晶格振动 (4.热学性质)
- 格式:ppt
- 大小:714.00 KB
- 文档页数:33
第四章晶格振动4.1 晶格振动的经典理论4.2 晶格振动的量子化-声子4.3 固体热容的量子理论4.4 非简谐效应:晶体的热膨胀和热传导4.5晶格振动的实验研究原子或离子是不可能严格的固定在其平衡位置上的,而是在固体温度所控制的能量范围内在平衡位置附近做微振动。
只有深入地了解了晶格振动的规律,更多的晶体性质才能得到理解。
如:固体热容,热膨胀,热传导,融化,声的传播,电导率,压电现象,某些光学和介电性质,位移性相变,超导现象,晶体和辐射波的相互作用等等。
•19 世纪初人们就通过Dulong-Petit 定律:认识到:热容量是原子热运动在宏观上的最直接表现;1907年,Einstein 利用Plank量子假说解释了固体热容为什么会随温度降低而下降的现象;1912年玻恩(Born,1954年Nobel物理学奖获得者)和冯卡门(Von-Karman)发表了论晶体点阵振动的论文,首次使用了周期性边界条件;Debye热容理论1935年Blakman才重新利用Born和Von-Karman近似讨论晶格振动,发展成现在的晶格动力学理论;1954年黄昆和Born共同写作的《晶格动力学》一书已成为该领域公认的权威著作4.1 晶格振动的经典理论一. 一维单原子链的振动运动方程:考虑N个质量为m 的同种原子组成的一维单原子链的。
设平衡时相邻原子间距为a(即原胞大小),在t 时刻第n 个原子偏离其平衡位置的位移为µn设在平衡时,两原子的相互作用势为V(a),产生相对位移(例如)后势能发生变化是V(a+δ) ,将它在平衡位置附近做泰勒展开:首项是常数,可取为能量零点,由于平衡时势能取极小值,第二项为零,简谐近似下,我们只取到第三项,即势能展开式中的二阶项(δ2项),而忽略三阶及三阶以上的项,显然,这只适用于微振动,即δ值很小的情况。
此时,恢复力:如只考虑最近邻原子间的相互作用,第n 个原子受到的力:于是第n个原子的运动方程可写为:一维原子链上的每个原子,忽略边界原子的区别,应有同样的方程,所以它是和原子数目相同的N个联立的线性齐次方程。
第三章晶格振动与晶体的热学性质第三章晶格振动与晶体的热学性质晶体中的格点表示原子的平衡位置,晶格振动便是指原子在格点附近的振动。
晶格振动对晶体的电学、光学、磁学、介电性质、结构相变和超导电性都有重要的作用。
本章的主题用最邻近原子间简谐力模型来讨论劲歌振动的本征频率;并用格波来描述晶体原子的集体运动;再用量子理论来表述格波相应的能量量子、3.1 连续介质中的波波动方程22220u ux Y tρ??-=??对足够长的介质,求行波的解:s v q ω=其中波相速ω=称作色散关系。
3.2 一维晶格振动格波讨论晶格振动时采用了绝热近似,近邻近似和简谐近似。
绝热近似:考虑离子运动时,可以近似认为电子很快适应离子的位置变化。
为简单化,可以将离子的运动看成是近似成中性原子的运动。
近邻近似:在晶格振动中,只考虑最近邻的原子间的相互作用;简谐近似:在原子的互作用势能展开式中,只取到二阶项。
0020021()()()()......2r r dU d U U r U r dr dr δ+=+++简谐近似——振动很微弱,势能展式中作二级近似:00'''001()()||2r r U r U r U U δ+=++相邻原子间的作用力02222,r Ud U d U f dr dr δβδβδ=-=-=-= ? ??????