高中数学 第二讲 参数方程 2.3 直线的参数方程练习 新人教A版选修44
- 格式:doc
- 大小:782.02 KB
- 文档页数:8
曲线的参数方程教学目标:1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。
2.分析圆的几何性质,选择适当的参数写出它的参数方程。
3.会进行参数方程和普通方程的互化。
教学重点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。
参数方程和普通方程的互化。
教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程。
参数方程和普通方程的等价互化。
教学过程一.参数方程的概念1.探究:(1)平抛运动: 为参数)t gt y tx (215001002⎪⎩⎪⎨⎧-== 练习:斜抛运动:为参数)t gt t v y t v x (21sin cos 200⎪⎩⎪⎨⎧-⋅=⋅=αα2.参数方程的概念 (见教科书第22页) 说明:(1)一般来说,参数的变化X 围是有限制的。
(2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。
例1.(教科书第22页例1)已知曲线C 的参数方程是⎩⎨⎧+==1232t y tx (t 为参数) (1)判断点M 1(0,1),M 2(5,4)与曲线C 的位置关系; (2)已知点M 3(6,a )在曲线C 上,求a 的值。
)0,1()21,21()21,31()7,2()(2cos sin 2D C B A y x ,、,、,、的坐标是表示的曲线上的一个点为参数、方程θθθ⎩⎨⎧==A 、一个定点B 、一个椭圆C 、一条抛物线D 、一条直线二.圆的参数方程)(sin cos 为参数t t r y t r x ⎩⎨⎧==ωω)(sin cos 为参数θθθ⎩⎨⎧==r y r x说明:(1)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。
(2)在建立曲线的参数方程时,要注明参数及参数的取值X 围。
例2.(教科书第24页例2)思考:你能回答教科书第25页的思考吗?三.参数方程和普通方程的互化1.阅读教科书第25页,明确参数方程和普通方程的互化的方法。
第二讲 参数方程1.参数方程的概念一样地,在平面直角坐标系中,若是曲线上__________的坐标x ,y 都是某个变数t 的函数⎩⎪⎨⎪⎧x =f t ,y =g t ,而且关于t 的每一个许诺值,由方程组所确信的点M (x ,y )都在____________,那么方程就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称______.相关于参数方程而言,直接给出点的坐标间关系的方程叫做__________.2.几种常见曲线的参数方程(1)直线:通过点P 0(x 0,y 0),倾斜角为α的直线的参数方程是____________(t 为参数). (2)圆:以O ′(a ,b )为圆心,r 为半径的圆的参数方程是____________,其中α是参数.当圆心在(0,0)时,方程⎩⎪⎨⎪⎧x =r cos α,y =r sin α.(3)椭圆:中心在原点,坐标轴为对称轴的椭圆的参数方程有以下两种情形: 椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程是____________,其中φ是参数.椭圆x 2b 2+y 2a 2=1(a >b >0)的参数方程是____________,其中φ是参数.(4)抛物线:抛物线y 2=2px (p >0)的参数方程是⎩⎪⎨⎪⎧x =2pt 2,y =2pt .(t 为参数).1.(讲义习题改编)假设直线的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =2-3t(t 为参数),那么直线的斜率为________.2.椭圆⎩⎪⎨⎪⎧x =2cos θ,y =5sin θ(θ为参数)的离心率为________.3.已知点P (3,m )在以点F 为核心的抛物线⎩⎪⎨⎪⎧x =4t 2,y =4t(t 为参数)上,那么|PF |=________.4.(讲义习题改编)直线⎩⎪⎨⎪⎧x =-1+t sin 40°,y =3+t co s 40°(t 为参数)的倾斜角为________.5.已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =3t ,y =2t 2+1(t 为参数).那么点M 1(0,1),M 2(5,4)在曲线C 上的是________.题型一 参数方程与一般方程的互化例1 已知两曲线参数方程别离为⎩⎪⎨⎪⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R ),它们的交点坐标为________.思维升华 (1)参数方程化为一般方程经常使用的消参技术有代入消元、加减消元、平方后再加减消元等.关于与角θ有关的参数方程,常经常使用到的公式有sin 2θ+cos 2θ=1,1+tan 2θ=1cos 2θ等.(2)在将曲线的参数方程化为一般方程时,还要注意其中的x ,y 的取值范围,即在消去参数的进程中必然要注意一般方程与参数方程的等价性.(2021·广东)已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos ty =2sin t(t 为参数),C 在点(1,1)处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴成立极坐标系,那么l 的极坐标方程为________. 