几何画板迭代详解
- 格式:doc
- 大小:918.50 KB
- 文档页数:7
⼏何画板迭代功能真强⼤,不知道的来看看!传统时代,⼈们都是⽤笔在纸上⼀步⼀步来构造美的图案的,⽽随着计算机技术的飞速发展,出现了很多代替⼿⼯绘图的画图软件,现在已经很少有⼈完全凭靠双⼿去打造美丽的图案了,都是借助画图软件来构造,不仅省时省⼒,⽽且构造的图案⾮常标准、美观。
⽐如接下来⼩编要说的这款画图软件——⼏何画板,它是当下⽐较受欢迎的⼀款画图软件,之所以如此受追捧,那是因为它其中的功能很强⼤,就⽐如它的迭代功能,利⽤此功能可以构造很多精美图案,下⾯就以来学学具体的制作技巧。
迭代是⼏何画板中⼀个很有趣的功能,它相当于程序设计的递归算法。
通俗地讲,就是⽤⾃⾝的结构来描述⾃⾝,通过迭代可以产⽣很酷的效果。
⼏何画板迭代教程中涉及的基本术语如下:迭代:按⼀定的迭代规则,从原象到初象的反复映射过程。
原象:产⽣迭代序列的初始对象,通常称为“种⼦”。
初象:由原象经过⼀系列变换操作⽽得到的。
迭代深度:迭代次数(带参数的迭代中的参数值,按住Shift键则“迭代”变成“带参数的迭代”)。
迭代变换使⽤的前提条件:1.选定⼀个(或⼏个)⾃由的点,即平⾯上任⼀点,或线(直线、线段、射线、圆、轨迹)上的任⼀点。
2.由选定的点产⽣的⽬标点(不要选定,出现迭代对话框后,再选),如线段的中点、或由选定点经过变化产⽣的点。
凡是和原象点或初象点相关联的对象(点、先、弧、内部等),也可作为原象点的组成部分进⾏迭代。
⼀、利⽤迭代命令制作分形树迭代是分形的基础,利⽤⼏何画板的深度迭代功能可以画出许多美妙的分形图形。
分形树的制作步骤如下:1.在垂直⽅向上画线段AB,选中线段AB,执⾏“构造”—“中点”命令,构造线段AB中点C。
2.双击B点,以B为旋转中⼼将点C旋转120度得E点,旋转-120度得D点。
构造线段BD、BE。
3.新建参数n=3,依次选点A、B和参数n,按住Shift键在“变换”菜单下选择“深度迭代”命令,在弹出的迭代对话框将A映射到B,B映射到E,选择结构下的“添加新的映射”,继续将A映射到B,B映射到D就可以了。
几何画板迭代与深度迭代迭代是几何画板中一个很有趣的功能,它相当于程序设计的递归算法。
通俗的讲就是用自身的结构来描述自身。
递归算法的特点是书写简单,容易理解,但是运算消耗内存较大。
迭代:按一定的迭代规则,从原象到初象的反复映射过程。
原象:产生迭代序列的初始对象,通常称为“种子”。
初象:原象经过一系列变换操作而得到的象。
与原象是相对概念。
更具体一点,在代数学中,如计算数列1,3,5,7,9......的第n 项。
我们知道12n n a a ,所以迭代的规则就是后一项等于前一项加2。
以1作为原像,3作为初像,迭代一次后得到5,再迭代一次得到7,以此类推。
在几何学中,迭代使一组对象产生一组新的对象。
上图中A 、B 、C 、D 、E 、F ,各点相距1.88cm ,那么怎么由A 点和B 点得到其它各点呢?我们可以发现其中的规律就是从左到右,每一个点相当于前面一个点向右平移了1.88cm 。
所以我们以A 点作为原像,B 点作为初像,迭代一次得到B 点,二次为C 点,以此类推。
迭代像就是迭代操作产生的象的序列,而迭代深度是指迭代的次数。
利用几何画板的深度迭代功能可以画出许多美妙的分形图形,并以几何画板为基础来研究分刑图形面积,周长的变化。
一、 谢尔宾斯基三角形利用几何画板画法流程:(1)先任意画好一个三角形ABC ,接着构造线段AB ,BC ,CA 的中点D ,E ,F ,选择点D ,E ,F ,再选择菜单“构造”、“三角形内部”。
(2)在“图表”中“新建参数”为n=3.依次选择点A ,8,C 和参数n ,按住shift 键不放后选择“变换”中的“深度迭代”。
(3)在初象中依次选A ,D 和F 点,再添加新的映射(按Ctrl+A),映像2中依次选D ,B 和EFEDCA点,再按Ctrl+A ,依次选F ,E 和C 点。
最后选“迭代”,得到谢尔宾斯基三角形。
选择n 按“+”或“一”,三角形就进行了迭代变化。
