的倾斜角为 π-∠MAB, 同理,可得 x
2
������2 - =1(x>1,y<0). 3
2
综上,所求点 M 的轨迹方程为 x
������2 - =1(x>1)和 3
y=0(-1<x<2).
-7-
专题一
专题二
专题三
专题四
专题二 圆锥曲线的定义、性质 椭圆、抛物线、双曲线的定义、标准方程、几何图形及简单的 几何性质是本章的基础. 对于圆锥曲线的有关问题,要有运用圆锥曲线的定义解题的意 识,“回归定义”是一种重要的解题策略.如(1)在求轨迹时,若所求轨 迹符合某种圆锥曲线的定义,则根据圆锥曲线的方程写出所求的轨 迹方程;(2)涉及椭圆、双曲线上的点与两个焦点构成的三角形问 题时,常用定义结合解三角形的知识来解决;(3)在求有关抛物线的 最值问题时,常利用定义把到焦点的距离转化为到准线的距离,结 合几何图形利用几何意义去解决.
-5-
专题一
专题二
专题三
专题四
当∠MBA=90°时,△MAB 为等腰直角三角形,点 M 的坐标为 (2,3). ������ 当∠MBA≠90°时,tan(π-2α)=kMB= .
������-2
①当点 M 在 x 轴上方时,α≠90°,tan α=kMA=������+1,
������
∴tan(π-2α)=-tan 2α=
-8-
专题一
专题二
专题三
专题四
应用1 抛物线y2=2px(p>0)上有A(x1,y1),B(x2,y2),C(x3,y3)三点,F是 它的焦点,若|AF|,|BF|,|CF|成等差数列,则( ) A.x1,x2,x3成等差数列B.y1,y2,y3成等差数列 C.x1,x3,x2成等差数列D.y1,y3,y2成等差数列 解析:如图,由抛物线定义, 得|AF|=|AA'|,|BF|=|BB'|,|CF|=|CC'|. ∵2|BF|=|AF|+|CF|, ∴2|BB'|=|AA'|+|CC'|.