题型二 参数方程的应用例2 在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数),直线l 通过点P (2,2),倾斜角α=π3.(1)写出圆的标准方程和直线l 的参数方程;(2)设l 与圆C 相交于A 、B 两点,求|PA |·|PB |的值.思维升华 依照直线的参数方程的标准式中t 的几何意义,有如下经常使用结论: (1)直线与圆锥曲线相交,交点对应的参数别离为t 1,t 2,那么弦长l =|t 1-t 2|; (2)定点M 0是弦M 1M 2的中点⇒t 1+t 2=0;(3)设弦M 1M 2中点为M ,那么点M 对应的参数值t M =t 1+t 22(由此可求|M 2M |及中点坐标).已知直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =2+32t(t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数).(1)将曲线C 的参数方程化为一般方程;(2)假设直线l 与曲线C 交于A 、B 两点,求线段AB 的长. 题型三 极坐标、参数方程的综合应用例3 在直角坐标平面内,以坐标原点O 为极点,x 轴的正半轴为极轴,成立极坐标系.曲线C 的极坐标方程是ρ=4cos θ,直线l 的参数方程是⎩⎪⎨⎪⎧x =-3+32t ,y =12t(t 为参数),M ,N 别离为曲线C 、直线l 上的动点,那么|MN |的最小值为________.思维升华 涉及参数方程和极坐标方程的综合题,求解的一样方式是别离化为一般方程和直角坐标方程后求解.转化后可使问题变得加倍直观,它表现了化归思想的具体运用.(2021·湖北)在直角坐标系xOy 中,椭圆C 的参数方程为⎩⎪⎨⎪⎧x =a cos φy =b sin φ(φ为参数,a >b >0),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程别离为ρsin(θ+π4)=22m (m 为非零常数)与ρ=b .假设直线l 通过椭圆C 的核心,且与圆O 相切,那么椭圆C 的离心率为________. 参数的几何意义不明致误典例:(10分)已知直线l 的参数方程为⎩⎪⎨⎪⎧x =12t ,y =22+32t (t 为参数),假设以直角坐标系xOy 的O 点为极点,Ox 方向为极轴,选择相同的长度单位成立极坐标系,得曲线C 的极坐标方程为ρ=2cos(θ-π4).(1)求直线l 的倾斜角;(2)假设直线l 与曲线C 交于A ,B 两点,求|AB |.易错分析 不明确直线的参数方程中的几何意义致使错误. 标准解答解(1)直线的参数方程能够化为⎩⎪⎨⎪⎧x =t cos 60°,y =22+t sin 60°,[2分]依照直线参数方程的意义,直线l 通过点(0,22),倾斜角为60°.[4分](2)直线l 的直角坐标方程为y =3x +22,[6分]ρ=2cos(θ-π4)的直角坐标方程为(x -22)2+(y -22)2=1,[8分]因此圆心(22,22)到直线l 的距离d =64.因此|AB |=102.[10分]温馨提示 关于直线的参数方程⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)来讲,要注意t 是参数,而α那么是直线的倾斜角.与此类似,椭圆参数方程⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ的参数φ有专门的几何意义,它表示离心角.方式与技术1.参数方程化一般方程经常使用的消参技术:代入消元、加减消元、平方后加减消元等,常经常使用到公式:cos 2θ+sin 2θ=1,1+tan 2θ=1cos 2θ.2.利用曲线的参数方程来求解两曲线间的最值问题超级简捷方便,是咱们解决这种问题的好方式.3.通过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α.(t 为参数).假设A ,B 为直线l 上两点,其对应的参数别离为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,那么以下结论在解题中常经常使用到:①t 0=t 1+t 22;②|PM |=|t 0|=⎪⎪⎪⎪⎪⎪t 1+t 22;③|AB |=|t 2-t 1|;④|PA |·|PB |=|t 1·t 2|. 失误与防范在将曲线的参数方程化为一般方程时,不单单要把其中的参数消去,还要注意其中的x ,y 的取值范围.也即在消去参数的进程中必然要注意一般方程与参数方程的等价性. A 组 专项基础训练1.假设直线的参数方程为⎩⎪⎨⎪⎧x =1+3t ,y =2-3t(t 为参数),那么直线的倾斜角为________.2.将参数方程⎩⎪⎨⎪⎧x =3t 2+2,y =t 2-1(0≤t ≤5)化为一般方程为________________.3.(2021·湖南)在平面直角坐标系xOy 中,假设直线l :⎩⎪⎨⎪⎧ x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右极点,那么常数a 的值为________.4.(2021·陕西)如图,以过原点的直线的倾斜角θ为参数,那么圆x 2+y 2-x =0的参数方程为______________.5.已知曲线C :⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(参数θ∈R )通过点(m ,12),那么m =________.6.(2021·重庆)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴成立极坐标系.假设极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,那么|AB |=________.7.