n=1n=2AAn=3n=4n=5随着有色三角形越来越多,空白三角形越来越少。
几何画板培训教程迭代帮助文件专用名词:迭代:按一定的迭代规则,从原象到初象的反复映射过程迭代图象:迭代操作产生的象的序列。
迭代图:原象到初象映射有关联的所有对象的集合。
迭代规则:由一个或者多个从原象到初象的映射定义迭代执行方式。
原象:产生迭代序列的初始对象,通常称之“种子”初象:原象通过一系列变换操作而得到的象。
与原象有关联。
迭代深度:迭代执行的次数。
原象点:作为原象的点对象。
应为自由点。
原象值:作为原象的度量值或者计算结果。
应为独立的值。
迭代此命令依照一个预先定义的迭代规则对一系列有关系的几何对象构造迭代图象。
此命令只有当你选定了一些联合的原象点或者原象计算结果时才为可用状态。
原象点必需是独立的点或者路径上的点,而且必需在当前画板中定义了其它点。
原象计算结果必需是参数值或者独立的计算结果,而且必需同时定义计算结果象与几何对象。
创建迭代任何参量用来定义一个迭代必需有几何子点在画板中迭代操作与迭代结构总是伴随着例子创建,同时在点与参数后定义。
用工具与菜单构造由一组独立点或者参数产生(你希望的数学关系)一定数目关联对象(点或者计算值)。
独立对象作为迭代原象或者种子,与之相应的有关联的对象作为迭代图。
然后在变换菜单中执行【迭代】显示初象与原象之间的关系。
迭代对话框同意你指定你想对迭代结构的迭代数。
结果为原象及关联于原象的每个对象的迭代图象的集合。
通常地,假如一个几何点A作为原象用于构造一个关联的点A',则这个迭代的图象或者是迭代的轨道是A',A''等系列点。
在上方左侧的图示三角形ABC与它的中点A'B'C'已经被构造。
在上方右侧的图示,三角形的独立顶点已经在迭代对话框与它们的中点建立了映射,此构造关系被迭代了4次。
结果是一系列点、线段的图象定义的初始结构,作为三角形向中点三角形迭代。
显示选项当你使用迭代对话框时,你能用【显示】中的命令来操纵迭代的显示。
几何画板迭代详解之:函数迭代佛山市南海区石门中学 谢辅炬【多项式432()f x ax bx cx dx e =++++求根】 【分析】多项式求根的迭代式是1()()n n n n f x x x f x +=-'。
【步骤】1. 新建参数a=-0.1,b=-0.1,c=1,d=2,e=-1,n =5。
2. 新建函数432()f x ax bx cx dx e =++++,画出它的图像。
3. 在图像上任取一点A ,度量A 的横坐标A x 。
4. 计算()()A A A f x x f x -';计算()()()A A A f x f x f x -'。
5. 依次选择()()A A A f x x f x -',()()()A A Af x f x f x -'单击【图表】【绘制点】。
得到点B 。
6. 度量B 的横坐标B x 。
7. 选中点A ,和参数n ,按住Shift 键,单击【变换】菜单【深度迭代】,弹出迭代对话框,单击点B 。
结果如图1所示。
图 1图 28. 选择迭代像,单击【变换】菜单【终点】,得到迭代的终点C ,度量C点的横坐标C x 。
9. 观察表格可知,显示方程的一个近似根是0.42。
10. 拖动A 点,改变它的位置。
观察表格可知道方程的另外一个近似根是3.41。
如图2所示。
【MIRA 】【步骤】1. 在平面上取一点A ,度量A 的横坐标A x 和纵坐标A y 。
2. 新建参数a =0.4,b=0,99875。
(b 取得尽量接近1)3. 新建函数22(1)()1a x f x ax x-=++。
4. 计算f(A x )+b A y ,f(f(A x )+b A y )-A x 。
注意这里用的是函数嵌套。
顺次选择这两个结果,单击【图表】【绘制(x ,y )】。
得到点B 。
5. 顺次选择点B 和三个计算结果:f(A x )+bA y ,f(f(A x )+b A y )-A x ,A x 。
几何画板迭代详解迭代是几何画板中一个很有趣的功能,它相当于程序设计的递归算法。
