六旋翼农用无人机设计
- 格式:doc
- 大小:1.72 MB
- 文档页数:23
六旋翼无人机飞行控制系统设计
旋翼机以其灵活的机动性,低廉的成本,简单可靠的机械结构、出色的悬停特性在商业和军事领域发挥着重要作用。
未来,旋翼机将在快递、测绘、抢险救灾、公安、消防以及农业领域扮演越来越重要的角色,与此同时对旋翼机的稳定性和可靠性也提出更高的要求。
相比四旋翼,六旋翼在保证可靠性的同时能提供更好的鲁棒性,甚至可以在单个电机停机的情况下实现稳定降落。
六旋翼无人机本质上是一个不稳定的系统,因此六旋翼无人机上搭载的飞控系统的性能,很大程度决定着六旋翼无人机的稳定性。
本文针对六旋翼无人机,设计了一款飞控系统,实现了六旋翼无人机的稳定飞行。
主要做了以下几个方面的工作:首先针对六旋翼无人机进行数学建模。
根据叶素理论,对六旋翼无人机所用的定矩螺旋桨进行建模。
介绍六旋翼无人机所用的电机类型及工作原理,并对电机进行建模。
之后结合螺旋桨模型以及电机模型,对六旋翼无人机系统进行整体建模,搭建仿真模型,并在后文中进行了仿真和实验验证。
然后,在上述基础上设计了飞行控制器的底层硬件电路系统,利用MEMS传感器采集飞机的各个状态信息,根据各个传感器的特性进行数据融合,从而计算出旋翼机的各个状态。
根据旋翼机结构以及计算出的旋翼机状态,给出PID控制律,算出修正量,发送给电机进行动力修正,从而实现飞行器的稳定飞行。
最后,在硬件环境中实现上述内容,进行实验验证内外环PID参数对六旋翼飞行器稳定性的影响。
分别针对俯仰通道,偏航通道,横滚通道进行测试实验以及飞行实验,试验结果显示六旋翼飞行器表现出了很好的稳定性和可靠性。
摘要六旋翼无人机是一种具有可垂直起降能力的小型无人飞行器,它通过上下共轴放置的三组共六个电机提供升力,通过改变旋翼转速来调整姿态,通过调整姿态进一步实现位置控制,具有悬停性能优异、移动灵活、机械结构紧凑、零部件可靠性高等优点。
论文首先对六旋翼无人飞行器的调姿原理进行了介绍,分析了其飞行姿态的调整方式。
并建立了六旋翼无人机的数学模型,根据实际情况对其数学模型进行了必要的简化。
接着,论文完成了对于六旋翼无人机控制系统硬件平台的组建,组建了高精度的传感器系统,并完成了飞行控制器硬件的设计与实现,完成了硬件调试工作以及驱动的编写工作。
然后,论文建立了六旋翼无人机的完整控制系统,其中包含位置控制部分、高度控制部分以及姿态控制部分,建立了一套完整的对姿态传感器进行机械防震与数字滤波的方法;提出了一种新颖的气压计、超声波传感器和加速度计的融合方法,通过实验验证了滤波效果;提出了一种优化的拉力分配方法使得控制系统的可靠性得到增强。
接着,论文设计实现了飞行控制软件的主要功能,从技术层面上对于实时性与可靠性进行了大幅的提升。
最后,论文通过悬停试验验证了姿态控制器的控制精度;通过抗干扰能力试验验证了姿态控制器的稳定性;通过信号跟踪试验验证了姿态控制器的跟踪性能;通过高度控制实验验证了高度控制器的控制性能;通过视频跟踪实验验证了六旋翼无人机整体控制架构的合理性与有效性。
关键词:六旋翼无人机;PID;多环路控制;数据融合VI哈尔滨工业大学本科毕业设计(论文)AbstractHex-rotor is one kind of small unmanned aerial vehicles (SUAV) which have theability of vertical take-off and landing (VTOL). It gets thrust by controlling six rotorswith propellers which are divided into 3 groups of coax ial rotors. Its attitude is controlledby regulating the spinning speed of the rotors which in turn makes its positioncontrollable .The hex-rotor has multiple advantages such as the ability of vertical take-off and landing, good mobility and high reliability. Therefore, thehex-rotor has broadapplication prospects and enormous value of research.Firstly, the flying principle was divided into four main modes of motion and analyzedseparately. The dynamic model of the hex-rotor SUAV was deduced with some necessarysimplifications.Then, the control system