(2021·天津)已知抛物线的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数),其中p >0,核心为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E .假设|EF |=|MF |,点M 的横坐标是3,那么p =________.8.已知曲线C :⎩⎪⎨⎪⎧ x =2cos θ,y =2sin θ(θ为参数)和直线l :⎩⎪⎨⎪⎧x =t ,y =t +b(t 为参数,b 为实数),假设曲线C 上恰有3个点到直线l 的距离等于1,那么b =________.9.在直角坐标系xOy 中,已知曲线C 1:⎩⎪⎨⎪⎧ x =t +1,y =1-2t (t 为参数)与曲线C 2:⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ(θ为参数,a >0)有一个公共点在x 轴上,那么a =________. 10.假设直线l 的极坐标方程为ρcos(θ-π4)=32,圆C :⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数)上的点到直线l 的距离为d ,那么d 的最大值为________.B 组 专项能力提升1.已知抛物线C 1的参数方程为⎩⎪⎨⎪⎧x =8t 2y =8t (t 为参数),圆C 2的极坐标方程为ρ=r (r >0),假设斜率为1的直线通过抛物线C 1的核心,且与圆C 2相切,那么r =________.2.直线⎩⎪⎨⎪⎧ x =2+t ,y =-1-t (t 为参数)与曲线⎩⎪⎨⎪⎧x =3cos α,y =3sin α(α为参数)的交点个数为________.3.在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程别离为⎩⎪⎨⎪⎧x =t ,y =t(t 为参数)和⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数),那么曲线C 1与C 2的交点坐标为________.4.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴成立极坐标系.已知射线θ=π4与曲线⎩⎪⎨⎪⎧x =t +1,y =t -12(t 为参数)相交于A ,B 两点,那么线段AB 的中点的直角坐标为________.5.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =4-2t ,y =t -2(t 为参数),P 是椭圆x 24+y 2=1上的任意一点,那么点P 到直线l 的距离的最大值为________.6.已知圆C 的参数方程为⎩⎪⎨⎪⎧x =cos αy =1+sin α(α为参数),以原点为极点,x 轴正半轴为极轴成立极坐标系,直线l 的极坐标方程为ρsin θ=1,那么直线l 与圆C 的交点的直角坐标为________________.7.(2021·辽宁改编)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴成立极坐标系.圆C 1,直线C 2的极坐标方程别离为ρ=4sin θ,ρcos ⎝ ⎛⎭⎪⎫θ-π4=2 2.(1)C 1与C 2交点的极坐标为________;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t 3+a ,y =b2t 3+1(t ∈R 为参数),那么a ,b 的值别离为________.答案基础知识自主学习 要点梳理1.任意一点 这条曲线上 参数 一般方程2.(1)⎩⎪⎨⎪⎧ x =x 0+t cos α,y =y 0+t sin α (2)⎩⎪⎨⎪⎧x =a +r cos α,y =b +r sin α(3)⎩⎪⎨⎪⎧ x =a cos φ,y =b sin φ ⎩⎪⎨⎪⎧x =b cos φ,y =a sin φ夯基释疑1.-32 2.215 3.4 4.50° 5.M 1题型分类深度剖析例1 ⎝ ⎛⎭⎪⎪⎫1,255解析 将两曲线的参数方程化为一般方程别离为x 25+y 2=1 (0≤y ≤1,-5<x ≤5)和y 2=45x ,联立解得交点为⎝ ⎛⎭⎪⎪⎫1,255. 跟踪训练1 ρcos θ+ρsin θ-2=0解析 由⎩⎪⎨⎪⎧x =2cos t y =2sin t(t 为参数),得曲线C 的一般方程为x 2+y 2=2.那么在点(1,1)处的切线l 的方程为y -1=-(x -1),即x +y -2=0.又x =ρcos θ,y =ρsin θ,∴l 的极坐标方程为ρcos θ+ρsin θ-2=0. 例2 解 (1)由圆C 的参数方程可得其标准方程为x 2+y 2=16.因为直线l 过点P (2,2),倾斜角α=π3,因此直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t cos π3,y =2+t sin π3,即⎩⎪⎨⎪⎧x =2+12t ,y =2+32t(t 为参数).(2)把直线l 的参数方程⎩⎪⎨⎪⎧x =2+12t ,y =2+32t代入圆C :x 2+y 2=16中,得(2+12t )2+(2+32t )2=16, t 2+2(3+1)t -8=0,设A 、B 两点对应的参数别离为t 1、t 2,那么t 1t 2=-8,即|PA |·|PB |=8.跟踪训练2 解 (1)x 2+y 2=16.(2)将⎩⎪⎨⎪⎧x =3+12t ,y =2+32t代入x 2+y 2=16,并整理得t 2+33t -9=0.设A 、B 对应的参数为t 1、t 2,那么t 1+t 2=-33,t 1t 2=-9.|AB |=|t 1-t 2|=t 1+t 22-4t 1t 2=37.