一维晶格振动格波考虑第n 个例子的受力情况,它只受最近邻粒子的相互作用即分别受到来自第n-1个粒子及第n+1个例子的弹性力11()n n n f u u β--=-- 11()n n n f u u β++=--1111(2)n n n n n n f f f u u u β-++-=-=--- 2112(2)n n n n d uf ma m u u u dtβ+-===---试探解以行波作试探解()i t naq nq u Ae ω-=2()()(2)i t naq i t naq iaq iaq m e e e e ωωωβ----=---利用:222cos()24sin (/2)iaq iaq e e qa qa -+-=-=得224sin (/2)qa m βω=,/2)qa ω=色散关系 s i n (/2)qa ω=长波极限因为色散曲线是周期的且关于原点对称,在0/q a π<<的区间内,频率仅覆盖在0m ωω<<的范围内。
固体物理总结晶格振动与晶体的热学性质完全版第四章总结第四章要求1、掌握⼀维单原⼦链振动的格波解及⾊散关系的求解过程以及格波解的物理意义;2、掌握⼀维双原⼦链振动的⾊散关系的求解过程,清楚声学波与光学波的定义以及它们的物理本质;3、了解三维晶格的振动;4、掌握离⼦晶体长光学波近似的宏观运动⽅程的建⽴过程及系数的确定,清楚LST关系及离⼦晶体的光学性质;5、了解局域振动的概念;6、掌握晶格热容的量⼦理论;熟悉晶格振动模式密度;7、掌握⾮谐效应的概念以及它在热膨胀和热传导中的作⽤。
⼀维晶格的振动和三维晶格的振动晶格振动的简谐近似和简正坐标状态及能量确定晶格振动谱的实验⽅法离⼦晶体的长波近似热容晶格振动的爱因斯坦模型热容量德拜模型晶格状态⽅程⾮简谐效应热膨胀1、⼀维单晶格的振动⼀维单原⼦链格波:晶格振动是晶体中诸原⼦(离⼦)集体地在作振动,由于晶体内原⼦间有相互作⽤,存在相互联系,各个原⼦的振动间都存在着固定的位相关系,从⽽形成各种模式的波,即各晶格原⼦在平衡位臵附近作振动时,将以前进波的形式在晶体中传播,这种波称为格波。
相邻原⼦之间的相互作⽤βδδ-≈-=d dv Fa d vd ???? ?=22δβ表明存在于相邻原⼦之间的弹性恢复⼒是正⽐于相对位移的第n 个原⼦的运动⽅程)2(11n n n n m µµµβµ-+=-+?)(naq t i nq Ae-=ωµ⾊散关系:把ω与q 之间的关系称为⾊散关系,也称为振动频谱或振动谱。
)21(sin 4]cos 1[222aq maq mββω=-=其中波数为λπ/2=q ,ω是圆频率,λ是波长有位相差。
相邻原⼦之间的位相差为aq 。
(2)q 的取值范围【-(π/a)""这个范围以外的值,不能提供其它不同的波。
q 的取值及范围常称为布⾥渊区。
前⾯所考虑的运动⽅程实际上只适⽤于⽆穷长的链,⽽两端原⼦的运动⽅程与中间的不同,因此有了玻恩-卡曼提出的环状链模型。
固体物理第三章晶格振动与晶体热学性质第三章晶格振动与晶体的热学性质晶格振动是描述原子在平衡位置附近的振动,由于晶体内原子间存在着相互作用力,各个原子的振动也不是孤立的,而是相互联系的,因此在晶体内形成各种模式的波。
只有当振动微弱时,原子间非谐的相互作用可以忽略,即在简谐近似下,这些模式才是独立的。
由于晶格的周期性条件,模式所取的能量值不是连续的而是分立的。
对于这些独立而又分立的振动模式,可以用一系列独立的简谐振子来描述。
和光子的情形相似,这些谐振子的能量量子称为声子。
这样晶格振动的总体就可以看成声子系综。
若原子间的非谐相互作用可以看作微扰项,则声子间发生能量交换,并且在相互作用过程中,某些频率的声子产生,某些频率的声子湮灭。
当晶格振动破坏了晶格的周期性,使电子在晶格中的运动受到散射而电阻增加,可以看作电子受到声子的碰撞,晶体中的光学性质也与晶格振动有密切关系,在很大程度上可以看作光子与声子的相互作用乃至强烈耦合。
晶格振动最早是用于研究晶体的热学性质,其对晶体的电学性质、光学性质、超导电性、磁性、结构相变等一系列物理问题都有相当重要的作用,是研究固体宏观性质和微观过程的重要基础。
