基坑围护剖面图
- 格式:pdf
- 大小:154.63 KB
- 文档页数:1
第二章土的物质组成及土水相互作用、单项选择题1.土颗粒的大小及其级配,通常是用粒径级配曲线来表示的。
级配曲线越平缓表示(A)土粒大小较均匀,级配良好(B)土粒大小不均匀,级配不良(C)土粒大小不均匀,级配良好2.土的可塑性范围与比表面大小关系叙述正确的是(A)粘土的比表面比砂土大,所以可塑性范围大(B)粘土的比表面比砂土小,所以可塑性范围大(C)粘土的比表面与砂土相似,颗粒细,故可塑性范围大3.对土粒产生浮力的是(A)毛细水(B)重力水(C)结合水4.如果用高价阳离子置换双电层中的低价阳离子,则粘土的塑性指数(A)增大(B)减小(C)不变5.当粘土矿物成分已知时,颗粒水膜厚度与水化阳离子的原子价大小的关系:(A)高价阳离子比低价阳离子构成水膜厚(B)低价阳离子比高价阳离子构成水膜厚(C)与阳离子的阶数无关,只与离子的浓度有关6.毛细水的上升,主要是水受到下述何种力的作用?(A)粘土颗粒电场引力作用(B)孔隙水压力差的作用(C)水与空气交界面处的表面张力作用7.三种粘土矿物中, 的结构单元最稳定。
(A)蒙脱石(B)伊利石(C)高岭石8.颗粒表面具有很强的吸附水化阳离子和水分子的能力,称为表面能。
颗粒大小和表面能之间的关系(A)颗粒越大,表面能越大(B)颗粒越细,表面能越大(C)颗粒越圆,表面能越大9.三种粘土矿物的亲水性大小,哪种次序排列是正确的:(A)高岭石>伊利石>蒙脱石(B)伊利石〉蒙脱石〉高岭石 (C)蒙脱石〉伊利石〉高岭石川、a 土的干重度比 b 土大 W 、a 土的孔隙比比b 土大、问答题什么是粒组?什么是粒度成分? 土的粒度成分的测定方法有哪两种,它们各适用于何种土类?三、计算题1. a 、b 、c 三个土样的颗粒分析成果如下表,做出它们的颗粒级配曲线,并判断它们的颗粒级配情况和第三章 土的物理性质及工程分类、单项选择题测指标。
2. 砂性土的分类依据主要是3. 已知a 和b 两种土的有关数据如下:n 、a 土的重度比b 土大1. 2. 什么是颗粒级配曲线,它有什么用途? 3. 粘土矿物有哪几种?对土的矿物性质有何影响? 4. 土中水有几种存在形态,各有何特性? 5. 土的结构有哪几种类型?各对应哪类土?1. 土的三相比例指标包括:土粒比重、含水量、 密度、孔隙比、孔隙率和饱和度,其中为实(A)含水量、孔隙比、饱和度(B)密度、含水量、孔隙比 (C) 土粒比重、含水量、密度(A)颗粒粒径及其级配(B)孔隙比及其液性指数 (C) 土的液限及塑限I 、a 土含的粘粒比b 土多4. 有下列三个土样,试判断哪一个是粘土:(A)含水量w=35%,塑限w p =22%,液性指数I L =0.9 (B)含水量w=35%,塑限W p =22%,液性指数I L =0.85 (C)含水量w=35%,塑限W P =22%,液性指数I L =0.755. 有一个非饱和土样, 在荷载作用下饱和度由 80%增加至95%。
根据基坑开挖深度的不同,采用的围护结构形式如下:a.开挖深度>16 m的防淹门段,采用墙厚600mm的地下连续墙;b.开挖深度10~16m的地段采用直径1000mm、间距1.2 m的钻孔灌注桩;c.开挖深度5~10m的地段,采用Ф650和Ф850劲性水泥土搅拌连续墙(SMW工法),其中Ф650桩内插500mm×200mmH型钢(间距900mm);Ф850桩内插700 mm×300 mmH型钢(间距1200mm);d.开挖深度5 m以下的地段,采用拉森鞍Ⅳ型钢板桩。
(2) 支撑系统支撑系统主要采用钢或钢筋混凝土内支撑的形式,除建筑物距基坑较近的JN03节的第1~3层支撑和JN04节第l层支撑采用BH=800×1000mm的C30钢筋混凝土支撑(间距为9.0 m)外,其余均采用Ф609mm δ16mm钢管支撑(间距为3.0m)。