例3 12解析 化极坐标方程ρ=4cos θ为直角坐标方程x 2+y 2-4x =0,因此曲线C 是以(2,0)为圆心,2为半径的圆.化参数方程⎩⎪⎨⎪⎧x =-3+32t ,y =12t(t 为参数)为一般方程x -3y +3=0.圆心到直线l 的距离d =|2+3|1+3=52,现在,直线与圆相离,因此|MN |的最小值为52-2=12.跟踪训练363解析 椭圆C 的标准方程为x 2a2+y 2b 2=1,直线l 的标准方程为x +y =m ,圆O 的方程为x 2+y 2=b 2,由题意知⎩⎪⎨⎪⎧|m |2=ba 2-b 2=|m |,∴a 2-b 2=2b 2,a 2=3b 2,∴e =c 2a 2=3b 2-b 23b 2=23=63. 练出高分 A 组 1.150°解析 由直线的参数方程知,斜率k =y -2x -1=-3t 3t=-33=tan θ,θ为直线的倾斜角,因此该直线的倾斜角为150°.2.x -3y -5=0,x ∈[2,77]解析 化为一般方程为x =3(y +1)+2,即x -3y -5=0,由于x =3t 2+2∈[2,77],故曲线为线段. 3.3解析 椭圆C 的右极点坐标为(3,0),假设直线l 过(3,0),那么0=3-a ,∴a =3.4.⎩⎪⎨⎪⎧ x =12+12cos 2θ,y =12sin 2θ0≤θ<π解析 由题意得圆的标准方程为⎝ ⎛⎭⎪⎫x -122+y 2=⎝ ⎛⎭⎪⎫122,设圆与x 轴的另一交点为Q ,那么Q (1,0),设点P 的坐标为(x ,y ),那么OP =OQ cos θ=cos θ.∴⎩⎪⎨⎪⎧ x =OP cos θ=cos 2θ=12+12cos 2θ,y =OP sin θ=cos θ·sin θ=12sin 2θ0≤θ<π.5.±154 解析 将曲线C :⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(参数θ∈R )化为一般方程为x 2+y 24=1,将点(m ,12)代入该椭圆方程,得m 2+144=1,即m 2=1516,因此m =±154. 6.16 解析 将极坐标方程ρcos θ=4化为直角坐标方程得x =4,将x =4代入⎩⎪⎨⎪⎧x =t 2,y =t 3得t =±2,从而y =±8. 因此A (4,8),B (4,-8).因此|AB |=|8-(-8)|=16.7.2解析 依照抛物线的参数方程可知抛物线的标准方程是y 2=2px , 因此y 2M =6p ,因此E ⎝ ⎛⎭⎪⎫-p 2,±6p ,F ⎝ ⎛⎭⎪⎫p 2,0,因此p 2+3=p 2+6p ,因此p 2+4p -12=0,解得p =2(负值舍去).8.±2解析 将曲线C 和直线l 的参数方程别离化为一般方程为x 2+y 2=4和y =x +b ,依题意,假设要使圆上有3个点到直线l 的距离为1,只要知足圆心到直线的距离为1即可,取得|b |2=1,解得b =± 2.9.32解析 将曲线C 1与C 2的方程化为一般方程求解. ∵⎩⎪⎨⎪⎧x =t +1,y =1-2t ,消去参数t 得2x +y -3=0. 又⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ,消去参数θ得x 2a 2+y 29=1. 方程2x +y -3=0中,令y =0得x =32, 将⎝ ⎛⎭⎪⎫32,0代入x 2a 2+y 29=1,得94a 2=1.又a >0,∴a =32. 10.32+1解析 ρcos(θ-π4)=32,∴ρcos θ+ρsin θ=6, ∴直线l 的直角坐标方程为x +y =6.由圆C 的参数方程知圆C 的圆心为C (0,0),半径r =1.圆心C (0,0)到直线l 的距离为62=32.∴d min =32+1.B 组1.2 解析 抛物线C 1的一般方程为y 2=8x ,其核心坐标是(2,0),过该点且斜率为1的直线方程是y =x -2,即x -y-2=0.圆ρ=r 的圆心是极点、半径为r ,直线x -y -2=0与该圆相切,那么r =|0-0-2|2= 2.2.2解析 将参数方程化为一般方程求解. 将⎩⎪⎨⎪⎧x =2+t ,y =-1-t 消去参数t 得直线x +y -1=0; 将⎩⎪⎨⎪⎧x =3cos α,y =3sin α消去参数α得圆x 2+y 2=9. 又圆心(0,0)到直线x +y -1=0的距离d =22<3. 因此直线与圆相交,故直线与曲线有2个交点.3.(1,1)解析 化参数方程为一般方程然后解方程组求解. C 1的一般方程为y 2=x (x ≥0,y ≥0),C 2的一般方程为x 2+y 2=2.由⎩⎪⎨⎪⎧ y 2=x ,x ≥0,y ≥0,x 2+y 2=2得⎩⎪⎨⎪⎧x =1,y =1.∴C 1与C 2的交点坐标为(1,1). 4.⎝ ⎛⎭⎪⎫52,52 解析 化射线的极坐标方程为一般方程,代入曲线方程求t 值.射线θ=π4的一般方程为y =x (x ≥0),代入⎩⎪⎨⎪⎧ x =t +1,y =t -12,得t 2-3t =0,解得t =0或t =3.当t =0时,x =1,y =1,即A (1,1);当t =3时,x =4,y =4,即B (4,4).因此AB 的中点坐标为⎝ ⎛⎭⎪⎫52,52. 5.2105解析 由于直线l 的参数方程为⎩⎪⎨⎪⎧ x =4-2t ,y =t -2(t 为参数), 故直线l 的一般方程为x +2y =0.因为P 为椭圆x 24+y 2=1上的任意一点, 故可设P (2cos θ,sin θ),其中θ∈R .因此点P 到直线l 的距离是d =|2cos θ+2sin θ|12+22 =22⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫θ+π45.因此当θ=k π+π4,k ∈Z 时,d 取得最大值2105. 6.(-1,1)和(1,1)解析 ∵y =ρsin θ,∴直线l 的直角坐标方程为y =1. 