0_博弈论
- 格式:pdf
- 大小:1.17 MB
- 文档页数:42
一、双人零和博弈的概念零和博弈又称零和游戏,与非零和博弈相对,是博弈论的一个概念,属非合作博弈,指参与博弈的各方,在严格竞争下,一方的收益必然意味着另一方的损失,一方收益多少,另一方就损失多少,所以博弈各方的收益和损失相加总和永远为“零”.双方不存在合作的可能.用通俗的话来讲也可以说是:自己的幸福是建立在他人的痛苦之上的,二者的大小完全相等,因而双方在决策时都以自己的最大利益为目标,想尽一切办法以实现“损人利己”.零和博弈的结果是一方吃掉另一方,一方的所得正是另一方的所失,整个社会的利益并不会因此而增加一分.二、双人零和博弈的模型的建立建立双人零和博弈的模型,就是要根据对实际问题的叙述确定参与人(局中人)的策略集以及相应的收益矩阵(支付矩阵).我们记双人零和博弈中的两个局中人为A和B;局中人A的策略集为a1,…,am,局中人B的策略集为b1,…,bn;cij为局中人A采取策略ai、局中人B采取策略bj 时A的收益(这时局中人B的收益为- cij).则收益矩阵见下表表1那么下面我们通过例子来说明双人零和博弈模型的建立: 例1甲、乙两名儿童玩猜拳游戏.游戏中双方同时分别或伸出拳头(代表石头)、或手掌(代表布)、或两个手指(代表剪刀).规则是剪刀赢布,布赢石头,石头赢剪刀,赢者得一分.若双方所出相同,算和局,均不得分.试列出对儿童甲的赢得矩阵.解 本例中儿童甲或乙均有三个策略:或出拳头,或出手掌,或出两个手指,根据例子中所述规则,可列出对儿童甲的赢得矩阵见表2.表2例2 从一张红牌和一张黑牌中随机抽取一张,在对B 保密情况下拿给A 看,若A 看到的是红牌,他可选择或掷硬币决定胜负,或让B 猜.若选择掷硬币,当出现正面,A 赢p 元,出现反面,输q 元;若让B 猜,当B 猜中是红牌,A 输r 元,反之B 猜是黑牌,A 赢s 元.若A 看到的是黑牌,他只能让B 猜.当B 猜中是黑牌,A 输u 元,反之B 猜是红牌,A 赢t 元,试确定A 、B 各自的策略,建立支付矩阵.解 因A 的赢得和损失分别是B 的损失和赢得,故属二人零和博弈.为便于分析,可画出如图3的博弈树图.图3中,○为随机点,□分别为A 和B 的决策点,从图中看出A 的策略有掷硬币和让B 猜两种,B 的策略有猜红和猜黑两种,据此可归纳出各种情况下A 和B 输赢值分析的表格,见表4.图3抽到红牌正面反面抽到黑球○□□○□1/2掷硬币让B 猜1/21/2猜红猜黑猜黑猜红1/2让B 猜p-q-rst-u表4对表4中各栏数字可以这样来理解:因让A 看到红牌时或掷硬币或让B 猜.若A 决定选掷硬币这个策略,当出现正面,这时不管B 猜红或猜黑,A 都赢p 元;当出现反面,不管B 猜红或猜黑,A 都输q 元.同样A 选择让B 猜的策略后,他的输赢只同B 猜红或猜黑有关,而与掷硬币的正反面无关.又若抽到的牌是黑牌,A 的决定只能让B 猜,因而掷硬币策略对A 的胜负同样不起作用.考虑到抽牌时的红与黑的概率各为1/2,掷硬币时出现正反面的概率也各为1/2,故当A 采取“掷硬币”策略,而B 选择“猜红”策略时,A 的期望赢得为:⎪⎭⎫ ⎝⎛-q p 212121+t 21=()t q p 241+- 当A 采取让B 猜策略,B 选择“猜红”策略时,A 的期望赢得为:()()⎪⎭⎫ ⎝⎛-+-r r 212121+t 21=()t r +-21 相应可求得其他策略对A 的期望赢得值.由此可列出本例的收益矩阵,见表5.表5三、双人零和博弈的求解定理1(极小极大定理)在零和博弈中,对于给定的支付矩阵U ,如果存在混合战略1σ*=(1σ*1,…1σ*m )和2σ*=(2σ*1,…2σ*n )以及一个常数v 满足,对任意j 有∑=mi i ij a 11*σ≥v ,对任意的i 有∑=nj j ij a 12*σ≤v ,那么战略组合(1σ*,2σ*)为该博弈的Nash 均衡.其中,v 为参与人1在均衡中所得到的期望支付,亦称该博弈的值.这个极小极大定理,其基本思想就是:参与人1考虑到对方使自己支付最小的最优反应,从中选择使自己最好的策略.参与人2也遵循同样的思路,这样才能满足Nash 均衡的互为最优反应的条件.