hardware was built using high-precision sensors.The workof debugging the hardware and programming th e drivers was also done.In the following, the main control scheme was proposed which composed of threemain controllers: position controller, height controller and attitude controller. A completesolution to reduce the noise in the g yroscope and accelerometer caused by vibration wasproposed including mechanical anti-vibration method and a digital filter called alpha-betafilter. A new method of fusing the data f rom ultrasonic sensor, barometer andaccelerometer was prop osed in the paper. Experiment was conducted to prove theeffectiveness of the fusion method. An optimized thrust distribution method was alsointroduced to maintain the robustness of the system. Some technology was alsointroduced to keep the real-time performance and reliability of the control software.Finally, some flight experiments were introduced to prove theperformance of thecontroller: hovering test for the controller accuracy,anti-interference for controllerstability, signal-tracking experiment for controller tracking capability and vision-basedtarget tracking for the overall system performance.Keywords: Hex-rotor, PID, Multi-loop, Data-fusion哈尔滨工业大学本科毕业设计(论文)目录摘要 (VI)Abstract (VII)第1章绪论 (1)1.1 论文研究的目的与意义 ...................................................................... .. (1)1.2 国内外研究现状 ...................................................................... .. (2)1.2.1 四旋翼无人机的研究现状 .................................................................... (3)1.2.2 六旋翼无人机的研究现状 .................................................................... (4)1.2.3 六旋翼控制理论研究现状 .................................................................... (6)1.3 本文主要研究内容 ...................................................................... . (6)第2章六旋翼无人机数学模型的建立 (8)2.1 六旋翼无人机飞行机理分析 ...................................................................... (8)2.1.1 坐标系定义 .................................................................... (8)2.1.2 四种基本运动 .................................................................... (9)2.2 六旋翼无人机机体结构设计 ...................................................................... . (10)2.2.1 机架选型 .................................................................... (10)2.2.2 动力系统设计 .................................................................... (11)2.3 运动方程的推导 ...................................................................... (11)2.4 本章小结 ...................................................................... (16)第3章六旋翼无人机硬件设计 (17)3.1 总体方案 ...................................................................... (17)3.1.1 无线通讯链路 .................................................................... .. (17)3.1.2 传感器系统 .................................................................... (18)3.1.3 执行器与数据保存 .................................................................... (18)3.2 传感器系统 ...................................................................... .. (19)3.2.1 姿态传感器 .................................................................... (19)3.2.2 高度传感器 .................................................................... (19)3.2.3 位置传感器 .................................................................... (20)3.3 飞行控制硬件设计 ...................................................................... .. (20)3.3.1 主控制器选型 .................................................................... .. (20)3.3.2 电源、通讯接口设计 .................................................................... .. (21)3.3.3 数据存储设计 .................................................................... .. (21)VIII3.4 第 4 章4.1 4.2 哈尔滨工业大学本科毕业设计(论文)本章小结 (22)六旋翼无人机控制算法设计.................................. 23 总体控制结构 ................................................................. (23)姿态控制 ................................................................. (24)4.2.1 4.2.2 4.2.3 姿态传感器的减震与滤波 (24)姿态控制器结构 ............................................................. (28)转速分配策略 ............................................................. (28)4.3 高度控制 ................................................................. (31)4.3.1 4.3.2 4.3.3 超声传感器的滤波 (31)高度传感器与加速度计的融合算法 (34)高度控制器结构 ............................................................. (37)4.4 4.5 第 5 章5.1 位置控制 (37)本章小结 ................................................................. (38)六旋翼无人机飞控软件设计与飞行试验........................ 