由⎩⎪⎨⎪⎧x =cos α,y =1+sin α得x 2+(y -1)2=1. 由⎩⎪⎨⎪⎧ y =1,x 2+y -12=1得⎩⎪⎨⎪⎧ x =-1,y =1或⎩⎪⎨⎪⎧ x =1,y =1. ∴直线l 与圆C 的交点的直角坐标为(-1,1)和(1,1).7.(1)⎝ ⎛⎭⎪⎫4,π2,⎝⎛⎭⎪⎫22,π4 (2)-1,2 解析 (1)圆C 1的直角坐标方程为x 2+(y -2)2=4, 直线C 2的直角坐标方程为x +y -4=0.解⎩⎪⎨⎪⎧ x 2+y -22=4,x +y -4=0,得⎩⎪⎨⎪⎧ x 1=0,y 1=4,⎩⎪⎨⎪⎧x 2=2,y 2=2. 因此C 1与C 2交点的极坐标为⎝ ⎛⎭⎪⎫4,π2,⎝ ⎛⎭⎪⎫22,π4, 注:极坐标系下点的表示不唯一.(2)由(1)可得,P 点与Q 点的直角坐标别离为(0,2),(1,3). 故直线PQ 的直角坐标方程为x -y +2=0,由参数方程可得y =b 2x -ab 2+1,因此⎩⎪⎨⎪⎧ b 2=1,-ab 2+1=2,解得a =-1,b =2.。
参数方程____________________________________________________________________________________________________________________________________________________________________1.了解直线参数方程,曲线参数方程的条件及参数的意义2.会选择适当的参数写出曲线的参数方程3.掌握参数方程化为普通方程几种基本方法4.了解圆锥曲线的参数方程及参数的意义5.利用圆锥曲线的参数方程来确定最值,解决有关点的轨迹问题一.参数方程的定义1.一般地,在平面直角坐标系中,如果曲线C上任一点P的坐标x和y都可以表示为某个变量t的函数:()()x f ty g t=⎧⎨=⎩;反过来,对于t的每个允许值,由函数式()()x f ty g t=⎧⎨=⎩所确定的点P(x,y)都在曲线C上,那么方程()()x f ty g t=⎧⎨=⎩叫作曲线C的参数方程,变量t是参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程,参数方程可以转化为普通方程.2.关于参数的说明.参数方程中参数可以有物理意义、几何意义,也可以没有明显意义.3.曲线的参数方程可通过消去参数而得到普通方程;若知道变数x、y中的一个与参数t的关系,可把它代入普通方程,求另一变数与参数t的关系,则所得的()()x f ty g t=⎧⎨=⎩,就是参数方程.二.圆的参数方程点P 的横坐标x 、纵坐标y 都是t 的函数:cos sin x r ty r t=⎧⎨=⎩(t 为参数).我们把这个方程叫作以圆心为原点,半径为r 的圆的参数方程. 圆的圆心为O 1(a ,b),半径为r 的圆的参数方程为:cos sin x a r ty b r t =+⎧⎨=+⎩(t 为参数).三.椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数).规定θ的范围为θ∈[0,2π).这是中心在原点O 、焦点在x 轴上的椭圆参数方程.四.双曲线x 2a 2-y 2b 2=1的参数方程为tan x asec y b ϕϕ=⎧⎨=⎩(φ为参数).规定φ的范围为φ∈[0,2π),且φ≠π2,φ≠3π2.这是中心在原点,焦点在x 轴上的双曲线参数方程.五.曲线C 的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数,t ∈R)其中p 为正的常数.这是焦点在x 轴正半轴上的抛物线参数方程.六.直线的参数方程1.过定点M 0(x 0,y 0)、倾斜角为α的直线l 的参数方程为00cos sin x x t y y t αα=+⎧⎨=+⎩(t 为参数),这一形式称为直线参数方程的标准形式,直线上的动点M 到定点M 0的距离等于参数t 的绝对值.当t >0时,M 0M →的方向向上;当t <0时,M 0M →的方向向下;当点M 与点M 0重合时,t =0.2.若直线的参数方程为一般形式为:⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数), 可把它化为标准形式:00cos sin t x t x y y αα=+⎧⎨='+'⎩(t′为参数).其中α是直线的倾斜角,tan α=ba ,此时参数t′才有如前所说的几何意义.类型一.参数方程与普通方程的互化例1:指出参数方程3cos 3sin x y θθ=⎧⎨=⎩⎝ ⎛⎭⎪⎫θ为参数,0<θ<π2表示什么曲线练习1:指出参数方程315cos 215sin x y θθ=+⎧⎨=+⎩(θ为参数,0≤θ<2π).表示什么曲线例2:设直线l 1的参数方程为1,13x t y t=+⎧⎨=+⎩(t 为参数),直线l 2的方程为y =3x +4,则l 1与l 2间的距离为______.练习2:若直线112,:2x t y l kt =-⎧⎨=+⎩(t 为参数)与直线l 2:,12x s y s =⎧⎨=-⎩(s 为参数)垂直,则k =______.类型二.曲线参数方程例3:已知点P (x , y )在曲线2cos ,sin x y θθ=-+⎧⎨=⎩(θ为参数)上,则yx 的取值范围为______.练习1:已知点A (1,0),P 是曲线2cos ,1cos 2x y θθ=⎧⎨=+⎩(θ∈R )上任一点,设P 到直线l :y =12-的距离为d ,则|PA|+d 的最小值是______.例4:已知θ为参数,则点(3,2)到方程cos sin x y θθ=⎧⎨=⎩,的距离的最小值是______.练习1:已知圆C 的参数方程为cos 1,sin x y θθ=+⎧⎨=⎩(θ为参数),则点P (4,4)与圆C 上的点的最远距离是______.