第三章晶格振动和晶体的热学性质
- 格式:pptx
- 大小:1.73 MB
- 文档页数:86
固体物理第三章晶格振动与晶体热学性质第三章晶格振动与晶体的热学性质晶格振动是描述原子在平衡位置附近的振动,由于晶体内原子间存在着相互作用力,各个原子的振动也不是孤立的,而是相互联系的,因此在晶体内形成各种模式的波。
只有当振动微弱时,原子间非谐的相互作用可以忽略,即在简谐近似下,这些模式才是独立的。
由于晶格的周期性条件,模式所取的能量值不是连续的而是分立的。
对于这些独立而又分立的振动模式,可以用一系列独立的简谐振子来描述。
和光子的情形相似,这些谐振子的能量量子称为声子。
这样晶格振动的总体就可以看成声子系综。
若原子间的非谐相互作用可以看作微扰项,则声子间发生能量交换,并且在相互作用过程中,某些频率的声子产生,某些频率的声子湮灭。
当晶格振动破坏了晶格的周期性,使电子在晶格中的运动受到散射而电阻增加,可以看作电子受到声子的碰撞,晶体中的光学性质也与晶格振动有密切关系,在很大程度上可以看作光子与声子的相互作用乃至强烈耦合。
晶格振动最早是用于研究晶体的热学性质,其对晶体的电学性质、光学性质、超导电性、磁性、结构相变等一系列物理问题都有相当重要的作用,是研究固体宏观性质和微观过程的重要基础。
ωη§3-1 简谐近似和简正坐标由原子受力和原子间距之间的关系可以看出,若离开平衡位置的距离在一定限度,原子受力和该距离成正比。
这时该振动可以看成谐振动.用n μϖ表示原子偏离平衡位置(格点)位移矢量,对于三维空间,描述N 个原子的位移矢量需要3N 个分量,表为)3,,2,1(N i i Λ=μ将体系的势函数在平衡位置附近作泰勒展开:高阶项+∑⎪⎪⎭⎫ ⎝⎛∂∂∂+∑∂∂+===j i N j i j i i N i i V V V V μμμμμμ031,2031021)(第一项为平衡位置的势能,可取为零,第二项为平衡位置的力,等于零。
若忽略高阶项,因为势能仅和位移的平方成正比,即为简谐近似。
23121i N i i m T μ&∑==引入合适的正交变换,将动能和势能用所谓的简正坐标表示成仅含平方∑==N j j ij i i Q a m 31μ项而没有交叉项,即:由分析力学,基本形式的拉格朗日方程为:)32,1(,N i q Q T Q T dt d i i i Λ&==∂∂-⎪⎪⎭⎫ ⎝⎛∂∂其中)32,1(,1N i q f q i j N j j i Λϖϖ=∂∂⋅∑==μ朗日方程:)32,1(,0N i Q L Q L dt d i i Λ&==∂∂-⎪⎪⎭⎫ ⎝⎛∂∂则正则方程为:)3,2,1(,02N i Q Q i i i Λ&&==+ω其解为:)sin(δω+=t A Q i i 当考察某一个j Q 时,则:)sin(δωμ+=t A m a j i iji 晶体参与的振动,且它们的振动频率相同。
黄昆固体物理习题解答第三章晶格振动与晶体的热学性质3.1 已知一维单原子链,其中第j个格波,在第个格点引起的位移为,μ= anj j sin(ωj_j+ σj) ,σj为任意个相位因子,并已知在较高温度下每个格波的平均能量为,具体计算每个原子的平方平均位移。
解:任意一个原子的位移是所有格波引起的位移的叠加,即μn= ∑ μnj=∑ a j sin(ωj t naq j+σj)j j(1)μ2 n =⎛⎜⎝∑μjnj⎞⎛⎟⎜⎠⎝∑μj*nj⎞⎟⎠= ∑μj2nj+ ∑ μ μnj*nj′j j′由于μ μnj⋅nj数目非常大的数量级,而且取正或取负几率相等,因此上式得第2 项与第一项μ相比是一小量,可以忽略不计。
所以2= ∑ μ 2njn j由于μnj是时间的周期性函数,其长时间平均等于一个周期内的时间平均值为μ 2 = 1 T∫0 2 ω+σ 1 2j aj sin( t naqjj j)dt a=j(2)T0 2已知较高温度下的每个格波的能量为KT,μnj的动能时间平均值为1 L T ⎡1 ⎛dμ⎞2 ⎤ρw a2 T 1= ∫ ∫dx0⎢ρnj⎥= j j∫0 2 ω+ σ= ρ 2 2 T⎜⎟dt L a sin( t naq)dt w Lanj T0 0 0 ⎢ 2 ⎝dt⎠⎥2T0 j j j j 4 j j其中L 是原子链的长度,ρ 使质量密度,T0为周期。