这样我们就可以得到双人零和博弈Nash 均衡的计算方法了,如以下定理定理2 对于给定的零和博弈,如果博弈的值v 大于0,则博弈的Nash 均衡(1σ*,2σ*)为以下对偶线性规划问题的解Min ∑=mi i p 1s.t. ∑=mi i ij p a 1≥1 (j=1,…,n)i p ≥0 (i=1,…,m) 和Max ∑=nj j q 1s.t. ∑=nj j ij q a 1≤1 (i=1,…,m)j q ≥0 (j=1,…,n) 其中,Nash 均衡支付∑∑====nj jmi iqpv 1111Nash 均衡战略),,,,(1*1m i vp vp vp =σ,),,,(1*2n j vq vq vq =σ由于此定理只适用于v 大于0的情形,因此对于v 小于等于0的情形,该定理所给出的方法需做适当的修改.命题 如果支付矩阵U=mxn ij a )(的每个元素都大于0,即ij a >0,那么博弈的值大于0,即v >0.定理3 如果支付矩阵U '=mxn ij a )('是由U=mxn ij a )(的每个元素都加上一个常数c 得到,即c a a ij ij +=',那么支付矩阵U 和U '所对应的零和博弈的Nash 均衡战略相同,博弈的值相差c.根据以上定理,可以得到如下求解一般零和博弈Nash 均衡的方法:(1) 若支付矩阵U 中的所有元素都大于零,则可以直接根据定理进行计算;若支付矩阵U 中有小于0的元素,可以通过加上一个常数使它们都大于0,然后再根据定理进行计算. (2) 求解定理中的两个对偶线性规划问题.下面通过实例来说明如何求解双人零和博弈的Nash 均衡.例3 求解下图中战略式博弈的Nash 均衡. 参与人2L M RU参与人1 C D通过求解对偶线性规划问题求零和博弈的Nash 均衡解 根据前面的介绍,可知该博弈的支付矩阵为U=⎪⎪⎪⎭⎫ ⎝⎛224132312不难发现,该博弈的支付矩阵U=()33x ij a 的每个元素都大于0,即ij a >0,那么博弈的值大于0,即v>0.设参与人1和参与人2的混合战略分别是1σ=(321,,vp vp vp )和2σ=(321,,vq vq vq ),利用对偶线性规划求解方法求解该战略式博弈的Nash 均衡,构造规划问题如下.Min {321p p p ++}s.t. 321422p p p ++≥1 32123p p p ++≥1 32123p p p ++≥1 1p ≥0,2p ≥0,3p ≥0 和Max {321q q q ++}s.t. 32132q q q ++≤1 32132q q q ++≤1 321224q q q ++≤1 1q ≥0,2q ≥0,3q ≥0求解第一个规划问题,得到1p =1/4, 2p =1/4, 3p =0,参与人1的支付v=2.因此,参与人1的混合战略1σ*=(1/2,1/2,0).同理,对对偶问题求解,得到1q =0,2q =1/4, 3q =1/4,参与人2的损失v=2,因此参与人的混合战略2σ*=(0,1/2,1/2).所以,该博弈存在一个混合战略Nash 均衡((1/2,1/2,0)(0,1/2,1/2),).例4 求解下图中的战略式博弈的Nash 均衡.参与人2L M R U 参与人1 C D通过求解对偶线性规划问题求零和博弈的Nash 均衡解 该博弈的支付矩阵为U=⎪⎪⎪⎭⎫ ⎝⎛--203011122 在上树支付矩阵U=33)(x ij a 中,12a <0, 21a <0.为了利用对偶线性规划模型求解博弈的解,构造支付矩阵U '=33')(x ij a ,其中a 'ij=ij a +c.令c=2,那么新构造的支付矩阵为U '=⎪⎪⎪⎭⎫ ⎝⎛425231304 设参与人1和参与人2的混合战略分别是1σ=(v 'p 1, v 'p 2, v 'p 3)和2σ=(v 'q 1, v 'q 2 v 'q 3,),v 为原博弈的值,v '为新博弈的值,且v '=v+2,利用对偶线性规划求解方法求解新战略式博弈的Nash 均衡,构造规划问题如下.Min {321p p p ++} s.t. 32154p p p ++≥13223p p +≥1 321423p p p ++≥11p ≥0, 2p ≥0, 3p ≥0Max {321q q q ++}s.t. 3134q q +≤1 32123q q q ++≤1 321425q q q ++≤1 1q ≥0,2q ≥0,3q ≥0通过求解对偶问题,得到1p =0,2p =3/13, 3p =2/13,参与人1的支付v '=13/5, 1q =1/13, 2q =4/13, 3q =0,参与人2的损失v '=13/5.因此,参与人1的混合战略1σ*=(0,3/5,2/5), 参与人2 的混合战略2σ*=(1/5,4/5,0),原博弈的值v= v '-2=3/5.所以,博弈存在一个混合战略Nash 均衡((0,3/5,2/5),(1/5,4/5,0)).。