例5:已知双曲线方程为x 2-y 2=1,M 为双曲线上任意一点,点M 到两条渐近线的距离分别为d 1和d 2,求证:d 1与d 2的乘积是常数.练习1:将参数方程⎩⎪⎨⎪⎧x =a 2⎝ ⎛⎭⎪⎫t +1t ,y =b 2⎝ ⎛⎭⎪⎫t -1t (t 为参数,a >0,b >0)化为普通方程.类型三.直线参数方程例6:曲线C 1:1cos ,sin ,x y θθ=+⎧⎨=⎩(θ为参数)上的点到曲线C 2:1,2112x t y t⎧=-⎪⎪⎨⎪=-⎪⎩(t 为参数)上的点的最短距离为______.练习1:直线⎩⎪⎨⎪⎧x =2+3t ,y =-1+t (t 为参数)上对应t =0,t =1两点间的距离是( )A .1 B.10 C .10 D .2 2类型四.曲线参数方程的应用例7:在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数).(1)已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为⎝⎛⎭⎪⎫4,π2,判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.练习1:已知曲线C 的方程为⎩⎪⎨⎪⎧x =12(e t +e -t)cos θ,y =12(e t-e-t)sin θ.当t 是非零常数,θ为参数时,C 是什么曲线?当θ为不等于k π2(k ∈Z)的常数,t 为参数时,C 是什么曲线?两曲线有何共同特征?类型五.极坐标与参数方程的综合应用例8:(2015·广东卷Ⅱ,数学文14)在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 1的极坐标方程为ρ(cos θ+sin θ)=-2,曲线C 2的参数方程为⎩⎨⎧x =t2y =22t(t 为参数),则C 1与C 2交点的直角坐标为________. 练习1:求圆3cos ρθ=被直线22,14x t y t =+⎧⎨=+⎩(t 是参数)截得的弦长.1.将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =sin 2θ(θ为参数)化为普通方程是( ) A .y =x -2 B .y =x +2C .y =x -2(2≤x≤3)D .y =x +2(0≤y≤1)2.椭圆42cos 15sin x y θθ=+⎧⎨=+⎩(θ为参数)的焦距为( )A.21B .221C.29D .2293.参数方程⎩⎪⎨⎪⎧x =e t-e -t,y =e t +e -t(t 为参数)表示的曲线是( ) A .双曲线 B .双曲线的下支 C .双曲线的上支D .圆4.双曲线23tan sec x y θθ=+⎧⎨=⎩,(θφ为参数)的渐近线方程为5.(2015·惠州市高三第二次调研考试)在直角坐标系xOy 中,直线l的参数方程为⎩⎪⎨⎪⎧x =t ,y =4+t (t为参数).以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=42sin ⎝⎛⎭⎪⎫θ+π4,则直线l 和曲线C 的公共点有________个.6.若直线3x +4y +m =0与圆1cos ,2sin x y θθ=+⎧⎨=-+⎩(θ为参数),没有公共点,则实数m 的取值范围是______.7.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB|=________. 8.已知直线l :34120x y +-=与圆C :12cos ,22sin x y θθ=-+⎧⎨=+⎩(θ为参数),试判断它们的公共点的个数.9.求直线2,,x t y =+⎧⎪⎨=⎪⎩(t 为参数)被双曲线x 2-y 2=1截得的弦长_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.当参数θ变化时,动点P (2cos θ,3sin θ)所确定的曲线必过( ) A .点(2,3)B .点(2,0)C .点(1,3)D .点⎝⎛⎭⎪⎫0,π22.双曲线6sec x y αα⎧=⎪⎨=⎪⎩(α为参数)的两焦点坐标是( )A .(0,-43),(0,43)B .(-43,0),(43,0)C .(0,-3),(0,3)D .(-3,0),(3,0)3.参数方程⎩⎪⎨⎪⎧x =sin α2+cos α2,y =2+sin α(α为参数)的普通方程为( )A .y 2-x 2=1B .x 2-y 2=1C .y 2-x 2=1(|x |≤2)D .x 2-y 2=1(|x |≤2)4.参数方程⎩⎪⎨⎪⎧x =cos 2θ,y =sin 2θ(θ为参数)表示的曲线是( )A .直线B .圆C .线段D .射线5.设O 是椭圆3cos 2sin x y αα=⎧⎨=⎩(α为参数)的中心,P 是椭圆上对应于α=π6的点,那么直线OP的斜率为( )A.33B. 3C.332D.2396.将参数方程12cos 2sin x y θθ=+⎧⎨=⎩(θ为参数)化为普通方程是____________.7.点P(x ,y)在椭圆4x 2+y 2=4上,则x +y 的最大值为______,最小值为________.8.在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :⎩⎪⎨⎪⎧x =1+s ,y =1-s (s 为参数)和C :⎩⎪⎨⎪⎧x =t +2,y =t 2(t 为参数),若l 与C 相交于A 、B 两点,则|AB|=________. 能力提升9.点(2,33)对应曲线4cos 6sin x y θθ=⎧⎨=⎩(θ为参数)中参数θ的值为( )A .k π+π6(k∈Z)B .k π+π3(k∈Z)C .2k π+π6(k∈Z)D .2k π+π3(k∈Z)10.