第六讲 线性规划与非线性规划
- 格式:ppt
- 大小:633.50 KB
- 文档页数:39
非线性规划非线性规划是一种涉及非线性目标函数和/或非线性约束条件的优化问题。
与线性规划不同,非线性规划可能存在多个局部最优解,而不是全局最优解。
非线性规划在许多领域都有广泛的应用,如经济学、工程学和管理学等。
非线性规划的一般形式可以表示为:最小化或最大化 f(x),其中 f(x) 是一个非线性函数,x 是决策变量向量。
满足一组约束条件g(x) ≤ 0 和 h(x) = 0,其中 g(x) 和 h(x) 是非线性函数。
为了求解非线性规划问题,可以使用不同的优化算法,如梯度下降法、牛顿法和拟牛顿法等。
这些算法的目标是找到目标函数的最小值或最大值,并满足约束条件。
非线性规划的难点在于寻找全局最优解。
由于非线性函数的复杂性,这些问题通常很难解析地求解。
因此,常常使用迭代算法来逼近最优解。
非线性规划的一个重要应用是在经济学中的生产计划问题。
生产活动通常受到多个因素的限制,如生产能力、原材料和劳动力等。
非线性规划可以帮助确定最佳的生产数量,以最大化利润或最小化成本。
另一个应用是在工程学中的优化设计问题。
例如,优化某个结构的形状、尺寸和材料以满足一组要求。
非线性规划可以帮助找到最佳设计方案,以最大程度地提高性能。
在管理学中,非线性规划可以用于资源分配和风险管理问题。
例如,优化一个公司的广告预算,以最大程度地提高销售额。
非线性规划可以考虑多种因素,如广告投入和市场需求,以找到最佳的广告投放策略。
总之,非线性规划是一种重要的优化方法,用于解决涉及非线性目标函数和约束条件的问题。
它在经济学、工程学和管理学等领域有广泛的应用。
尽管非线性规划的求解难度较大,但通过合适的优化算法,可以找到最佳的解决方案。
线性规划和⾮线性规划线性规划:线性规划在matlab中的标准形式:其中c和x为n维向量,A、Aeq为适当维数的列向量。
[x,fval]=linprog(c,A,b,Aeq,beq,LB,UB,X0,OPTIONS)favl返回⽬标函数的值,LB和UB分别为变量的下界和上界,是的初始值,OPTIONS是控制参数。
⼀、运输问题(产销平衡,运费最省)某商品有个产地、个销地,各产地的产量分别为,各销地的需求量分别为。
若该商品由产地运到销地的单位运价为,问应该如何调运才能使总运费最省?引⼊变量,其取值为由i产地运往销地的该商品数量。
数学模型为:可直接⽤标准法求解。
对于产销平衡的运输问题,有关系:因约束矩阵⽐较特殊,可⽤。
⼆、指派问题拟分配⼈去⼲项⼯作,每⼈⼲且仅⼲⼀项⼯作,若分配第⼈去⼲第项⼯作,需花费单位时间,问应如何分配⼯作才能使⼯⼈花费的总时间最少?引⼊变量,若分配⼲⼯作,则取,否则取。
数学模型为:因最终为0-1矩阵,可⽤匈⽛利算法。
链接中变换矩阵后为:(不过最终更新的矩阵为:)从变换后的矩阵就已经可以看出最优指派矩阵了(独⽴0元素):即,带⼊最初的矩阵,即:就可求出:三、对偶理论原始问题:对偶问题:基本性质:对称性:对偶问题的对偶是原问题。
弱对偶性:若是原问题的可⾏解,是对偶问题的可⾏解。
则存在。
⽆界性:若原问题(对偶问题)为⽆界解,则其对偶问题(原问题)⽆可⾏解。
可⾏解是最优解时的性质:设是原问题的可⾏解,是对偶问题的可⾏解,当时,是最优解。
对偶定理:若原问题有最优解,那么对偶问题也有最优解;且⽬标函数值相同。
互补松弛性:若分别是原问题和对偶问题的最优解,则。
⾮线性规划:如果线性规划的优解存在,其优解只能在其可⾏域的边界上达到(特别是可⾏域的顶点上达到);⽽⾮线性规划的优解(如果优解存在)则可能在其可⾏域的任意⼀点达到。
某企业有个项⽬可供选择投资,并且⾄少要对其中⼀个项⽬投资。
已知该企业拥有总资⾦A元,投资于第个项⽬需花资⾦元,并预计可收益元。
非线性规划什么是非线性规划?非线性规划(Nonlinear Programming,简称NLP)是一种数学优化方法,用于求解包含非线性约束条件的优化问题。