ωη§3-1 简谐近似和简正坐标由原子受力和原子间距之间的关系可以看出,若离开平衡位置的距离在一定限度,原子受力和该距离成正比。
这时该振动可以看成谐振动.用n μϖ表示原子偏离平衡位置(格点)位移矢量,对于三维空间,描述N 个原子的位移矢量需要3N 个分量,表为)3,,2,1(N i i Λ=μ将体系的势函数在平衡位置附近作泰勒展开:高阶项+∑⎪⎪⎭⎫ ⎝⎛∂∂∂+∑∂∂+===j i N j i j i i N i i V V V V μμμμμμ031,2031021)(第一项为平衡位置的势能,可取为零,第二项为平衡位置的力,等于零。
若忽略高阶项,因为势能仅和位移的平方成正比,即为简谐近似。
23121i N i i m T μ&∑==引入合适的正交变换,将动能和势能用所谓的简正坐标表示成仅含平方∑==N j j ij i i Q a m 31μ项而没有交叉项,即:由分析力学,基本形式的拉格朗日方程为:)32,1(,N i q Q T Q T dt d i i i Λ&==∂∂-⎪⎪⎭⎫ ⎝⎛∂∂其中)32,1(,1N i q f q i j N j j i Λϖϖ=∂∂⋅∑==μ朗日方程:)32,1(,0N i Q L Q L dt d i i Λ&==∂∂-⎪⎪⎭⎫ ⎝⎛∂∂则正则方程为:)3,2,1(,02N i Q Q i i i Λ&&==+ω其解为:)sin(δω+=t A Q i i 当考察某一个j Q 时,则:)sin(δωμ+=t A m a j i iji 晶体参与的振动,且它们的振动频率相同。
晶格振动对晶体热学性质的影响分析晶格振动是指晶体中原子或离子围绕其平衡位置进行的微小振动。
这种振动对晶体的热学性质有着重要的影响。
本文将对晶格振动对晶体热学性质的具体影响进行分析,探讨其在热导率、热膨胀系数以及热容等方面的作用。
1. 晶格振动与热导率晶格振动与热导率之间存在密切的关系。
晶体的热导率主要由晶格振动引起的热传导贡献,以及电子的热传导贡献两部分组成。
晶格振动通过传递能量来引发热传导。
在晶体中,晶格振动以声子的形式传递热能。
声子的传播与晶格结构以及晶体的弹性性质密切相关。
因此,晶体的结构、晶格常数以及键的强度等都会对晶格振动与热导率产生影响。
2. 晶格振动与热膨胀系数晶格振动也会对晶体的热膨胀系数产生影响。
热膨胀系数是指物体由于温度变化而引起的长度、体积等物理量的变化比例。
晶体在受热后,晶格振动会引起原子或离子间距的变化,使晶体的体积发生变化。
晶体中原子或离子的质量、键的强度以及振动模式等因素都会影响晶格振动与热膨胀系数之间的关系。
3. 晶格振动与热容晶格振动还会对晶体的热容产生影响。
热容是指物体在吸热或放热过程中温度变化单位下的热量变化。
晶格振动会影响晶体中原子或离子的平均动能,从而影响晶格的热容。
晶格振动的能量传递会改变晶体原子或离子的能级分布,进而导致晶体的热容发生变化。
4. 晶格振动对热学性质的调控晶格振动对晶体的热学性质有着重要的调控作用。
通过调控晶格振动,可以有效地改变晶体的热导率、热膨胀系数以及热容等性质。
研究表明,通过控制晶体的晶格结构、晶格缺陷以及晶格畸变等方式,可以调控晶格振动的传播行为,从而实现对晶体热学性质的调控。
这对于材料的设计与应用具有重要的意义。
结论综上所述,晶格振动对晶体热学性质的影响是不可忽视的。
晶格振动通过影响热导率、热膨胀系数以及热容等参数,调控晶体的热学性能。
深入理解晶格振动对晶体热学性质的影响,有助于材料科学领域的研究与应用。
晶格振动对晶体热学性质的影响晶体是由大量晶格点排列而成的凝聚态物质。
在晶体中,晶格振动(也称为晶体振动)是指晶格点相对于它们的平衡位置进行的小振动。
