第三章晶格的热振动1019
- 格式:ppt
- 大小:6.63 MB
- 文档页数:140
第三章晶格振动与晶体的热学性质第三章晶格振动与晶体的热学性质晶体中的格点表示原子的平衡位置,晶格振动便是指原子在格点附近的振动。
晶格振动对晶体的电学、光学、磁学、介电性质、结构相变和超导电性都有重要的作用。
本章的主题用最邻近原子间简谐力模型来讨论劲歌振动的本征频率;并用格波来描述晶体原子的集体运动;再用量子理论来表述格波相应的能量量子、3.1 连续介质中的波波动方程22220u ux Y tρ??-=??对足够长的介质,求行波的解:s v q ω=其中波相速ω=称作色散关系。
3.2 一维晶格振动格波讨论晶格振动时采用了绝热近似,近邻近似和简谐近似。
绝热近似:考虑离子运动时,可以近似认为电子很快适应离子的位置变化。
为简单化,可以将离子的运动看成是近似成中性原子的运动。
近邻近似:在晶格振动中,只考虑最近邻的原子间的相互作用;简谐近似:在原子的互作用势能展开式中,只取到二阶项。
0020021()()()()......2r r dU d U U r U r dr dr δ+=+++简谐近似——振动很微弱,势能展式中作二级近似:00'''001()()||2r r U r U r U U δ+=++相邻原子间的作用力02222,r Ud U d U f dr dr δβδβδ=-=-=-= ? ??????一维晶格振动格波考虑第n 个例子的受力情况,它只受最近邻粒子的相互作用即分别受到来自第n-1个粒子及第n+1个例子的弹性力11()n n n f u u β--=-- 11()n n n f u u β++=--1111(2)n n n n n n f f f u u u β-++-=-=--- 2112(2)n n n n d uf ma m u u u dtβ+-===---试探解以行波作试探解()i t naq nq u Ae ω-=2()()(2)i t naq i t naq iaq iaq m e e e e ωωωβ----=---利用:222cos()24sin (/2)iaq iaq e e qa qa -+-=-=得224sin (/2)qa m βω=,/2)qa ω=色散关系 s i n (/2)qa ω=长波极限因为色散曲线是周期的且关于原点对称,在0/q a π<<的区间内,频率仅覆盖在0m ωω<<的范围内。
第三章 晶体中原子的热振动第一章、第二章中在讨论晶体的结合、固体中结合力性质以及相关物质性质(例第二章中的压缩系数或体弹性模量、抗张强度等)时曾忽略了晶体中原子热运动的影响(例当时考虑了T=0K 这种最简单的情况),认为固体中原子是处在平衡位置(即()()最小0,00r u rr u rr =∂∂=),这时整个晶体的势能最小,而实际上晶体中原子并非固定不动的,而是在其平衡位置附近或围绕其平衡位置作振动。
这种振动即本章所讨论的所谓热振动,在高于绝于零度以上的任何温度,这种运动都会发生,其振动频率大体在1012-1013次/S ,其振幅的数值决定于温度和晶体本身的性质,其振幅数量便大体为10-9cm 。
在较高温度下,振动原子通过偶然性的统计涨落,可获得高于平均能量的能量,当这种能量的大小足以摆脱周围原子束缚时,原子可离开其平衡位置而到达一个新的平衡位置,即产生扩散现象。
关于这方面的问题将在第四章中讨论。
本章讨论原子的热振动的情况,即在温度不太高时原子作微小振动的情况。
晶体中原子的热振动同晶体的许多重要宏观性质有关,例固体的比热、热膨胀、热传导等热学性质,电阻、超导电性等固体的电学性质,红外吸收与辐射等光学性质等。