39 飞控软件设计 ................................................................. (39)5.1.1 5.1.2 5.1.3 飞控软件功能设计 (39)飞控软件总体架构 ............................................................. (40)实时性与可靠性设计 ............................................................. (40)5.2 飞行试验 ................................................................. (41)5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 悬停测试 (42)抗干扰能力测试 (43)信号跟踪实验 ............................................................. (43)高度控制实验 ............................................................. (44)视觉跟踪实验 ............................................................. (45)5.3 本章小结 ................................................................. (45)结 论.......................................................... 47 参考文献.......................................................... 48 哈尔滨工业大学本科毕业设计(论文)原创性声明 ....................... 51 致 谢.......................................................... 52 附 录 (53)IX第1章 绪 论1.1 论文研究的目的与意义近年来,在民用领域,无人机技术在救灾、航拍、农业、侦查等各个领域内取 得了广泛的关注与研究。
浅析六旋翼农药喷洒无人机的结构设计作者:张恩奋来源:《中国科技博览》2018年第34期[摘要]针对农药喷洒问题,本文设计了一种六旋翼农药喷洒无人机,结合六旋翼农药喷洒无人机构造与原理,对无人机的结构设计问题展开了探讨,从而为关注这一话题的人们提供参考。
[关键词]六旋翼无人机;农药喷洒;结构设计中图分类号:U571 文献标识码:A 文章编号:1009-914X(2018)34-0274-01引言:在传统农业生产中,农药喷洒主要采用地面人工喷洒方式,不仅造成农药利用率较低,也容易给人员健康带来威胁。
而采用无人机进行农药喷洒,可以实现高空定点喷洒作业,满足现代农业发展需求。
在这类无人机中,六旋翼无人机拥有飞行灵活、成本低等优势。
因此,还应加强六旋翼农药喷洒无人机的结构设计研究,从而更好的进行农用无人机的推广。
1 六旋翼农药喷洒无人机构造与原理从构造上来看,六旋翼农药喷洒无人机由机体部分、控制部分与动力部分构成,各部分的功能不同,彼此间存在相互作用。
机体部分为机身骨架,可以实现对其他部分的固定和机械连接。
动力部分能够提供电力,包含电动机、电磁等结构,同时也能执行控制命令。
控制部分能够实现对无人机作业的控制,能够为运动部分提供精密的控制指令[1]。
六旋翼无人机包含六个位于同一平面的螺旋桨,各自利用长度不等的轴连接在机架固定板位置,以保证机架上半部分重心与中心重合,确保机身能够承受较大的负载。
所以从整体布局上来看,无人机为圆形对称结构,利用6个对称电机给旋翼提供动力。
在控制系统的集中控制下,各旋翼间的转速和旋转方向能够得到协调,从而共同为机身提供向上升力,并对机身的运动方向进行控制,达到平衡机身的目的。
在飞行过程中,如图1所示,三个电机顺时针旋转,另外三个逆时针旋转,以平衡旋翼给机身的反扭矩。
使电机同时增速旋转,可以使飞机向上运动。
在1、2转速减小,4、5转速增大,3、6转速不变情况下,能使飞行器向前方运动。
多旋翼农用植保无人机设计研究一、设计理念多旋翼农用植保无人机的设计理念主要包括轻量化、高效化和智能化。
首先是轻量化设计,通过采用轻质材料和结构设计优化,尽量减小无人机自身的重量,以提高无人机的携载能力和飞行效率。
其次是高效化设计,通过优化无人机的动力系统、飞行控制系统和农药喷洒系统等,以提高无人机的工作效率和喷洒精度。