0 序言0.1 博弈论的产生博弈论(game theory)又称对策论,是由美国数学家冯·诺依曼(Von. Neumann)和经济学家摩根斯坦(Morgenstern)于1944年创立的带有方法论性质的学科,是一种处理竞争与合作问题的数学决策方法。
它既是现代数学的一个新分支,也是运筹学的一个重要学科。
目前在经济学、国际关系学、计算机科学、政治学、生物学、军事战略和其他很多学科都有广泛的应用。
0.2 博弈论的发展0.2.1博弈理论的早期研究一般认为,对于博弈理论的最早研究可以追溯到18世纪初。
瓦德格拉夫(Waldegrave)在1713年提出了两人博弈的极小化极大混合策略解。
古诺(Cournot)和伯特兰德(Bertrand)分别在1838年和1883年提出了博弈论最经典的模型,两位学者分别从产量决策和价格决策分析垄断的双寡头竞争模型,确定了在竞争之下各自的最优反映函数。
这些都是关于博弈问题的早期的零星研究。
0.2.2博弈论发展的不同阶段(1)一般认为博弈论萌芽于20世纪初。
1913年齐默罗(Zermelo)提出的“逆推归纳法”(Backward Induction Procedure)是博弈论的第一种有着一般意义的分析方法。
博弈论创立的标志是冯·诺伊曼和摩根斯坦在1944年的《博弈论与经济行为》这部著作。
在该著作中,引进了博弈论的扩展形(Extensive Form)和策略形(Strategy)表示方式,提出了创建博弈论的基本概念术语,并对合作博弈进行了研究。
(2)20世纪的40年代末到50年代初,是博弈论的发展史上一个重要阶段。
越来越多的学者进行了博弈理论的研究。
1950年,纳什(John Nash)在他的博士论文《非合作博弈》中,将博弈论扩展到了非零和博弈,最终形成了非合作博弈理论的思想源泉,纳什均衡概念的提出以及纳什均衡存在性的纳什定理的证明,发展了以纳什均衡概念为核心的非合作博弈理论。
零和博弈零和博弈又称“零和游戏”,是博弈论的一个概念,属非合作博弈,指参与博弈的各方,在严格竞争下,一方的收益必然意味着另一方的损失,博弈各方的收益和损失相加总和永远为“零”。
双方不存在合作的可能。
零和博弈的结果是一方吃掉另一方,一方的所得正是另一方的所失,整个社会的利益并不会因此而增加一分。
零和博弈简介当你看到两位对弈者时,你就可以说他们正在玩“零和游戏”。
因为在大多数情况下,总会有一个赢,一个输,如果我们把获胜计算为得1分,而输棋为-1分,那么,这两人得分之和就是:1+(-1)=0。
这正是“零和游戏”的基本内容:游戏者有输有赢,一方所赢正是另一方所输,游戏的总成绩永远是零。
零和游戏原理之所以广受关注,主要是因为人们发现在社会的方方面面都能发现与“零和游戏”类似的局面,胜利者的光荣后面往往隐藏着失败者的辛酸和苦涩。
从个人到国家,从政治到经济,似乎无不验证了世界正是一个巨大的“零和游戏”常这种理论认为,世界是一个封闭的系统,财富、资源、机遇都是有限的,个别人、个别地区和个别国家财富的增加必然意味着对其他人、其他地区和国家的掠夺,这是一个“邪恶进化论”式的弱肉强食的世界。
但20世纪人类在经历了两次世界大战,经济的高速增长、科技进步、全球化以及日益严重的环境污染之后,“零和游戏”观念正逐渐被“双赢”观念所取代。
人们开始认识到“利己”不一定要建立在“损人”的基础上。
通过有效合作,皆大欢喜的结局是可能出现的。
但从“零和游戏”走向“双赢”,要求各方要有真诚合作的精神和勇气,在合作中不要耍小聪明,不要总想占别人的小便宜,要遵守游戏规则,否则“双赢”的局面就不可能出现,最终吃亏的还是自己。
零和博弈的例子一、零和博弈首先来明确定义。
毫无疑问期货交易是一种零和博弈,因为:输家损失=赢家收益+交易成本(市场运行成本、信息成本等)而在股票市场要获得资金等式的平衡,除了以上各项外,还要把上市公司的融资(资金从股市流出)和现金分红(资金流入股市)考虑在内。