与线性规划不同,非线性规划中的目标函数和约束条件都可以是非线性的。
非线性规划的数学表达式一般来说,非线性规划可以表示为以下数学模型:minimize f(x)subject to g_i(x) <= 0, i = 1, 2, ..., mh_j(x) = 0, j = 1, 2, ..., px ∈ R^n其中,f(x)是目标函数,g_i(x)和h_j(x)分别是m个不等式约束和p个等式约束,x是优化变量,属于n维实数空间。
非线性规划的解法由于非线性规划问题比线性规划问题更为复杂,因此解决非线性规划问题的方法也更多样。
以下列举了几种常用的非线性规划求解方法:1. 数值方法数值方法是最常用的非线性规划求解方法之一。
它基于迭代的思想,通过不断优化目标函数的近似解来逼近问题的最优解。
常见的数值方法有梯度下降法、牛顿法、拟牛顿法等。
2. 优化软件优化软件是一类针对非线性规划问题开发的专用软件,它集成了各种求解算法和优化工具,可以方便地求解各种类型的非线性规划问题。
常见的优化软件有MATLAB、GAMS、AMPL等。
3. 线性化方法线性化方法是一种将非线性规划问题转化为等价的线性规划问题的求解方法。
它通过线性化目标函数和约束条件,将非线性规划问题转化为线性规划问题,然后利用线性规划的求解方法求解得到最优解。
4. 分类方法分类方法是一种将非线性规划问题分解为若干个子问题求解的方法。
它将原始的非线性规划问题分解为多个子问题,然后将每个子问题分别求解,并逐步逼近原始问题的最优解。
以上仅是非线性规划求解方法的一小部分,实际上还有很多其他的方法和技巧可供选择。
在实际应用中,选择合适的方法和工具是非常重要的。
非线性规划的应用非线性规划在实际生活和工程中有着广泛的应用。
1.非线性规划我们讨论过线性规划,其目标函数和约束条件都是自变量的线性函数。
如果目标函数是非线性函数或至少有一个约束条件是非线性等式(不等式),则这一类数学规划就称为非线性规划。
在科学管理和其他领域中,很多实际问题可以归结为线性规划,但还有另一些问题属于非线性规划。
由于非线性规划含有深刻的背景和丰富的内容,已发展为运筹学的重要分支,并且在最优设计,管理科学,风险管理,系统控制,求解均衡模型,以及数据拟合等领域得到越来越广泛的应用。
非线性规划的研究始于三十年代末,是由W.卡鲁什首次进行的,40年代后期进入系统研究,1951年•库恩和.塔克提出带约束条件非线性规划最优化的判别条件,从而奠定了非线性规划的理论基础,后来在理论研究和实用算法方面都有很大的发展。
非线性规划求解方法可分为无约束问题和带约束问题来讨论,前者实际上就是多元函数的极值问题,是后一问题的基础。
无约束问题的求解方法有最陡下降法、共轭梯度法、变尺度法和鲍威尔直接法等。
关于带约束非线性规划的情况比较复杂,因为在迭代过程中除了要使目标函数下降外,还要考虑近似解的可行性。
总的原则是设法将约束问题化为无约束问题;把非线性问题化为线性问题从而使复杂问题简单化。
求解方法有可行方向法、约束集法、制约函数法、简约梯度法、约束变尺度法、二次规划法等。
虽然这些方法都有较好的效果,但是尚未找到可以用于解决所有非线性规划的统一算法。
非线性规划举例[库存管理问题]考虑首都名酒专卖商店关于啤酒库存的年管理策略。
假设该商店啤酒的年销售量为A箱,每箱啤酒的平均库存成本为H元,每次订货成本都为F元。
如果补货方式是可以在瞬间完成的,那么为了降低年库存管理费用,商店必须决定每年需要定多少次货以及每次订货量。
A A我们以Q表示每次定货数量,那么年定货次数可以为 -,年订货成本为F -。
由于平Q Q均库存量为Q,所以,年持有成本为2H Q ,2,年库存成本可以表示为A HC(Q)F QQ2将它表示为数学规划问题:A Hmin C(Q) F QQ 2s.t. Q 0其中Q为决策变量,因为目标函数是非线性的,约束条件是非负约束,所以这是带约束条件的非线性规划问题。