最后是智能化设计,通过引入先进的智能控制系统和无人机自主飞行技术,实现无人机自主飞行、自动喷洒和智能避障等功能,提高无人机的智能化水平和工作效率。
二、结构设计多旋翼农用植保无人机的结构设计主要包括机身结构、动力系统、飞行控制系统和载荷系统。
机身结构采用轻质碳纤维材料制作,并采用模块化设计,便于维修和更换零部件。
动力系统采用电动推进,通过多个无刷电机带动螺旋桨进行垂直起降和水平飞行。
飞行控制系统采用惯性导航和GPS定位技术,配合激光测距和避障传感器,实现无人机的自主飞行和智能避障。
载荷系统采用高精度喷雾器和农药液槽,通过电泵和喷洒控制系统实现农药的精准喷洒。
三、农药喷洒系统多旋翼农用植保无人机的农药喷洒系统主要包括喷雾器、液槽、泵浦和喷洒控制系统。
喷雾器采用高精度喷头,能够实现农药雾化喷洒,保证农药均匀覆盖在作物表面,并且能够根据作物的生长情况进行喷洒量的调整。
液槽采用轻质材料制作,并能够容纳足够的农药液体,以满足大面积作物的农药喷洒需求。
泵浦采用高效电泵,能够实现农药液的快速供给,保证喷洒系统的稳定运行。
喷洒控制系统采用先进的电子控制技术,能够实现农药喷洒量的精准控制,并能够根据作物的生长情况和作业环境的变化进行智能调整。
四、智能控制系统多旋翼农用植保无人机的智能控制系统主要包括飞行控制系统、导航定位系统和遥控调度系统。
飞行控制系统采用先进的惯性导航、GPS定位和飞行姿态控制技术,能够实现无人机的自主起飞、飞行和降落。
导航定位系统采用高精度的GPS和激光测距技术,能够实现无人机的精确定位和智能航线规划,以及对飞行环境的智能感知。
华测P500V六旋翼无人机介绍产品简介华测P500V六旋翼无人机系统的机体和云台完全采用特殊的专业碳纤维材料制造,拥有更轻的重量和更高的强度,可折叠式支臂设计更方便运输。
华测P500V六旋翼无人机,可用于林业深林防火、中小面积航测、执行侦察、监视、搜索、协调指挥、通讯、空投等多种空中任务。
产品特点华测P500V六旋翼无人机系统引入了2.0B CAN总线系统,AAHRS(姿态、高度及航向参考系统)集成了加速度计、陀螺仪、磁力计、气压计、湿度计、温度计等多种高精度传感器和卓越的控制算法设计,飞行器的操控因而变得非常简单,即使操作者毫无遥控飞行的经验,也能够在很短的时间内学会安全地操控飞行。
华测P500V六旋翼无人机系统可以通过遥控器人工操控飞行,也可以借助独一无二的GPS Vigapoint系统执行自动驾驶飞行和拍摄任务。
基于模块化的设计理念,华测P500V六旋翼无人机可以灵活地更换机载任务设备以适应不同的作战任务要求。
从高分辨率的数码相机、高清视频摄像机、微光夜视摄像机到军用级的红外热成像摄像机。
基于华测P500V六旋翼无人机更大的载重,除图像和视频设备之外,还可以搭载根据用户需要定制的更多种任务设备,如空气采样设备,空中投放设备等,从而完成更多样化的任务。
华测P500V六旋翼无人机拥有优秀的安全设计,任何时候只要停止遥控器操作,飞行器就会自动悬停在空中。
如果遥控器信号中断时间超过30秒或者电池电量过低,飞行器就会自动缓慢迫降到地面或按照预定方案自动应对。
遥控信号受到干扰时,飞行器可以自动按原路返航。
飞控系统可以完整记录所有飞行相关数据信息,用于准确诊断飞行器故障判断飞行器事故原因。
华测P500V六旋翼无人机的动力系统拥有业内最强的野外环境适应性,可以在最高5级风下正常工作。
经过专业机构的严格高压电磁环境测试,华测P500V六旋翼无人机被确认在高压电磁环境下具有良好的抗干扰性和安全性,通过专业机构的EMC电磁环境兼容认证.技术参数一体化地面站华测P500V 六旋翼无人机地面站将电脑系统、通讯系统、视频系统、整合为一体,产品具有良好的便携性和环境适应性。
六旋翼物流无人机造型设计方案
六旋翼物流无人机的设计方案可以考虑以下几个方面:
1. 六旋翼结构:可以采用具有良好稳定性和操控性的六旋翼结构,以确保无人机在各种气象条件下都能平稳飞行。
2. 机身材质:选择轻量化的材质,如碳纤维复合材料,以提高无人机的载重能力和飞行效率。
3. 机身外观设计:可以采用流线型外观设计,减少飞行时的空气阻力,提高飞行速度和稳定性。
4. 机身尺寸:根据物流需求,设计合适尺寸的无人机,以容纳不同大小的货物。
5. 抗风能力:考虑到物流无人机需要在各种复杂气象条件下飞行,设计方案应考虑提高无人机的抗风能力,以保证飞行的稳定性和安全性。
6. 动力系统:选择高效的电动动力系统,以提供足够的动力和长飞行时间。
7. 载重系统:设计合理的载重系统,包括承载货物的舱室、固定装置和安全锁定装置,以保证货物在飞行过程中的安全性。
8. 操控系统:配置先进的操控系统,包括自动驾驶和遥控操控功能,以确保无人机可以安全地飞行和交付货物。
总之,六旋翼物流无人机的设计方案应兼顾飞行性能、载重能力、稳定性和安全性,以满足物流需求并提高无人机的工作效率。
旋翼无人机设计流程-回复正在部署一个旋翼无人机的工程项目时,设计流程是非常重要的。