1221所以Tnj= ρ w La j j=KT(3)4 2μKT因此将此式代入(2)式有nj2 = ρ ωL 2 jμ所以每个原子的平均位移为2== ∑ μ 2= ∑KT= KT∑1n njρ ωL2ρLω2j j j j j3.2 讨论 N 个原胞的一维双原子链(相邻原子间距为 a),其 2N 格波解,当 M=m 时与一维单原子链的结果一一对应.解答(初稿)作者季正华- 1 -黄昆固体物理习题解答解:如上图所示,质量为M 的原子位于2n-1,2n+1,2n+3 ……质量为m 的原子位于2n,2n+2,2n+4 ……牛顿运动方程:..mμ2n= −β μ(22n−μ2n+1 −μ2n−1)..Mμ2n+1 = −β μ(22n+1 −μ2n+2 −μ2n)体系为N 个原胞,则有2N 个独立的方程i na q方程解的形式:iμ2n=Ae[ωt−(2 ) ] μ2n+1=Be[ω−(2n+1)aq]na qμ=将μ2n=Ae[ωt−(2 ) ]2n+1 Be i[ωt−(2n+1) aq]代回到运动方程得到若A、B 有非零的解,系数行列式满足:两种不同的格波的色散关系:——第一布里渊区解答(初稿)作者季正华- 2 -第一布里渊区允许 q 的数目黄昆 固体物理 习题解答对应一个 q 有两支格波:一支声学波和一支光学波。
第三章 晶格振动与晶体的热学性质1。
什么是简谐近似?解:当原子在平衡位置附近作微小振动时,原子间的相互作用可以视为与位移成正比的虎克力,由此得出原子在其平衡位置附近做简谐振动。
这个近似即称为简谐近似。
2.试定性给出一维单原子链中振动格波的相速度和群速度对波矢的关系曲线,并简要说明其意义.解:由一维单原子链的色散关系2sin2qamβω= ,可求得一维单原子链中振动格波的相速度为22sinqa qamaqv p βω== (1)2cos qam a dq d v g βω==. 由(1)式及结合上图3。
1中可以看出,由于原子的不连续性,相速度不再是常数。
但当0→q 时,mav p β=为一常数。
这是因为当波长很长时,一个波长范围含有若干个原子,相邻原子的位相差很小,原子的不连续效应很小,格波接近与连续媒质中的弹性波。
由(2)式及结合上图3。
1中可以看出,格波的群速度也不等于相速度.但当0→q ,mav v p g β==,体现出弹性波的特征,当q 处于第一布区边界上,即aq π=时,0=g v ,而mav p βπ2=,这表明波矢位于第一布里渊区边界上的格波不能在晶体中传播,实际上它是一种驻波。
3。
周期性边界条件的物理含义是什么?引入这个条件后导致什么结果?如果晶体是无限大,q 的取值将会怎样?解:由于实际晶体的大小总是有限的,总存在边界,而显然边界上原子所处的环境与体内原子的不同,从而造成边界处原子的振动状态应该和内部原子有所差别。
考虑到边界对内部原子振动状态的影响,波恩和卡门引入了周期性边界条件.其具体含义是设想在一长为Na 的有限晶体边界之外,仍然有无穷多个相同的晶体,并且各块晶体内相对应的原子的运动情况一样,即第j 个原子和第j tN +个原子的运动情况一样,其中t =1,2,3…。
引入这个条件后,导致描写晶格振动状态的波矢q 只能取一些分立的不同值。
如果晶体是无限大,波矢q 的取值将趋于连续。
第三章晶格振动和晶体的热学性质[引言]晶体中原子、离子实际上不是静止在晶格平衡位置上,而是围绕平衡位置作微振动,称为晶体振动。
对晶体振动的研究是从解释固体的热学性质开始的,最初把晶体中的原子看作是一组相互独立的振子,应用能量均分定理可以说明固体比热容服从杜隆-珀替定律,但与T=0K时的0C=的规律不符。
1906年爱因斯坦提出固体比热容的量子理论,V认为独立谐振子的能量是量子化的,可以得到T=0K时0C=的规律的结论,但与低温V下3C T的实验结果不符。
1912年德拜提出固体的比热容理论,把固体当成连续介质,~V晶格振动的格波看连续介质中的弹性波,得到低温下3~C T的结果。
随后,玻恩及玻V恩学派逐步建立和发展了比较系统的晶格振动理论成为最早发展的固体理论之一。
晶格振动理论不仅可以用来解释固体的热学性质、结构相变等许多物理性质都是极为重要的,是研究固体物理性质的基础。
因为固体是由大量原子组成的,原子又由价电子和离子组成,所以固体实际上是由大量电子和离子组成的多粒子体系。
由于电子之间、电子与离子以及离子之间的相互作用,要严格求解这种复杂的多体问题是不可能的,但注意到电子与离子的质量相差很大,离子的运动速度比电子慢得多,可以近似地把电子的运动与离子运动分开考虑,变成一个在晶格周期场中运动的多电子问题;在考虑离子的运动时,则认为电子能够即时跟上离子位置的变化,变成离子或原子如何围绕平衡位置运动的问题。
这种近似称为绝热近似。