同时考虑到主线部分基坑宽度达31~47m,为保证内支撑稳定,每9m设置2根格构型钢立柱,采用Ф800mm钻孔桩支承,支撑间采用联系梁连接。
(3) 桩(墙)顶连梁该深基坑在围护桩墙的顶部均设置C30钢筋混凝土压顶冠梁。
3.2 支护结构设计图3为支护结构剖面图。
计算荷载根据湖北省标准《深基坑工程技术规定》(DB42/159-1998)计算基坑外侧主动土压力。
地下水位以上采用水土合算,地下水位以下对于粘性土和粉土采用水土合算,砂性土采用水土分算原则。
地面超载按20kN/m2考虑。
支护结构在施工阶段仅作为基坑围护结构考虑,按照平面框架单元计算,考虑开挖和回筑阶段的实际施工及受荷状态各工况的内力及变形。
计算时,考虑墙体的先期位移,钢支撑施加50%~80%的设计轴力作为预应力。
图3 支护结构剖面图3.3 基底处理坑底土体采用水泥深层搅拌桩抽条加固,加固深度3m,邻近的未加固区由于抽条加固的空间作用,其坑底稳定安全度也相应得到了提高。
4 基坑防水设计该工程场区地下水主要为赋存于人工填土层和粉土层(夹有薄层粉质粘土和粉砂)中的潜水以及赋存于粉细砂层中的孔隙承压水。
重力坝及复合式重力坝在软土地区基坑中的应用史国旗 长沙鸿荣源房地产开发有限公司(上置集团) 湖南 长沙 410000摘 要 复合式重力坝是基于常规重力坝基础上的一种复合支护形式。
以杭州软土地区某浅基坑工程为例,进行了重力坝及复合重力坝支护形式下基坑的稳定性分析,并结合现场监测数据,对重力坝及复合重力坝支护形式下基坑的变形进行了对比分析。
研究发现:①在软土地区,开挖深度较浅且周边环境较宽松的基坑可采用重力坝围护。
内插型钢复合重力坝围护在局部挖深7~8m内具有可行性,并可达到较好的工程效果。
②基坑监测结果表明,局部深坑处内插型钢的复合式重力坝一定程度上控制了围护体的位移,且显著提高了基坑的整体稳定性。
研究成果表明了复合式重力坝在软土地区应用的可行性及有效性,为今后类似工程提供一些借鉴和参考。
关键词 软土地区;基坑;重力坝;复合式重力坝引言重力坝是指以水泥系材料为固化剂,通过搅拌机械采用喷浆施工将固化剂和地基土强行搅拌,形成连续搭接的水泥土重力式围护墙。
重力坝是无支撑自立式挡土墙,依靠墙体自重、墙底摩阻力和墙前基坑开挖面以下土体的被动土压力稳定墙体,以满足围护墙的整体稳定、抗倾覆稳定、抗滑稳定和控制墙体变形的要求,适用于加固淤泥质土、含水量较高而地基承载力<120kPa的黏土、粉土、砂土等软土地基[1-2]。
这种支护方式兼具支护和止水作用,在上海、杭州等软土地区中得到了广泛应用。
与其他支护方式相比,重力坝支护形式具有许多优点,如施工无振动、噪声小、无泥浆废水污染,施工操作简便、成桩工期较短,造价较低;基坑内空间宽敞,方便土方开挖和后期结构施工等具有较好的经济和环境效益,但该种方法与有支撑支护结构相比控制变形能力较弱[3-4]。
因此有学者[5]提出了复合式重力坝的支护形式,即在重力坝内排或者内外排内插一定间距的型钢,以此增加坝体刚度,提高坝体对变形的控制能力,目前这种方法已经成为软土地区重力坝支护方式的一种补充支护手段[6]。
图文分析六种基坑支护类型简介,一看就懂基坑支护工程是指在基坑开挖时,为了保证坑壁稳定,保护主体地下工程施工时的安全以及周围环境不受损害所采取的工程措施。
一般基坑支护形式的选取主要取决于基坑挖深、场地条件、周边环境(邻近既有建构筑物、市政道路、管线)、场地水文地质条件、项目工期要求等因素,应综合分析合理选取。
一般同等条件下支护形式的造价从低至高依次为:放坡开挖<土钉墙(复合土钉墙)<水泥土重力式挡墙<型钢水泥土搅拌墙(SMW工法)<排桩<地墙。