这个过程涵盖了从需求分析到最终原型的设计过程,确保最终产品符合预期并具有所需的功能和性能。
接下来,我将一步一步回答“旋翼无人机设计流程”。
第一步:需求分析在开始设计旋翼无人机之前,我们需要明确项目的目标和需求。
这包括确定无人机的使用场景和目的,例如空中摄影、农业喷洒、物流运输等。
此外,我们还需要确定无人机的技术要求,如最大飞行时间、载重能力、作业高度等。
第二步:概念设计一旦明确了需求,我们就可以开始进行概念设计。
概念设计是无人机设计过程中最关键的步骤之一。
在这个阶段,我们考虑了各种可能的设计方案,并选择最合适的概念方案。
这需要综合考虑多个因素,如结构设计、动力系统选择、控制系统等。
在概念设计中,需要进行各种工程计算和模拟,以评估不同设计的性能和可行性。
通常,我们使用计算机辅助设计(CAD)软件进行三维模型建模和分析。
第三步:详细设计在概念设计得到确认后,我们进行详细设计。
详细设计包括结构设计、电气设计、软件设计等方面。
这个阶段的目标是确定无人机各个组件的规格和尺寸,并确保它们能够完美地协同工作。
在结构设计中,要考虑材料选择、支撑结构、负载分布等。
同时,需要进行强度和刚度分析,以确保无人机在不同工况下的安全性和稳定性。
电气设计包括选择适当的电池、电机、控制器和传感器等电气元件,并设计电气布线和电路板。
在软件设计方面,需要编写飞行控制程序、图像处理算法和用户界面等软件。
第四步:制造和组装在设计得到确认之后,我们开始进行制造和组装。
制造过程包括零部件的加工和制造,例如3D打印、切割和焊接等。
零部件制造完成后,我们开始组装无人机。
组装过程需要按照设计图纸和指导进行。
这包括安装电气设备、传感器、电池和电机等组件,并进行布线和连接等工作。
在这个过程中,质量控制是非常重要的,以确保无人机的可靠性和稳定性。
第五步:测试和调试在无人机组装完成之后,我们需要进行测试和调试。
HC 蜂巢航宇科技(北京)有限公司山东蜂巢航空科技有限公司H C/P D022501-2019 HC-332H油电混合六旋翼无人机技术规格书联系电话:010-836866102019年02月25日产品部整理发布版本版本修改日期责任人说明V1.02019.02.25温小青系统编写HC-332技术规格书V1.12019.05.14尤冰冰修改HC-332技术规格书V1.32019.09.03勾柯楠添加了无机臂尺寸,更换了地面站及CAM-M30产品图片V1.42020.05.18陈晨更新了任务设备系统V1.52020.09.10陈晨将遥控器更换为思翼遥控器V1.62020.12.21陈晨将发动机更换为GX-2发动机V1.72021.03.12修改部分参数问题汇签编制人:编制日期:审核人:审核日期:批准人:批准日期:目录1主题内容和适用范围 (1)2HC-332六旋翼无人机系统概述 (1)2.1系统特点 (1)2.2典型应用领域 (2)3系统组成 (2)4分系统设备技术指标及说明 (3)4.1飞行平台 (3)4.2动力装置 (6)4.3电气系统 (8)4.4飞行控制系统 (8)4.5任务设备系统(选配) (9)4.5.1HHOP-V4倾斜摄影立体测绘相机 (9)4.5.2Q10TIR-35(10倍双光跟踪吊舱) (11)4.5.3Q30TIR(30倍双光跟踪吊舱) (13)4.5.4Q30T Pro(30倍跟踪吊舱) (17)4.5.5Q30TM(30倍跟踪激光测距吊舱) (19)4.5.6Z5S微单一体机云台 (20)4.6通讯与数据链系统 (22)4.6.1DL-10图数一体链路(电动巡检版标配) (22)4.6.2DL-30图数一体链路(混动巡检版标配) (24)4.6.3DT-6数传电台(测绘版标配) (25)4.7地面控制站及地面保障设备 (26)4.7.1遥控器 (26)4.7.2笔记本地面站(航测版标配) (28)4.7.3GCS-D01双屏移动式地面站(巡检版标配).294.7.4集成便携箱 (30)4.7.5备品备件 (31)4.8使用保管环境条件 (31)4.9系统典型使用过程 (31)4.10保障和服务 (32)4.10.1现场保障 (32)4.10.2基地保障 (33)4.11售后服务 (33)4.12培训和资料 (33)4.13系统配置清单 (34)1主题内容和适用范围本技术规格书规定了HC-332无人机系统的技术状态、技术指标和检验验收方法,作为订货方和供货方签订合同、进行验收交付时的技术状态依据。
摘要本次设计主题为“六旋翼农用无人机模型设计”,结合我国当前农业机械化发展现状,通过对命题的分析得到了更加清晰开阔的设计思路,设计作品具有系统性、实用性和创新性。
针对多旋翼农用无人机,本文确定了“六旋翼农用喷药、航拍功能无人机”的设计说明书,介绍了无人机的设计过程,主要通过概念性论述,经过对无人机结构研究、分析的整体把握,以结构、动力、控制三部分进行设计,并结合实际通过对多旋翼农用无人机设想进行结构改进、设计优化以提高设计的应用性,这种方法对类似产品的设计制造同样具有借鉴作用。