非线性规划报告一、什么是非线性规划?因为在实际问题求解中,很多情况下,目标函数以及约束条件不可能都是线性的,往往包含非线性函数,那么这时就是非线性规划问题。
简单概括,非线性规划研究一个n 元实函数在一组等式或不等式的约束条件下的极值问题,且目标函数和约束条件至少有一个是未知量的非线性函数。
二、非线性规划和线性规划的区别是什么?除了目标函数和约束条件的形式不同外,线性规划的最优解只可能在可行域的边界达到(特别是顶点处),而非线性规划可能在可行域的任意一点达到。
三、非线性规划的一般模型:min f(x)()0,j 1,...q s.t. ()0,i 1,...j i h x g x p≤=⎧⎪⎨==⎪⎩ 其中:1,2,,[...]n x x x x =称为决策变量,f 为目标函数,j h 和i g 称为约束函数,()0i g x =称为等式约束,()0j h x ≤称为不等式约束。
四、非线性规划的两类问题 1、无约束的极值问题我们一般都将求解的非线性规划问题都转化为无约束的最优化问题。
这里主要介绍求解无约束问题的解析法,解析法就是通过计算()fx 的一阶,二阶偏导数及其函数的解析性质来实现极值的求解方法。
这里介绍牛顿法(详见手写稿件)。
2、有约束的极值问题带有约束条件的极值问题称为约束极值问题,求解约束极值问题要比求解无约束极值问题困难得多。
为了简化优化工作,通常采取以下解题思路: (1) 将约束极值问题转化为无约束极值问题。
(2) 将非线性规划问题转化为线性规划问题。
(3) 将复杂的问题分解为若干简单问题。
这里主要介绍二次规划模型。
二次规划的显著特征是“目标函数”是二次函数,且约束条件又是线性的。
在matlab 中二次规划模型表示如下:1min2,.. ,.TT x Hx f x Ax b s t Aeq x beq lb x ub +≤⎧⎪⋅=⎨⎪≤≤⎩其中:H 表示实对称矩阵;f ,b ,beq ,lb ,ub 是列向量;A ,Aeq 是相应维数矩阵。
线性规划与非线性规划线性linear,指量与量之间按比例、成直线的关系,在数学上可以理解为一阶导数为常数的函数;非线性non-linear则指不按比例、不成直线的关系,一阶导数不为常数。
如问:两个眼睛的视敏度是一个眼睛的几倍?很容易想到的是两倍,可实际是6-10倍!这就是非线性。
激光也是非线性的!天体运动存在混沌;电、光与声波的振荡,会突陷混沌;地磁场在400万年间,方向突变16次,也是由于混沌。
甚至人类自己,原来都是非线性的:与传统的想法相反,健康人的脑电图和心脏跳动并不是规则的,而是混沌的,混沌正是生命力的表现,混沌系统对外界的刺激反应,比非混沌系统快。
非线性规划nonlinear programming具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。
非线性规划研究一个n元实函数在一组等式或不等式的约束条件下的极值问题,且目标函数和约束条件至少有一个是未知量的非线性函数。
目标函数和约束条件都是线性函数的情形则属于线性规划。
简史非线性规划是20世纪50年代才开始形成的一门新兴学科。
1951年H.W.库恩和A.W.塔克发表的关于最优性条件(后来称为库恩-塔克条件)的论文是非线性规划正式诞生的一个重要标志。
在50年代还得出了可分离规划和二次规划的n种解法,它们大都是以G.B.丹齐克提出的解线性规划的单纯形法为基础的。
50年代末到60年代末出现了许多解非线性规划问题的有效的算法,70年代又得到进一步的发展。
非线性规划在工程、管理、经济、科研、军事等方面都有广泛的应用,为最优设计提供了有力的工具。
实例下面通过实例归纳出非线性规划数学模型的一般形式,介绍有关非线性规划的基本概念。
例1 (投资决策问题)某企业有n个项目可供选择投资,并且至少要对其中一个项目投资。
已知该企业拥有总资金A元,投资于第i个项目需花资金ai元,并预计可收益bi元。
试选择最佳投资方案。
解设投资决策变量为则投资总额为∑aixi,投资总收益为∑bixi。