所以,对晶体中原子热振动的研究和讨论是认识和了解固体中许多宏观性质、微观过程及其机理的重要基础。
本章只着重讨论其中的有关固体热学性质的部分,其它部分在本章最后的小结及后续章节、后续课程中可能有介绍(例电阻的产生机理、声子、电子运动等),因为热学性质是原子的振动在宏观性质上最直接的表现,对晶体原子振动的研究,最早是从热学性质开始的。
(在“统计热力学”中将讨论有关配分函数的处理及热力学函数的计算,本章中固体比热的计算,同上述内容有联系。
)§3.1晶体中原子的微振动及其量子化1.设晶体由N 个原子组成,它们相对于平衡位置的位移,分别用(x 1,x 2,x 3)、(x 4,x 5,x 6)……、(x 3N-2,x 3N-1,x 3N )来表示,则其动能可表示为:∑=∙=Ni ii x m T 31221 (1)()(212∙===x dt dx v mv T ) 其中m i 是坐标为x 1的原子的质量。
固体物理第三章晶格振动与晶体热学性质第三章晶格振动与晶体的热学性质晶格振动是描述原子在平衡位置附近的振动,由于晶体内原子间存在着相互作用力,各个原子的振动也不是孤立的,而是相互联系的,因此在晶体内形成各种模式的波。
只有当振动微弱时,原子间非谐的相互作用可以忽略,即在简谐近似下,这些模式才是独立的。
由于晶格的周期性条件,模式所取的能量值不是连续的而是分立的。
对于这些独立而又分立的振动模式,可以用一系列独立的简谐振子来描述。
和光子的情形相似,这些谐振子的能量量子称为声子。
这样晶格振动的总体就可以看成声子系综。
若原子间的非谐相互作用可以看作微扰项,则声子间发生能量交换,并且在相互作用过程中,某些频率的声子产生,某些频率的声子湮灭。
当晶格振动破坏了晶格的周期性,使电子在晶格中的运动受到散射而电阻增加,可以看作电子受到声子的碰撞,晶体中的光学性质也与晶格振动有密切关系,在很大程度上可以看作光子与声子的相互作用乃至强烈耦合。
晶格振动最早是用于研究晶体的热学性质,其对晶体的电学性质、光学性质、超导电性、磁性、结构相变等一系列物理问题都有相当重要的作用,是研究固体宏观性质和微观过程的重要基础。
ωη§3-1 简谐近似和简正坐标由原子受力和原子间距之间的关系可以看出,若离开平衡位置的距离在一定限度,原子受力和该距离成正比。
这时该振动可以看成谐振动.用n μϖ表示原子偏离平衡位置(格点)位移矢量,对于三维空间,描述N 个原子的位移矢量需要3N 个分量,表为)3,,2,1(N i i Λ=μ将体系的势函数在平衡位置附近作泰勒展开:高阶项+∑⎪⎪⎭⎫ ⎝⎛∂∂∂+∑∂∂+===j i N j i j i i N i i V V V V μμμμμμ031,2031021)(第一项为平衡位置的势能,可取为零,第二项为平衡位置的力,等于零。
若忽略高阶项,因为势能仅和位移的平方成正比,即为简谐近似。
23121i N i i m T μ&∑==引入合适的正交变换,将动能和势能用所谓的简正坐标表示成仅含平方∑==N j j ij i i Q a m 31μ项而没有交叉项,即:由分析力学,基本形式的拉格朗日方程为:)32,1(,N i q Q T Q T dt d i i i Λ&==∂∂-⎪⎪⎭⎫ ⎝⎛∂∂其中)32,1(,1N i q f q i j N j j i Λϖϖ=∂∂⋅∑==μ朗日方程:)32,1(,0N i Q L Q L dt d i i Λ&==∂∂-⎪⎪⎭⎫ ⎝⎛∂∂则正则方程为:)3,2,1(,02N i Q Q i i i Λ&&==+ω其解为:)sin(δω+=t A Q i i 当考察某一个j Q 时,则:)sin(δωμ+=t A m a j i iji 晶体参与的振动,且它们的振动频率相同。