混合高斯噪声中随机信号的最佳检测
- 格式:pdf
- 大小:660.13 KB
- 文档页数:3
M序列的产生和性能分析本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.MarchM序列的产生和性能分析摘要在扩频函数中,伪随机信号不但要求具有尖锐的互相关函数,互相关函数应接近于零,而且具有足够长的码周期,以确保抗侦破、抗干扰的要求;由足够多的独立地址数,以实现码分多址的要求。
M序列是伪随机序列的一种,可由m序列添加全0状态而得到。
m序列与M序列对比得出在同级移位寄存器下M序列的数量远远大于m序列数量,其可供选择序列数多,在作跳频和加密码具有极强的抗侦破能力。
本文在matlab中的Simulink下用移位寄存器建立了4级、5级、6级M序列的仿真模型,进行了仿真,画出其时域图、频谱图、互相关性图。
通过时域图和频域图可看出,经过扩频后的信号频带明显的被扩展;由M 序列互相关性图,得出M序列有较小的互相关性,较强的自相关性,但相关性略差于m序列。
最后,本文又将M序列应用于CDMA扩频通信仿真系统中,得到下列结论:当使用与扩频时相同的M序列做解扩操作与用其他序列做解扩的输出有巨大的差别。
使用相同的序列进行解扩时系统输出值很大,而使用其他序列解扩时输出值在零附近变化。
这就是扩频通信的基础。
关键词:伪随机编码, 扩频通信自相关函数,互相关函数M SEQUENCE GENERATION AND PERFORMANCE ANALYSISABSTRACTIn spread-spectrum communication, pseudo-random sequence must have high autocorrelation value, low cross correlation, long code period and lots of dependent address to satisfy code division mul tipleaccess(CDMA). M sequence is one kind of the pseudo-random sequences. It can be may obtained through adding entire 0 states to m sequence. The number of M sequence is greater than the m-sequence under the same level shift register. It may supply the more choice. The M-sequence is often applied to the frequency hopping and adds the password to have greatly strengthened anti- solves the ability.At first, M sequences which has n=4、5、7 levels of shift registers are produced under Simulink of Matlab. The t ime domain chart, the spectrograph, the mutual correlation chart are plotted. Through the time domain chart and the spectrograph, we could see how the bandwidth of the information signal is expanded. The pseudo-random symbol speed rate higher noise signal frequency spectrum is proliferated widely, the output power spectrum scope is lower. This can explain the spread-spectrum communication system principle from the frequency range. Through the M sequence’s auto correlation chart we can see that the auto correlation of M-sequence is quite good but is inferior to the m sequence. Finally, the M sequence is applied to the code division multiple access (CDMA) communication system. This is the spread-spectrum communication foundation.KEY WORDS:Pseudo-random code, auto-correlation, cross-correlation目录前言 ......................................................... 错误!未定义书签。