通俗的讲就是用自身的结构来描述自身。
最典型的例子就是对阶乘运算可看作一下的定义:!(1)!(1)!(1)(2)!n n n n n n =⨯--=-⨯- 。
递归算法的特点是书写简单,容易理解,但是运算消耗内存较大。
我们先来了解下面这几个最基本的概念。
迭代:按一定的迭代规则,从原象到初象的反复映射过程。
原象:产生迭代序列的初始对象,通常称为“种子”。
初象:原象经过一系列变换操作而得到的象。
与原象是相对概念。
更具体一点,在代数学中,如计算数列1,3,5,7,9......的第n 项。
我们知道12n n a a -=+,所以迭代的规则就是后一项等于前一项加2。
以1作为原像,3作为初像,迭代一次后得到5,再迭代一次得到7,如此下去得到以下数值序列7 , 9,11, 13, 15......如图1.1所示。
在几何学中,迭代使一组对象产生一组新的对象。
图1.2中A 、B 、C 、D 、E 、F 、G ,各点相距1cm ,那么怎么由A 点和B 点得到其它各点呢?我们可以发现其中的规律就是从左到右,每一个点相当于前面一个点向右平移了1cm 。
所以我们以A 点作为原像,B 点作为初像,迭代一次得到B 点,二次为C 点,以此类推。
所以,迭代像就是迭代操作产生的象的序列,而迭代深度是指迭代的次数。
那么下面我们通过例子来进一步地了解迭代以及相关的概念。
几何画板中迭代的控制方式分为两种,一种是没有参数的迭代,另一种是带参数的迭代,我们称为深度迭代。
两者没有本质的不同,但前者需要手动改变迭代的深度,后者可通过修改参数的值来改变迭代深度。
我们先通过画圆的正n 边形这个例子来看一下它们的区别。
【例1】画圆的内接正7边形。
【分析】由正7边形的特征,我们知道,每一个点都相当于前面的点逆时针旋转360,抓住这个规律,我们可以用迭代功能来解决。
7【步骤】1.新建圆O,在圆O上任取一点A。
例析用几何画板深度迭代功能制作数学课件摘要:在教学极限的概念和定积分的定义等涉及图形的无限分割或与操作次数有关的数学内容时,借助几何画板的深度迭代功能,能快速制作出集动态性、交互性、实用性于一体的辅助教学课件,有效突破了教学难点。
关键词:几何画板;深度迭代;数学课件几何画板操作简单、功能强大,是广大数学教师的首选教育软件。
笔者在用几何画板辅助教学的实践中,深感几何画板的深度迭代功能十分强大。
现将有关辅助教学课件的设计思想和制作步骤与大家分享,以期抛砖引玉,共同提高。
•深度迭代功能在数学上,迭代是指把某些数学结构、计算或其他操作的过程重复应用于先前的相同操作的结果。
这些操作必须根据某些输入来定义输出,迭代则是用每一步的输出作为下一步的输入。
几何画板中的迭代是按一定的迭代规则,从原象到初象反复映射的过程。
原象是产生迭代序列的初始对象,通常称为“种子”。
初象是原象经过一定规则变换操作而得到的第一个象。
几何画板中的深度迭代是一种带参数的迭代,通过改变参数的值可改变迭代深度,从而使我们能对某些数学对象反复进行相同操作的工作变得简单易行,可实现人机交互、动态变换。
•课件制作案例1.动态演示圆的内接与外切正多边形(1)设计思想在高中数学极限的概念教学或选修课《数学史选讲》中,一般都会讲到我国古代数学家刘徽的“割圆术",其体现了朴素的极限思想。
在教学中我们若用几何画板动态演示圆的分割过程(如图1),随着分割的份数n的值越来越大,圆的内接和外切正多边形越来越接近于圆,并动态计算圆周率的精确度也越来越高,这有助于提高学生的学习兴趣和对极限概念的理解。
(2)制作步骤①画一个圆,在圆上取一点A,圆心标记为0。
将角度、距离和其他的精确度设为“十万分之一”,新建参数n,参数值为6,计算和的值。
②双击圆心0,将点A按标记角度旋转得点,构造线段、,过作线段的垂线a,将点A按标记角度旋转得点B,构造射线0B,与直线a交于点C。
几何画板迭代详解
迭代是几何画板中一个很有趣的功能,它相当于程序设计的递归算法。
通俗的讲就是用自身的结构来描述自身。
最典型的例子就是对阶乘运算可看作一下
的定义:!(1)!(1)!(1)(2)!