这种振动不仅导致晶体的机械性质,还对晶体的热学性质产生了重要影响。
本文将探讨晶格振动对晶体热学性质的具体影响。
1. 热容量的影响晶格振动是晶体中原子的振动,这种振动将导致整个晶体具有能量。
晶格振动的能量会以热量的形式储存,因此晶格振动对晶体的热容量有直接影响。
晶体的热容量与振动能量的大小成正比。
晶格振动引起的热容量的增加,将导致晶体对热量的吸收能力增强。
2. 热导率的影响晶格振动也对晶体的热导率产生影响。
热导率是指热量在物质中传播的能力,它与热传导速率成正比。
晶格振动会导致晶体中原子之间的相互作用增强,从而提高晶体的热导率。
振动较大的晶格点之间的相互作用将更加紧密,使热量更容易从一个晶格点传导到另一个晶格点上。
3. 热膨胀系数的影响晶格振动还会影响晶体的热膨胀系数。
热膨胀系数是指物质在温度变化时的膨胀程度。
晶格振动会使晶体中原子的平均距离发生变化,从而导致晶体的体积发生变化。
因此,晶格振动越剧烈,晶体的热膨胀系数就越大。
4. 热导电性的影响晶格振动对晶体的热导电性能也有重要影响。
热导电性是指物质对热量和电流传导的能力。
晶格振动将改变晶体中的电子态密度分布,从而影响电子的运动性质。
这些影响将影响晶体的电导率和热导率。
例如,在某些材料中,振动较弱的晶格点可以提高电子的传导能力,从而提高热导电性。
综上所述,晶格振动对晶体的热学性质产生了重要影响。
它对晶体的热容量、热导率、热膨胀系数和热导电性能都具有显著影响。
通过深入研究晶体中晶格振动的性质和行为,我们可以更好地理解晶体的热学特性,并为材料科学的发展提供基础。
注:以上文章属于晶格振动对晶体热学性质的影响的讨论性文章,可能不符合合同或作文格式的要求。
请根据具体需求进行适当调整。
晶体的热学性质与晶格振动的相干性分析晶体是由周期性排列的原子或分子构成的固体物质,其热学性质与晶格振动之间存在着相互的联系和相干性。
本文将对晶体的热学性质和晶格振动的相干性进行分析和探讨。
一、晶体的热学性质晶体的热学性质是指晶体在温度变化下所表现出的性质和特点。
其中,热容、导热性、热膨胀等是最常见的晶体热学性质。
下面将对这些性质进行详细介绍。
1. 热容热容是指单位质量的晶体在温度变化下吸收或释放的热量。
晶体的热容受到晶格振动和晶格缺陷的影响。
晶格振动包括晶格的弹性振动、声子振动等,它们会影响晶体内部的能量传递和分布。
晶格缺陷包括点缺陷、面缺陷等,它们会散射热子和声子,影响晶格的热传导性能。
2. 导热性导热性是指晶体在温度梯度下传导热量的能力。
晶体的导热性与晶格振动的相干性密切相关。
晶格振动的相干性越高,晶体的热导率就越高。
晶体的导热性还受到晶体的宏观结构和缺陷等因素影响。
3. 热膨胀热膨胀是指晶体在温度变化下的尺寸变化。
晶体的热膨胀与晶体中原子的振动有关。
当温度升高时,晶体内原子的振动增强,原子之间的相互作用减弱,晶体的体积就会扩大。
晶体的热膨胀系数与晶格振动的相干性强弱密切相关。
二、晶格振动的相干性晶格振动是晶体中原子或分子围绕平衡位置做小幅振动而引起的能量传递和分布现象。
这些振动以声子的形式进行传递,其相干性对晶体的物理性质有重要影响。
晶格振动的相干性决定了晶格对热量和声波的传递情况。
当声子的相干性较高时,晶体的热导率会增加。
而当声子的相干性较低时,晶体中的散射会增加,导致热传导能力变弱。
因此,晶格振动的相干性是晶体热学性质的重要影响因素。
晶体中振动的相干性主要受到以下因素的影响:1. 晶格结构:不同晶体的晶格结构会影响振动的传播和相干性。
晶格结构越有序,振动的相干性越高。
2. 晶体缺陷:晶体中的缺陷会散射声子,降低振动的相干性。
例如点缺陷、面缺陷等都会对声子的传播和相互作用产生影响。
3. 温度:温度的变化会影响晶格振动的相干性。