护电动机过热而设置,它是变频器内CPU根据运转电流值和频率计算出电动机的温升,从而进行过热保护。
本功能只适用于“一拖一”场合,而在“一拖多”时,则应在各台电动机上加装热继电器。
电子热保护设定值(%)=[电动机额定电流(A)/变频器额定输出电流(A)]×10 0%。
四频率限制
即变频器输出频率的上、下限幅值。
频率限制是为防止误操作或外接频率设定信号源出故障,而引起输出频率的过高或过低,以防损坏设备的一种保护功能。
在应用中按实际情况设定即可。
此功能还可作限速使用,如有的皮带输送机,由于输送物料不太多,为减少机械和皮带的磨损,可采用变频器驱动,并将变频器上限频率设定为某一频率值,这样就可使皮带输送机运行在一个固定、较低的工作速度上。
五偏置频率
有的又叫偏差频率或频率偏差设定。
其用途是当频率由外部模拟信号(电压或电流)进行设定时,可用此功能调整频率设定信号最低时输出频率的高低,如图1。
有的变频器当频率设定信号为0%时,偏差值可作用在0~fmax范围内,有的变频器(如明电舍、三垦)还可对偏置极性进行设定。
如在调试中当频率设定信号为0%时,变频器输出频率不为0Hz,而为xHz,则此时将偏置频率设定为负的xHz即可使变频器输出频率为0 Hz。
六频率设定信号增益
此功能仅在用外部模拟信号设定频率时才有效。
它是用来弥补外部设定信号电压与变频器内电压(+10v)的不一致问题;同时方便模拟设定信号电压的选择,设定时,当模拟输入信号为最大时(如10v、5v或20mA),求出可输出f/V图形的频率百分数并以此为参数进行设定即可;如外部设定信号为0~5v时,若变频器输出频率为0~50Hz,则将增益信号设定为200%即可。
七转矩限制
可分为驱动转矩限制和制动转矩限制两种。
它是根据变频器输出电压和电流值,经CPU进行转矩计算,其可对加减速和恒速运行时的冲击负载恢复特性有显著改善。
转矩限制功能可实现自动加速和减速控制。
假设加减速时间小于负载惯量时间时,也能保证电动机按照转矩设定值自动加速和减速。
驱动转矩功能提供了强大的起动转矩,在稳态运转时,转矩功能将控制电动机转差,而将电动机转矩限制在最大设定值内,当负载转矩突然增大时,甚至在加速时间设定过短时,也不会引起变频器跳闸。
在加速时间设定过短时,电动机转矩也不会超过最大设定值。
驱动转矩大对起动有利,以设置为80~100%较妥。
制动转矩设定数值越小,其制动力越大,适合急加减速的场合,如制动转矩设定数值设置过大会出现过压报警现象。
如制动转矩设定为0%,可使加到主电容器的再生总量接近于0,从而使电动机在减速时,不使用制动电阻也能减速至停转而不会跳闸。
但在有的负载上,如制动转矩设定为0%时,减速时会出现短暂空转现象,造成变频器反复起动,电流大幅度波动,严重时会使变频器跳闸,应引起注意。
八加减速模式选择
又叫加减速曲线选择。
一般变频器有线性、非线性和S三种曲线,通常大多选择线性曲线;非线性曲线适用于变转矩负载,如风机等;S曲线适用于恒转矩负载,其加减速变化较为缓慢。
设定时可根据负载转矩特性,选择相应曲线,但也有例外,笔者在调试一台锅炉引风机的变频器时,先将加减速曲线选择非线性曲线,一起动运转变频器就跳闸,调整改变许多参数无效果,后改为S曲线后就正常了。
究其原因是:起动前引风机由于烟道烟气流动而自行转动,且反转而成为负向负载,这样选取了S曲线,使刚起动时的频率上升速度较慢,从而避免了变频器跳闸的发生,当然这是针对没有起动直流制动功能的变频器所采用的方法。
九转矩矢量控制
矢量控制是基于理论上认为:异步电动机与直流电动机具有相同的转矩产生机理。
矢量控制方式就是将定子电流分解成规定的磁场电流和转矩电流,分别进行控制,同时将两者合成后的定子电流输出给电动机。
因此,从原理上可得到与直流电动机相同的控制性能。
采用转矩矢量控制功能,电动机在各种运行条件下都能输出最大转矩,尤其是电动机在低速运行区域。
现在的变频器几乎都采用无反馈矢量控制,由于变频器能根据负载电流大小和
相位进行转差补偿,使电动机具有很硬的力学特性,对于多数场合已能满足要求,不需在变频器的外部设置速度反馈电路。
这一功能的设定,可根据实际情况在有效和无效中选择一项即可。
与之有关的功能是转差补偿控制,其作用是为补偿由负载波动而引起的速度偏差,可加上对应于负载电流的转差频率。
这一功能主要用于定位控制。
十节能控制
风机、水泵都属于减转矩负载,即随着转速的下降,负载转矩与转速的平方成比例减小,而具有节能控制功能的变频器设计有专用V/f模式,这种模式可改善电动机和变频器的效率,其可根据负载电流自动降低变频器输出电压,从而达到节能目的,可根据具体情况设置为有效或无效。
要说明的是,九、十这两个参数是很先进的,但有一些用户在设备改造中,根本无法启用这两个参数,即启用后变频器跳闸频繁,停用后一切正常。
究其原因有:(1)原用电动机参数与变频器要求配用的电动机参数相差太大。
(2)对设定参数功能了解不够,如节能控制功能只能用于V/f控制方式中,不能用于矢量控制方式中。
(3)启用了矢量控制方式,但没有进行电动机参数的手动设定和自动读取工作,或读取方法不当。