《随机信号分析与处理》教学⼤纲《随机信号分析与处理》教学⼤纲(执笔⼈:罗鹏飞教授学院:电⼦科学与⼯程学院)课程编号:070504209英⽂名称:Random Signal Analysis and Processing预修课程:概率论与数理统计、信号与系统、数字信号处理学时安排:60学时,其中讲授54学时,实践6学时学分:3⼀、课程概述(⼀)课程性质地位本课程是电⼦⼯程、通信⼯程专业的⼀门学科基础课程。
该课程系统地介绍随机信号的基本概念、随机信号的统计特性分析⽅法以及随机信号通过系统的分析⽅法;介绍信号检测、估计、滤波等信号处理理论的基本原理和信息提取⽅法。
其⽬的是使学⽣通过本课程的学习,掌握随机信号分析与处理的基本概念、基本原理和基本⽅法,培养学⽣运⽤随机信号分析与处理的理论解决⼯程实际问题的能⼒,提⾼综合素质,为后续课程的学习打下必要的理论基础。
本课程是电⼦信息技术核⼼理论基础。
电⼦信息系统中的关键技术是信息获取、信息传输、信息处理,这些技术的理论基础就是随机信号的分析、检测、估计、滤波等理论,这正是本课程的主要内容。
因此,本课程内容是电⼦信息类应⽤型⼈才知识结构中不可或缺的必备知识。
⼆、课程⽬标(⼀)知识与技能通过本课程的学习,掌握随机信号分析与处理基本概念和基本分析⽅法。
内容包括:1.理解和掌握随机过程基本概念和统计描述;2.掌握随机过程通过线性和⾮线性系统分析⽅法3.理解和掌握典型随机过程的特点及分析⽅法;4.掌握参数估计的概念、规则和性能分析⽅法;5.掌握信号检测的概念、规则和性能分析⽅法;6.掌握⾼斯⽩噪声中最佳检测器的结构和性能分析。
通过本课程的学习,要达到的能⼒⽬标是:1.具有正确地理解、阐述、解释⽣活中的随机现象的能⼒,即培养统计思维能⼒;2.运⽤概率、统计的数学⽅法和计算机⽅法分析和处理随机信号的能⼒;3.初步具备雷达、通信、导航等技术领域的信号处理系统的分析、设计、仿真的科学研究能⼒;4.培养⾃主学习能⼒;5.培养技术交流能⼒(包括论⽂写作和⼝头表达);6.培养协作学习的能⼒;(⼆)过程与⽅法依托“理论、实践、第⼆课堂”三个基本教学平台,通过课堂教学、概念测试、课堂研讨、案例研究、作业、实验、课程论⽂、⽹络教学等多种教学形式,采⽤研究型、案例式、互动研讨、基于团队学习、基于MATLAB的教学以及基于多媒体的教学等多种教学⽅法和⼿段,使学⽣加深对随机信号分析与处理的基本概念、基本原理以及应⽤的理解,并使学⽣通过⾃主学习、⼩组作业、案例研究、实验、课题论⽂等主动学习形式,培养⾃学能⼒和协同学习的能⼒,使学⽣不仅获得知识、综合素质得到提⾼。
实验一 随机噪声的产生与性能测试一、实验内容1.产生满足均匀分布、高斯分布、指数分布、瑞利分布的随机数,长度为N=1024,并计算这些数的均值、方差、自相关函数、概率密度函数、概率分布函数、功率谱密度,画出时域、频域特性曲线; 2.编程分别确定当五个均匀分布过程和5个指数分布分别叠加时,结果是否是高斯分布; 3.采用幅度为2, 频率为25Hz 的正弦信号为原信号,在其中加入均值为2 , 方差为0.04 的高斯噪声得到混合随机信号()X t ,编程求 0()()tY t X d ττ=⎰的均值、相关函数、协方差函数和方差,并与计算结果进行比较分析。
二、实验步骤 1.程序N=1024; fs=1000; n=0:N —1;signal=chi2rnd (2,1,N); %rand(1,N)均匀分布 ,randn(1,N )高斯分布,exprnd(2,1,N )指数分布,raylrnd (2,1,N)瑞利分布,chi2rnd(2,1,N )卡方分布 signal_mean=mean(signal ); signal_var=var (signal );signal_corr=xcorr(signal,signal ,'unbiased ’); signal_density=unifpdf(signal ,0,1); signal_power=fft(signal_corr); %[s,w]=periodogram (signal); [k1,n1]=ksdensity(signal);[k2,n2]=ksdensity (signal,’function ’,'cdf ’); figure ;hist(signal);title (’频数直方图’); figure ;plot (signal);title(’均匀分布随机信号曲线’); f=n *fs/N ; %频率序列 figure;plot(abs (signal_power)); title('功率幅频’); figure;plot(angle (signal_power)); title ('功率相频'); figure;plot (1:2047,signal_corr); title ('自相关函数’); figure;plot(n1,k1);title('概率密度’);figure;plot(n2,k2);title('分布函数’);结果(1)均匀分布(2)高斯分布(3)指数分布(4)瑞利分布(5)卡方分布2.