n n n n n n =⨯--=-⨯- 。
递归算法的特点是书写简单,容易理解,但是运算消耗内存较大。
我们先来了解下面这几个最基本的概念。
迭代:按一定的迭代规则,从原象到初象的反复映射过程。
原象:产生迭代序列的初始对象,通常称为“种子”。
初象:原象经过一系列变换操作而得到的象。
与原象是相对概念。
更具体一点,在代数学中,如计算数列1,3,5,7,9......的第n 项。
我们知道12n n a a -=+,所以迭代的规则就是后一项等于前一项加2。
以1作为原像,3作为初像,迭代一次后得到5,再迭代一次得到7,如此下去得到以下数值序列7 , 9,11, 13, 15......如图1.1所示。
在几何学中,迭代使一组对象产生一组新的对象。
图1.2中A 、B 、C 、D 、E 、F 、G ,各点相距1cm ,那么怎么由A 点和B 点得到其它各点呢?我们可以发现其中的规律就是从左到右,每一个点相当于前面一个点向右平移了1cm 。
所以我们以A 点作为原像,B 点作为初像,迭代一次得到B 点,二次为C 点,以此类推。
所以,迭代像就是迭代操作产生的象的序列,而迭代深度是指迭代的次数。
那么下面我们通过例子来进一步地了解迭代以及相关的概念。
几何画板中迭代的控制方式分为两种,一种是没有参数的迭代,另一种是带参数的迭代,我们称为深度迭代。
两者没有本质的不同,但前者需要手动改变迭代的深度,后者可通过修改参数的值来改变迭代深度。
我们先通过画圆的正n 边形这个例子来看一下它们的区别。
【例1】画圆的内接正7边形。
【分析】由正7边形的特征,我们知道,每一个点都相当于前面的点逆时针旋转360
,抓住这个规律,我们可以用迭代功能来解决。
7
【步骤】
1.新建圆O,在圆O上任取一点A。
2.双击圆心O作为旋转中心。
选中A点,单击菜单【变换】【缩放】,旋转
参数选为选择固定角度,然后在框中输入360/7,得到B点。
连接线段
AB。
第 2 步第 3 步
3.选择A点,单击【变换】【迭代】,点击B点作为初像。
屏幕上显示出迭
代的像是正7边形的4条边(因为系统默认非深度迭代的迭代次数是3
次)。
4.单击迭代框的【显示】按钮,选择【增加迭代】。
(或者按键盘的‘+’
或‘-’)。
增加三次迭代后,我们可以看到一个完整的正7边形。
此时
的迭代次数为6次,正7边形制作完成。
第 4 步第 5 步
5.单击迭代框的【显示】按钮【最终迭代】,得到的图像仅是最后一条边。
6.点击迭代框【结构】按钮,我们可以设置创建的对象,选择“仅没有点
的对象”则迭代的像只有正多边形的各条边,而没有顶点,反之则有。
选择迭代像,我们可以修改他们的属性,比如颜色和粗细等,但是细心的你会发现,线段的迭代像是不能够度量其长度的,当然也就不能取中点之类的操作。
迭代的点是不能够度量他们的横纵坐标,但是我们可以得到迭代的终点,方法是选择迭代的点,然后单击【变换】【终点】,可以发现最后的那个点变成实点了,这个功能在函数映射里面会用到。
上述方法在增加后减少迭代次数时比较麻烦,而且迭代规则限定了,即每次都是旋转同样的角度。
迭代次数和迭代规则能不能用带参数来控制呢?可以的,这就是深度迭代。
【例2】画圆的任意n边形
【步骤】
1.新建圆O并在圆上任取一点A。
双击圆心O作为旋转中心。
,注意这时要带单位‘度’。
2.新建参数n=7,计算360
n
3.选择A点,单击菜单【变换】【旋转】,出现旋转对话框,单击计算结果
’作为标记角度,得到B点。
连接线段AB。
‘360
n
第 3 步第 4 步