设计方案包括无人机整体机架、喷药机构等,并给出了CAD设计图、整体装配图PRO/E等内容,确保无人机结构简单、适用灵活、便于普及、成本低廉等。
关键词:六旋翼农用无人机模型;CAD;PRO/EAbstractThe design theme for the "six rotor UAV model design of agricultural", combining the current situation of agriculture mechanization development, through the analysis of the proposition of the design ideas more clearly open, design work is systematic, practical and innovative.For multi rotor agricultural UAV, the "design specification of six rotor agricultural spraying, aerial functional UAV", introduces the design process of UAV, mainly through the concept of exposition, according to the study, no machine structure analysis in whole, to structure, power, control three parts design, combined with the the actual rotor UAV based on agricultural ideas for optimization design of structure improvement, so as to improve the application of design, this method also has a good effect on the design and manufacture of similar products.Design includes the UAV the whole machine, spraying device, and gives the design drawings, the overall assembly drawing etc., ensure that the UAV has the advantages of simple structure, flexible application, convenient, low cost etc...Keywords: six rotor UAV model design of agricultural;CAD;PRO/E目录Abstract (2)目录 (3)一、绪论 (4)多旋翼农用无人机的发展简史 (4)多旋翼农用无人机的发展现状与展望 (5)二、六旋翼农用无人机的机体与喷施结构设计 (7)1、六旋翼农用无人机整体基本构造设计 (7)2、六旋翼农用无人机喷施设备的基本构造设计与工作原理 (8)3、六旋翼农用无人机的自平衡原理 (8)三、六旋翼农用无人机的动力系统与工作原理 (10)动力系统基本组成 (10)驱动电动机与电子调速器: (11)1、驱动电机参数的确定以及巡航时间的计算 (12)1.1 无人机电机的选择 (12)1.2 无人机的工作时间 (13)1.3 螺旋桨的设计 (14)1.4 螺旋升力的计算: (15)2、电调的使用 (15)3、PCB电子集合板、陀螺仪、摄像及遥控传感器设备应用 (16)四、六旋翼农用无人机的保养与保管 (21)参考文献 (22)致谢 (23)一、绪论随着社会生产力的进一步提高,农用航空飞机,是利用微型飞机和喷施设备进行农业作业的机械,它除了用来喷洒农药和化学除草剂、作物激素及脱叶剂等药液外,还可以进行观察农情等作业。
而多旋翼农用无人机,作为一种有动力、可控制、能携带完成农用任务的设备,近几年已倍受农业科技人员的青睐。
它没有驾驶舱,但安装了自驾仪、航拍摄像、飞行姿态控制等设备,以辅助无人机水平移动、垂直起降等方式运动,通过超低空飞行完成农用任务和降落,便于多次作业。
多旋翼农用无人机的发展简史多旋翼农用无人机是飞机的一种,其发展历史可以追溯到1903年,世界上第一架飞机的发明创造为其发展奠定基础。
而此后数十年间,该飞行设备分别在德国、美国、苏联等国的植保农业中广泛推广使用,截止1978年,全世界拥有航空植保飞机25000余架,近几年以每年递增约2000架的幅度上升。
同时,各国的农用飞机有60余种,其中定翼型飞机40多种、旋翼型(直升)飞机20多种,有数据显示世界上主要国家植保飞机数量和作业面积,如下(其中,1ha等于1公顷):表1 世界上主要国家植保飞机数量和作业面积(1990年统计)也相继出现,并迅速发展起来了。