晶格振动理论就是在这个近似的基础上建立的。
本章首先从最简单的一维晶格出发,说明晶格振动的基本性质,然后推广到三维情况,最后讨论晶体的热学性质。
[本章重点]一维单原子链晶格振动,一维双原子链晶格振动,声子,晶格比热的德拜模型,晶格振动的模式密度,N 过程与U 过程§3-1一维单原子链考虑由N 个相同的原子组成的一维晶格,如图3-1-1所示,相邻原子间的平衡距离为a ,第j 原子的平衡位置用x 0j 来表示,它偏离平衡位置的位移用u j 来表示,第j 原子的瞬时位置就可以表示为:j j j u x x +=0………………………………………………(3-1-1) 原子间的相互作用势能设为)(ij x ϕ,如果只考虑晶体中原子间的二体相互作用,则晶体总的相互作用能可表示为:()∑≠=Nji ij x U ϕ21……………………………………………(3-1-2)式中ij ij i j ij u x x x x +=-=0是i 、j 原子的相对距离,i j ij u u u -=是i 、j 两原子的相对位移,在温度不太高时,原子在平衡位置附近作微振动,相邻原子的相对位移要比其平衡距离小得多,可将ϕ展开为:………………(3-1-3)于是有:()∑∑∑≠≠≠+⎪⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫⎝⎛∂∂+=j i ij ij j i ij ijj i ij u x u x x U 202200412121ϕϕϕ……………(3-1-4) 图3-1-1 一维单原子晶格()()()+⎪⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+=+=2220021ij ij ij ijijij ijij u x u x xu x x ϕϕϕϕϕ式中第一项是所有原子处于平衡位置上时的总相互作用能,用U 0来表示,是U 的极小值,()∑≠=ji ij x U 0021ϕ…………………………………………………………………… (3-1-5) 第二项是i j u 的线性项,它的系数为:()∑≠⎪⎪⎭⎫⎝⎛∂∂i j ij x 0ϕ,是所有其它原子作用在i 原子的合力的负值,当所有原子处在平衡位置上时,晶体中任一原子所受到的净作用力应为零,所以在式(3-1-4)中不存在位移的线性项。
第三章晶体振动和晶体的热学性质(12学时)晶体内的原子并非在各自的平衡位置上固定不动,而是围绕其平衡位置作振动,并且由于原子之间存在着相互作用力,因而各个原子的振动是相互联系着的,这样在晶体中就形成了各种模式的机械波。
晶格振动对固体的比热、热膨胀、热导等性质有重要的影响。
本章将向大家介绍晶格振动的一般性质。
基本要求:掌握一维晶体振动模式的色散关系,晶格振动的量子化、声子的概念。
爱因斯坦模型和德拜模型解释固体的比热性质。
了解非谐效应,确定振动谱的实验方法以及晶格的自由能。
基本内容:1、一维原子链的振动,色散关系、格波2、晶格振动的量子化、声子,长波近似3、固体比热,爱因斯坦模型和德拜模型4、非简谐效应5、确定振动谱的实验方法,晶格的自由能重点:一维晶体振动模式的色散关系,晶格振动的量子化、声子的概念,爱因斯坦模型和德拜模型。
难点:晶格振动的量子化、声子的概念。
§3.1 一维原子链的振动晶格振动最简单的情形就是一维晶格的振动,本节将介绍一维原子链的振动情况及其色散关系。
通过简单情形的讨论,把所得的一些主要结论和主要方法加以推广,应用到复杂的三维晶格的振动。
一、一维简单格子的情形1、一维简单格子的振动晶体内的原子围绕其平衡位置在不停地振动,由于原子间存在着相互作用力,各个原子之间的振动相互关联,从而在晶体中形成了各种模式的机械波。
(1)、简谐近似和最近邻近似一维简单格子是最简单的情形,考虑一个一维原子链,每个原子具有相同的质量m,平衡时原子间距为a。
由于热运动各原子离开了平衡位置,用x n代表第n个原子离开平衡位置的位移,第n个和第n+1个原子间的相对位移就为x n+1-x n,和第n-1个原子间的相对位移就为x n-x n-1。
只考虑最近邻原子间的简谐相互作用,其恢复力常数为 。
(2)、运动方程对第n 个原子进行受力分析,列牛顿定律方程可得运动方程为:)()(1122-+---=n n n n nx x x x dtx d m ββ )2(1122n n n nx x x dtx d m -+=-+β(n=1、2、…、N ) 式中β为原子间简谐相互作用的恢复力常数。