椭圆x 29+y24=1的点到直线x +2y -4=0的距离的最小值为( )A.55B. 5C.655D .011.(2015·湛江市高三(上)调考)直线⎩⎪⎨⎪⎧x =2-12t ,y =-1+12t(t 为参数)被圆x 2+y 2=4截得的弦长为________.12.在平面直角坐标系xOy中,若l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :3cos 2sin x y θθ=⎧⎨=⎩(θ为参数)的右顶点,则常数a 的值为________.13.(2015·惠州市高三第一次调研考试)已知在平面直角坐标系xOy 中圆C 的参数方程为:3cos 13sin x y θθ⎧=⎪⎨=+⎪⎩(θ为参数),以Ox 为极轴建立极坐标系,直线极坐标方程为:ρcos ⎝ ⎛⎭⎪⎫θ+π6=0,则圆C 截直线所得弦长为________.14.(2014·辽宁卷)将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(1)写出C的参数方程;(2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.课程顾问签字: 教学主管签字:。
从一道课本例题来看如何培养学生解析几何的思维品质人教版教材《数学•选修4-4》第二讲中有一道例题:如图2-13,O 是直角坐标原点,A ,B 是抛物线22(0)y px p =>上异于顶点的两动点,且,OA OB OM AB ⊥⊥并与AB 相交于点M ,求点M 析几何的一个很好的素材,这节课可充分探究式教学,为解决高考中有关解析几何压轴大题奠定很好的基础。
探究:Ⅰ 一题多解,思维发散,培养思维的敏捷性与灵活性师:我们已经学习了抛物线的参数方程,如何用参数方程来求动点M 的轨迹呢?生1:可根据条件,设点M ,A ,B 的坐标分别为,2211221212(,),(2,2),(2,2)(,0)x y pt pt pt pt t t t t ≠≠且则,211OM (,),(2,2),x y OA pt pt ==222(2,2),OB pt pt =222121(2(),2())AB p t t p t t =--0OA OB OA OB ⊥⇒=,即:22121212(2)(2)01pt t p t t t t +=⇒=-…………………①OM OM 0AB AB ⊥⇒⊥=,即:222121122()2()0()0px t t py t t x t t y -+-=⇒++= 即:12(0)yt t x x+=-≠……………………………………………………………………② 又221212,,AM//(2)(2)(2)(2)A M B x pt pt y y pt pt x ⇔⇔--=--三点共线MB 即:1212()20y t t pt t x +--=………………………………………………………………③ 由①②③可得:点M 的轨迹方程为2220(0)x y px x +-=≠师:这位同学的解答利用了抛物线的参数方程,设出A 、B 两点的坐标,再利用题中三个独立的已知条件建立三个方程,再联立方程消参,便可得到所求的轨迹方程。
三直线的参数方程
课后篇巩固探究
A组
1.已知以t为参数的直线方程为点M0(-1,2)与M(x,y)分别是曲线上的定点和动点,则t 的几何意义是()
A.t=·a(a=(1,0))
B.t=·a(a=(1,0))
C.|t|=||
D.|t|=2
解析由于所给参数方程表示直线参数方程的标准形式,所以t的几何意义是|t|=||.
答案C
2.直线(t为参数)与坐标轴的交点坐标是()
A. B.
C.(0,-4),(8,0)
D.,(8,0)
解析令x=0得t=,于是y=,即直线与y轴的交点坐标为;令y=0得t=,于是x=,即直线与x
轴的交点坐标为.
答案B
3.若直线的参数方程为(t为参数),则该直线的倾斜角为()
A.60°
B.120°
C.300°
D.150°
解析y-y0=-(x-x0),斜率k=-,倾斜角为120°.
答案B
4.过点(1,1),倾斜角为135°的直线截圆x2+y2=4所得的弦长为()
A. B. C.2 D.
解析直线的参数方程为(t为参数),将其代入圆的方程得t2+2=4,解得t1=-,t2=.
所以所求弦长为|t1-t2|=|-|=2.
答案C
5.导学号73574050若(λ为参数)与(t为参数)表示同一条直线,则λ与t的关系是()
A.λ=5t
B.λ=-5t
C.t=5λ
D.t=-5λ
解析由得-3λ=t cos α.
由得4λ=t sin α,消去α的三角函数,
得25λ2=t2,得t=±5λ,借助于直线的斜率,可排除t=-5λ,所以t=5λ.
答案C
6.直线(t为参数)过定点.
解析由得-(y+1)a+(4x-12)=0,该式对于任意的a都成立,则x=3,y=-1,即直线过定点(3,-1).
答案(3,-1)
7.直线l:(t为参数)上的点P(-4,1-)到l与x轴的交点Q的距离是.
解析在直线l:中令y=0,得t=-1.故l与x轴的交点为Q(-1-,0).
所以|PQ|=
==2-2.
答案2-2
8.若直线(t为参数)与直线4x+ky=1垂直,则常数k=.
解析由已知可得直线的斜率为-,因此直线4x+ky=1的斜率等于,于是k=-6.
答案-6
9.设直线的参数方程为(t为参数).
(1)求直线的普通方程;
(2)化参数方程为标准形式.
解(1)由y=10-4t,得t=,将其代入x=5+3t,得x=5+3×.
化简得普通方程为4x+3y-50=0.
(2)把方程变形为
令t'=-5t,
则参数方程的标准形式为(t'为参数).
10.导学号73574051已知直线l经过点P(-1,2),且方向向量为n=(-1,),圆的方
程为ρ=2cos.
(1)求直线l的参数方程;
(2)设直线l与圆相交于M,N两点,求|PM|·|PN|的值.