一、放坡开挖图 1 放坡开挖实景照1、坡率应根据土层性质、挖深确定,挖深大于4m应采用多级放坡,多级放坡应设置平台;土质条件较好的地区,应优先选用天然放坡;软土地区大面积放坡开挖的基坑,边坡表面应设置钢筋网片护坡面层;图2 多级放坡示意(注:开挖面在地下水位之下需要设置降水井)2、若开挖面在地下水位之下,坡顶和平台处应采取井点降水措施,提高坡体稳定性;坡顶设置挡水坎或排水沟,防止坑外积水流入坑内,侵蚀坡体;3、坡脚附近如有局部深坑,坡脚与局部深坑的距离应不小于2倍深坑落深,如不能保证,应按深坑的深度验算边坡稳定。
二、土钉墙(复合土钉墙)若场地条件限制无法满足大放坡开挖的需要,可采用土钉墙支护,减少放坡范围。
图 3 土钉墙实景照1、土钉形式有钢管土钉和钢筋土钉,坡面采用钢筋网片喷射混凝土面层;2、当土钉墙后存在滞水时,应在含水层部位的墙面设置泄水孔或采取其他疏水措施,减小墙背后的水压力,提高土钉墙稳定性;3、当采用预应力锚杆复合土钉墙时,预应力锚杆应采用钢绞线锚杆,且锚杆应布置在土钉墙的较上部位;当用于增强面层抵抗土压力的作用时,锚杆应布置在土压力较大及墙背土层较软弱的部位。
三、水泥土重力式挡墙图 4 水泥土重力坝实景照1、重力式挡墙形式:一般选用双轴或三轴水泥土搅拌桩,搅拌桩可按搭接施工,搭接长度控制在150mm~200mm,挡墙顶面宜设置混凝土面板;2、一般土层条件下,搅拌深度小于16m的应优先选用造价更低的双轴,超过16m的应选用三轴,遇到淤泥等软弱土层,水泥掺量适当提高;3、水泥土搅拌桩应按格栅布置,建议格栅布置形式如图所示(以双轴为例)。
中山某深基坑支护方案浅析摘要:本基坑为中山地区典型的软土地质条件下的深基坑支护工程,根据基坑周边环境及工程地质条件,分别采用了桩撑、桩锚的支护体系。
基坑支护桩采用钻孔灌注桩,设一道钢筋混凝土内支撑和一道预应力锚索的支护结构,局部区段采用两道预应力锚索的支护结构。
支护结构有效的限制了软土的位移,确保了基坑工程的稳定安全。
关键词:基坑支护灌注桩支撑锚索中图文分类号:tv551.4 文献标识码:文章编号:1工程概况拟建中山市某商业城位于中山市石岐区,拟建地上10层,地下2层。
本工程±0.00相当于绝对标高2.90m,基坑开挖深度为8.70~9.10m;局部边桩承台坑开挖深度为9.40~11.30m。
基坑侧壁安全等级为一级。
场地周边为中山市老城区,建筑物密集且紧靠基坑开挖边线,基坑周边有大量管线通过,对支护结构的变形的控制要求高。
2工程地质条件本基坑为中山地区典型的软土地质条件下的基坑支护工程,地基土由人工填土和第四系淤积成因的淤泥类土,冲积砂土、粉质粘土,残积砂质粘性土和侏罗系(燕山期)花岗岩组成,各项相关岩土指标如下:表1 各岩土层参数取值表场地地下水主要赋存在松散土层和基岩裂隙中,两者水力联系密切,属孔隙~裂隙潜水类型。
砂层为主要含水层,其富水性和透水性较好。
淤泥土层含水量高,但透水性较差。
粘性土层和全风化岩富水性和透水性较差。
强风化~中风化岩富水性和透水性稍好于粘性土层和全风化岩。
3支护方案选型本基坑工程地质条件差,开挖深度深,周边环境复杂,对基坑支护结构的变形要求严格,根据各支护区段的周边环境和地质条件采用不同的支护技术,主要包括:①基坑东北角基坑形状不适合内支撑布置,且考虑基坑出土口设置,采用混凝土灌注桩及两道预应力锚索的桩锚支护结构;②基坑其余区段采用混凝土灌注桩及一道钢筋混凝土内支撑和一道预应力锚索的支护结构。
基坑中北段,地质条件相对较好,支护桩采用桩径为1000mm的钻孔灌注桩;基坑中南段,地质条件相对较差,支护桩采用桩径为1200mm的钻孔灌注桩。