程序N=1024;signal_1=rand(1,N);signal_2=rand(1,N);signal_3=rand(1,N);signal_4=rand(1,N);signal_5=rand(1,N);signal=signal_1+signal_2+signal_3+signal_4+signal_5; [k1,n1]=ksdensity(signal);figure(1)subplot(1,2,1);hist(signal);title('叠加均匀分布随机数直方图');subplot(1,2,2);plot(n1,k1);title(’叠加均匀分布的概率密度');结果指数分布叠加均匀分布叠加结果:五个均匀分布过程和五个指数分布分别叠加时,结果是高斯分布。
信号检测实验实验一白高斯噪声对接收信号的影响在信号的线性检测中,信号检测的优化准则和处理方法,都与噪声干扰的形式密切相关。
一、实验目的:通过实验观察1)噪声的随机性,使得受观察信号的样值具有随机性。
2)在很强的噪声中,信号可能被淹没在噪声中,因此必须要选用合适的信号检测方法才能从噪声中判别信号的有无。
二、实验原理:用matlab程序分别产生均值为0,均方差为0.2和0.5的加性高斯白噪声,与宽度为1.5的正弦波信号混叠,然后观察混叠噪声后的正弦波信号。
三.程序及运算结果1)均方差为0.2的加性白噪声与宽度为1.5的(正弦波)信号混叠。
我们发现在混叠后的噪声里还能够清楚看到(正弦波)信号。
clear;clf;N=1000;t0=10;t1=t0/2;dt=t0/N;c=150;t=[1:N]*dt;sr=sin(pi*t);subplot(3,1,1);plot(t-t1,sr,'r');axis([-t1 t1 -1.2 1.2]);n=0.2*randn(1,length(t));subplot(3,1,2);plot(t-t1,n,'r');axis([-t1 t1 -1.2 1.2]);s=sr+n;subplot(3,1,3);plot(t-t1,s,'r');axis([-t1 t1 -1.2 1.2]);end2)均方差为0.5的加性白噪声与宽度为1.5的(正弦波)信号混叠。
我们发现在混叠后的噪声里已经很难清楚看到噪正弦波信号。
clear;clf;N=1000;t0=10;t1=t0/2;dt=t0/N;c=150;t=[1:N]*dt;sr=sin(pi*t);subplot(3,1,1);plot(t-t1,sr,'r');axis([-t1 t1 -1.2 1.2]);n=0.5*randn(1,length(t));subplot(3,1,2);plot(t-t1,n,'r');axis([-t1 t1 -1.2 1.2]);s=sr+n;subplot(3,1,3);plot(t-t1,s,'r');axis([-t1 t1 -1.2 1.2]);end实验二对加入高斯白噪声的周期信号的检测一、实验目的:1)了解二元通信系统的结构及相关处理器的结构2)掌握叠加噪声的周期信号的检测二、实验原理图 2.1二元通信系统模型处理器结构图正弦波信号是信号通信系统、控制系统等领域常见的信号,利用信号判决准则设计处理器,下面编写程序设计处理器,让正弦波信号sin(2*pi*t)通过滤波器此处理器,处理器的传递函数的冲击响应为:h=sin(2*pi*(-t))。
2009年9月第16卷第5期控制工程ControlEngineeringofChinaSep.2009V01.16.No.5文章编号:1671-7848(2009)05-0638-03利用随机共振实现L6vy噪声中的信号检测张文英,王自力,张卫东(上海交通大学自动化系,上海200240)摘要:针对大量研究聚焦在利用随机共振在强噪声下提取有用的信号信息,但大都是在高斯白噪声下进行的,对L6vy噪声激励下的随机共振的研究却很少,介绍瞻vy噪声的产生方法,给出IJ6、,)r噪声下双稳态系统的数值求解方法,最后对双稳态系统的输出做功率谱分析。
对双稳态系统的输出进行分析,发现在Kvy噪声激励下双稳态系统也会发生随机共振现象,还可以辨识出淹没在kvy噪声中的信号信息。
仿真实例说明,可以利用随机共振实现淹没在¨vy噪声中的信号检测,并为其奠定了理论基础。