如美国的“农猫式”航空植保飞机等,而1960年荷兰就成立了国际航空植保中心,进一步扩大了农用植保飞机的规模。
截止到上世纪80年代,世界上拥有航空植保飞机数量超过100架的国家就有近20个。
1953年,我国民航部门专门成立了专业航空植保机械业务,并在1957年成功制造第一架-5型航空植保飞机。
我国航空农用机械事业是在北方平原地带开展起来的,主要对小麦、棉花、水稻等作物进行航空植保。
随着社会主义建设事业的辉煌成就,农牧经济也得到了较快的发展,尤其是改革开放以来我国各项技术的突破性发展,关系到国计民生的农牧经济对航空植保的需要愈来愈迫切。
近几年,我国自行设计制造的蜜蜂2号、3号和蜻蜓5号等超轻型飞机相继试飞成功并投入生产。
根据近几年的实际生产状况,航空植保在农、林、牧各业中得到了广泛的推广使用,不但能够及时、准确、高质量完成植保作业任务,而且在一定程度上可以大幅度提高劳动生产率,降低生产成本,减少了农作物的损失。
然而,相对于我们地缘广袤的农业大国来说,国内航空植保飞机数量还是相对较少,而且大部分是通用型飞机,技术技能、经济性、实用性以及效率等都比较落后。
尤其是相对于南方多丘陵、山区地带,通用型飞机不能很好地推广使用,而微型多旋翼(直升)农用无人机更合适,并十分顺应当下农业劳动者减少的现状,达到提高工作效率的作用。
多旋翼农用无人机的发展现状与展望我国现有的超轻型飞机,代表有蜜蜂2、3号和蜻蜓5号等,这些是根据我国国情设计制造的新型航空植保飞机。
其中,这些型号的飞机结构简单、制造方便、耗费少、载重大,尤其是易于驾驶,加上维护简便,作为农用飞机是十分经济的。
目前,我国使用较多的定翼植保飞机是1957年设计投产的,在国内技术已经相当成熟,但是与国外的先进机型相比,差距相当大,在经济性、效率、飞行性上远远不够,尤其是爬升率和加速性能。
这些都是今后需要攻克的难关,所以本次六旋翼无人机是在传承国内先进技术的前提下,旨在进一步改善其性能,不仅要满足南方多丘陵、山区地带的农业作业,而且要满足当前农业劳动力下降的要求,提高一个人控制农用飞机作业的劳动效率与积极性。
目前,农用无人机在河南、山东、河北等地已经出现,较多的为四旋翼、八旋翼等微型无人机,相比于平原地带,类似江西、湖南等多丘陵、山区地带,本次设计的六旋翼农用无人机在性能与结构上更加适合个体户和大种植户的适用于推广。
1、具有良好的起飞、着落性能六旋翼农用无人机的作业现场都是农场、林场以及牧场,没有现成的飞机起飞降落场地。
而六旋翼农用无人机的机型较小,起飞的灵活性较好,更重要的是无人驾驶,所以其起飞、降落的场地可以是临时性小面积空地即可,也就是说,六旋翼农用无人机具有直升飞机降落特性、灵活性好。
2、噪音小、能见度较好六旋翼农用无人机是通过六个螺旋桨提供机械动力进行作业的,噪音相比于以往的蜜蜂型、蜻蜓型飞机十分小。
另外,在飞行器上已经安装有航拍设备,便于工作人员在地面监视工作现状,通过无线电子设备传输清晰的工作画面,利于达到对无人机的巡航操作。
3、操作性能好六旋翼农用无人机一次性连续作业可以达到近2小时,在具备直升机性能的条件下加上远程控制,其加速性能、爬升率较大,能够飞越电线、建筑物等障碍物;转弯灵敏,便于喷施作业并节约时间,同时,六旋翼农用无人机十分适合超低空作业飞行,其超低空控制性能也比较好,能够保证喷施任务的顺利完成,并不会伤害作物。
4、一次载重较大航空植保飞机的结构效率是飞机载重和起飞重量的百分比,而六旋翼农用无人机能够完成无人驾驶,在减少载荷的前提下一次性载重能够达到100kg,属于超轻型无人机,因此可以根据实际情况一次性作业可以多装一些农药。
5、能源清洁、污染小六旋翼农用无人机的能源来自蓄电池,电能作为一种清洁、无污染能源,尤其是作业时噪音小,不会影响周围人们的正常生活。
6、航行时间可再续由于六旋翼农用无人机的能量来源是蓄电池,所以设计中的蓄电池部件可以更换,因此在作业中,可以带上备用蓄电池,以达到巡航时间的可再续性,便于长作业时间。
7、安全性能较好、便于检查维护六旋翼农用无人机的结构比较简单,其中六个旋翼的坚固性能以及支架的合理结构,能够保证升降过程的安全性能;尤其是在其灵活的超低空飞行性能下,无人机的平稳降落、升起性能较好。
六旋翼农用无人机的大部分零件都可以到市场上购置,而结构也十分简单,便于拆装,利于对内部构件进行检查维修,同时损坏的物件也方便更换,不至于影响现场作业。
8、减轻劳动强度、经济实用,并易于推广基于当前农业劳动者的文明程度的提升,六旋翼农用无人机十分适合当代热衷于电子设备的青年人,并减轻他们的劳动强度;同时,六旋翼农用无人机的造价比较低廉,适于农业用户的购置实用。
诸如以上综合考虑,六旋翼农用无人机作为一种创新型农用设备十分适合当代社会发展现状,便于推广使用。
同时随着人民群众各方面文化素质的提高,绿色环保、低能耗、高效益等理念深入人心,农用无人机的多功能技术也倍受广大农田工作者和行业内外人士的关注与研究,本次六旋翼农用无人机的设计仅仅作为一个参考,希望能够得到大家的认可。