解(1)∵n=(-1,),∴直线l的倾斜角为.
∴直线l的参数方程为(t为参数),即(t为参数).
(2)∵ρ=2=cos θ-sin θ,
∴ρ2=ρcos θ-ρsin θ.∴x2+y2-x+y=0.
将直线的参数方程代入得t2+(3+2)t+6+2=0.
∴|t1t2|=6+2,即|PM|·|PN|=6+2.
11.导学号73574052求经过点(1,1),倾斜角为120°的直线截椭圆+y2=1所得的弦长.
解由直线经过点(1,1),倾斜角为120°,可得直线的参数方程为(t为参数), 将其代入椭圆的方程,得=1,整理,得13t2+4(4-1)t+4=0.设方程的两实根分别为t1,t2,则t1+t2=,t1t2=.
|t1-t2|=.
所以直线被椭圆所截得的弦长为.
B组
1.直线(t为参数)上与点A(2,-3)的距离等于1的点的坐标是()
A.(1,-2)或(3,-4)
B.(2-,-3+)或(2+,-3-)
C.
D.(0,-1)或(4,-5)
解析根据题意可设直线上任意一点的坐标为P(2-t,-3+t),则|PA|=2t2=1,解得t=±.
当t=时,点P的坐标为;
当t=-时,点P的坐标为.故所求的点的坐标为
,-3-.
答案C
2.过抛物线y2=4x的焦点F作倾斜角为的弦AB,则弦AB的长是()
A.16
B.3
C.
D.
解析抛物线y2=4x的焦点F的坐标为(1,0),又倾斜角为,所以弦AB所在直线的参数方程为(t为参数).将其代入抛物线方程y2=4x,得=4,整理得3t2-8t-16=0.设方程的两个实根分别为t1,t2,则有
所以|t1-t2|=.故弦AB的长为.
答案C
3.对于参数方程(t为参数)和(t为参数),下列结论正确的是()
A.它们表示的是倾斜角为30°的两条平行直线
B.它们表示的是倾斜角为150°的两条重合直线
C.它们表示的是两条垂直且相交于点(1,2)的直线
D.它们表示的是两条不垂直但相交于点(1,2)的直线
解析因为参数方程可化为标准形式所以其倾斜角为150°.
同理,参数方程可化为标准形式所以其倾斜角也为150°.又因为两条直线都过点(1,2),故两条直线重合.
答案B
4.已知直线的参数方程为(t为参数),点P在直线上,且与点M0(-4,0)的距离为,若将该直线的参数方程改写成(t为参数),则在这个方程中点P对应的t值为.
解析由|PM0|=知t=±,代入第一个参数方程,得点P的坐标分别为(-3,1)或(-5,-1),再把点P 的坐标代入第二个参数方程可得t=1或t=-1.
答案±1
5.已知一条直线的参数方程是(t为参数),另一条直线的方程是x-y-4=0,则两条直线的交点到点(7,-5)的距离是.
解析把直线的参数方程(t为参数)代入另一条直线方程x-y-4=0,得7+t--4=0,解得t=8.
故交点到点(7,-5)的距离为|t|=8.
答案8
6.已知直线l的参数方程为(t为参数),曲线C的极坐标方程为ρ2cos 2θ=3.
(1)求曲线C的直角坐标方程;
(2)求直线l被曲线C截得的弦长.
解(1)由曲线C:ρ2cos 2θ=ρ2(cos2θ-sin2θ)=3,
得ρ2cos2θ-ρ2sin2θ=3,化成直角坐标方程为x2-y2=3.①
(2)(方法一)把直线的参数方程化为标准参数方程(t'为参数,t'=6t),②
把②代入①得=3,
整理,得t'2-4t'-2=0.
设其两根为t1',t2',则t1'+t2'=4,t1'·t2'=-2.
从而弦长为|t1'-t2'|=
==2.
(方法二)把直线l的参数方程化为普通方程为y=(x-2),代入x2-y2=3,得2x2-12x+15=0.
设l与C交于点A(x1,y1),B(x2,y2),
则x1+x2=6,x1·x2=.
所以|AB|=
=2=2.
7.导学号73574053过点P作倾斜角为α的直线与曲线x2+2y2=1交于点M,N,求|PM|·|PN|的最小值及相应的α的值.
解设直线的参数方程为(t为参数),
将其代入x2+2y2=1,
得(1+sin2α)t2+t cos α+=0.
设点M,N对应的参数分别为t1,t2,
则|PM|·|PN|=|t1t2|=.
因为直线与曲线相交,
所以Δ=10cos2α-4×·(1+sin2α)≥0.
得sin2α≤.而当sin α=(0≤α<π),
即α=或α=时,|PM|·|PN|有最小值.
8.导学号73574054已知直线l过点P(3,2),且与x轴、y轴的正半轴分别相交于A,B两点,求|PA|·|PB|的值为最小时的直线l的参数方程.
解设直线l的倾斜角为α,
则l的参数方程为(t为参数),
由题意知,A(x A,0),B(0,y B).由0=2+t sin α,
得|PA|=|t|=.由0=3+t cos α,得|PB|=|t|=-.
故|PA|·|PB|==-.
∵<α<π,
∴当2α=,即α=时,|PA|·|PB|有最小值,此时直线l的参数方程为
(t为参数).。