目录第一章工程概况 (2)1.工程概况 (2)2.编制依据 (2)第二章施工准备及现场平面布置 (3)1.施工准备 (3)2.施工总平面图布置 (3)第三章基坑工程技术设计 (4)1、基坑支护设计主要考虑因素分析 (4)2.基坑支护设计方案 (4)第四章主要施工机械配置 (5)1施工机械设备 (5)第五章劳动力分配 (6)第六章施工进度计划 (7)1.总体计划 (7)2.工期保证措施 (7)第七章锚喷支护专项施工方案 (8)1.施工准备 (8)2.施工要点 (8)3.基坑施工中异常情况的处理和预防 (8)4.紧急情况常规处理措施 (9)第八章质量保证制度及措施 (10)1.质量目标 (10)2.质量管理制度 (10)第九章安全保证体系及文明施工措施 (12)1.安全管理目标如下 (12)2.本工程安全消防重点部位 (12)3.安全管理体系 (12)4.文明施工管理措施 (13)附件:一、基坑支护平面图二、护坡设计剖面图第一章工程概况1.工程概况为保证基槽土方开挖施工的安全,基槽开挖采取放坡和有效的边坡支护措施。
1.2地层情况及水文地质条件拟建场区地形比较平坦,场地原为耕地。
场区地层如下:地表以下m左右为耕植土,其下为新近沉积和第四纪沉积的粉质粘土和粘质粉土。
地质条件较好。
场区无地下水,不必考虑地下水的影响。
2.编制依据第二章施工准备及现场平面布置2.施工总平面图布置2.1施工总平面图布置原则本工程的施工现场布置是针对实际现场施工要求进行相应的施工现场平面布置。
本工程施工场地布置的具体原则是:(1)划分施工区域和材料堆放场地,保证材料运输道路环通通畅,施工方便。
(2)符合施工流程要求,减少对专业工种和其他工程方面施工的干扰。
(3)施工区域与办公区域尽量分开,且各种生产设施布置便于施工生产安排,满足安全防火、劳动保护的要求。
(4)基础结构施工开始,区域内影响基础施工部分应服从业主对施工安排,施工区域内临设、库棚、堆场相应调整、移位。
群井初步抽水试验方案一、工程概况XX项目位于上海市地块,具体位置为:。
基地周边环境见图1所示。
1250K VA箱变(基坑实施时拆除)图1 基地总平面图本工程地面以上为3幢独立的超高层建筑,无裙房,但3幢塔楼在标高40m~60m有连接体将3幢塔楼连接成整体。
本工程基坑面积约为49200m2,周长约为955米。
本基坑工程普遍区域开挖深度为26.85m,邻近地铁一号线区间隧道区域写字楼基坑开挖深度约为21.4m。
本工程基坑拟采用纯地下室逆作,塔楼区域顺作顺逆结合设计方案,围护结构拟采用地下连续墙,纯地下室利用结构楼板替代支撑,塔楼区域竖向设置5道钢筋混凝土支撑。
图2基坑围护结构剖面图二、工程地质及水文地质概况1、工程地质1.拟建场地属正常地层分布区,浅部土层分布较稳定,中下部土层除⑦2 层层面埋深局部稍有起伏外,一般分布较稳定。
在135.30m 深度范围内地基土属第四纪滨海~河口相、浅海相、沼泽相及河口~湖泽相沉积物,主要由粘性土、粉性土及砂土组成,一般具有成层分布特点2.场地地层分布主要有以下特点:(1)拟建场地第①层填土,土质非常杂乱:部分地段地面为砼地坪,填土上部一般夹碎石、碎砖、碎砼块、煤渣等建筑垃圾,局部地段上述杂物含量较多。
(2)第②层褐黄~灰黄色粉质粘土,土质随深度增加渐变软,呈可塑~软塑状态,局部夹少量粘土,局部层底附近夹淤泥质粉质粘土及少量粉性土,土质不均匀。
填土较厚区域该层缺失。
(3)第③层灰色淤泥质粉质粘土,局部夹多量薄层粉性土,呈流塑状态,高等压缩性,土质不均匀;本场地第②层之下、第③层之上遍布第③夹层灰色粘质粉土,该层厚度较薄,一般为0.9~2.9m,该层夹薄层粘性土,局部夹砂质粉土及少量淤泥质粉质粘土,土质不均匀,呈松散状态。
第④层灰色淤泥质粘土,分布稳定,夹极薄层粉性土,局部夹少量淤泥质粉质粘土,该层土下部一般含有贝壳碎屑,呈流塑状态。
第③、④层土特征:含水量高,孔隙比大,压缩性高,土质软弱不均匀。