4.顺次选择点A和参数n,按住“shift”键不放,单击【变换】【深度迭
代I】,出现迭代对话框。
单击B点作为初像,屏幕上显示出完整的正7
边形。
按【迭代】完成操作。
5. 如何改变参数n 呢?有两种方法,第一种是双击参数n ,然后在对话框
中输入值。
第二种是单击参数n ,按键盘的‘+’、‘-’,系统默认变化量为1。
右键单击可以修改变化量的大小。
注意:迭代时,作为迭代深度的参数n 一定要在最后面选择,这是系统的规定。
上面讲的都是迭代在几何方面的应用,下面我们来看看用迭代在画数列图像和数列求和方面的应用。
【例3】求数列12
n n a =+
(n=1,2......)的图前8项,并在平面上画出散点(,)n n a 。
【分析】由数列的表达式可知,(,)n n a 是直线y=1+0.5x 上面的点。
我们要产生两个数列,一个是作为横坐标的数列1,2,3......,一个是作为纵坐标的满足上述通项公式的数列。
【步骤】
1. 新建函数y=1+0.5x 。
2. 新建参数a=1,计算a+1,a+1-1,f(a),f(a+1)。
(计算a+1-1是为了得到f(a)对应的横坐标a 。
因为迭代次数为0的时候,f(a)=1.5,a 的值在迭代数据表中是不会显示出来的。
)
3. 新建参数n =7作为迭代深度。
4. 选择a 和n ,做深度迭代,原像是a,初像是a +1。
5. 右键点击数据表,选择‘绘制表中记录’,设置x 列变量为(a+1)-1,y
列为f(a)。
坐标系为直角坐标系。
6. 点击绘图,得到散点。
这些点是可以度量的。
但是当参数n 改变的时候,
这些点不与数据表同步,所以是不会改变的。
【例4】求数列1,3,5,7,9(n=1,2......)的前n 项和。
【分析】公差为d ,假设前n 项和为n S ,
111(1)*n n n n S S a S a n d --=+=++-,在平面上描出(n, n S )。
【步骤】
1. 新建参数x=1,计算x +1。
2. 新建参数a=1,d=2。
分别表示数列首项和公差。
3. 新建参数s=1,计算s+a+x*d
4. 选择x,x+1,s, s+a+x*d,和n 做深度迭代。
绘制数据表,x 列为x +1,
y 列为s +a+x*d 。
第 4 步 第 4 步 与此同理那么等比数列的制作也是一样的。
下面我们来看看通项公式不知道的数列怎么画出其图像。
【例4】画出菲波拉契数列12121,1,n n n a a a a a --===+。
【分析】数列的前提条件是121,1a a ==,因为12n n n a a a --=+;所以原像是12,a a ,初像是23,a a 。
【步骤】
1. 新建参数f1=0,f2=1,计算f1+f2,把计算结果的标签改为f3。
2. 新建参数a=1,计算a+1,。
计算(a+1)+1(因为迭代0次的时候f3=2,
而,所以下标应该是3,而a=1,故计算a+1+1)
3. 新建参数n=8
4. 依次选择f1,f2,a1,a1+1,n,做深度迭代。
5. 绘制表中数据,x 列为13a +,y 列为3f 。
6. 画点(0,1),(1,1)两点,作为数列的前两项。
从图像可以看出,数列
前面增长的很缓慢,但是到了后面就非常的惊人了。
【小结】
在开始下一章“迭代与分行”之前,先复习一下深度迭代的过程是:
1.顺次选择原像和参数n。
(注意顺序)
2.按住shift不放,单击菜单【变换】【深度迭代】(出现对话框后可以松
开shift键)。
3.依次选取初像。
(注意顺序)。
添加映射的方法是按键盘‘Ctrl+A’。