关键词:随机共振;双稳态系统;信号检测中图分类号:TP273文献标识码:ASignalDetectionFroml_石vyNoiseviaStochasticResonanceZHANGWen-ying,WANGZi—li,ZHANGWei—do凡g(DepartmentofAutomation,ShanghaiJiaoTongUniversity,Shanghai200240,China)Abstract:Thesignaldetectionusingstochasticresonance(SR)ontheconditionofKvynoiseisdiscussed,whichisdifferentfromthattheconditionofGausswhitenoise.Themethodofproducing“vynoiseisintroduced,andthewayofsolvingbi—stablesystemmodelwithMvynoiseispresented,thenthepowerspectrumoftheoutputofbi—stablesystemisanalyzed.Fromtheanalysisoftheout-putofbi—stablesystem,itdemonstratesthatSRalsooccurswithhelpofkvynoiseandthesignalinformationbedetectedfromKvynoise.ThesimulationresultshowsthatSRbeusedtodetectsignalfromKvynoiseandlayssolidfoundationforit.Keywords:stochasticresonance;bi—stablesystem;signaldetection1引言2L6vy噪声的产生方法1981年,意大利物理学家Benzi等人在研究古气象冰川问题时,提出了随机共振的概念…。
第9章 噪声中信号的检测前一章学习了经典假设检验理论,本章将要运用假设检验理论讨论噪声中信号的检测问题或最佳接收机的设计问题,在这里信号检测的含义是指从含有噪声的观测过程中判断是否有信号存在或区分几种不同的信号;而接收机实际上是对观测过程实施的数学运算。
为了设计最佳接收机,首先需要指定设计准则,这可以采用第8章介绍的判决准则,然后相对于选定的准则来设计接收机,在设计通信系统的接收机时,通常采用最小错误概率准则,而对于雷达和声纳系统则采用纽曼-皮尔逊(Neyman-Pearson )准则。
本章只介绍高斯白噪声环境下信号的检测问题,高斯有色噪声以及非高斯噪声环境下的检测问题请读者参看其它相关教材。
9.1 高斯白噪声中确定性信号的检测考虑一个简单的二元通信系统,系统发送信号)(0t y 或)(1t y ,两个信号是完全已知的,假定接收机的观测时间间隔为(0,T),由于信道噪声的影响,接收到的信号受到噪声的污染,因此接收机观测到的过程为:0011:()()()0:()()()0H z t y t v t t TH z t y t v t t T=+<<=+<< (9.1.1)其中噪声)(t v 假定是零均值的高斯白噪声,功率谱密度为2/0N 。
现在要设计一种接收机,通过对观测过程)(t z 的处理,对(9.1.1)式的两种假设作出判决。
由假设检验理论可知,最佳接收机的结构由似然比计算器与一个门限比较器组成,然而在第8章,涉及的观测数据都是离散的,因此要运用假设检验理论来解决噪声中信号的检测问题。
首先需要将连续的观测过程离散化,然后再计算似然比。
假定噪声)(t v 为一带限噪声,功率谱密度为 0()/2,v G N ω=ω<Ω (9.1.2)很显然,当Ω→∞时,带限过程趋于白噪声。
带限过程的相关函数为 τΩτΩ⋅πΩ=τ)sin(2)(0N R v (9.1.3) 噪声的方差为πΩ=σ202N v 当/τ=πΩ时,(/)0v R πΩ=,即(0),(/),(2/),...,v v v πΩπΩ是相互正交的随机变量序列,由于)(t v 是高斯的,故(0),(/),(2/),...,v v v πΩπΩ是相互独立的。
′现代信号处理(上)P.P.T—61 确定性信号和随机性信号检测·WGN 中已知确定性信号检测:NP 检测器/拷贝相关器/匹配滤波器对于已知协方差结构的随机性信号检测白高斯信号能量检测器·对于已知协方差结构的随机性信号检测:白高斯信号——能量检测器,任意协方差矩阵信号——估计器—相关器。
1′.1 匹配滤波器(MF )]01−…01:[][],0,1,1:[][][],0,1,1H x n w n n N H x n s n w n n N ===+=−,…,——已知,——WGN ,方差,[]s n []w n 2σ2r k E w n w n k k σδ=+=[]([][])[]1,0[]0,0ww k k k δ=⎧=⎨≠1,⎩[]h n []0s h n ⎧=⎨的]n n h ∑(1)匹配滤波器:滤波器脉冲响应匹配于信号。
1′.1.5 MF 检测性能()1'[][]N n x n s n γ−=>∑x T =⎛1N −100(;)[][]0N n E T H E w n s n −=⎞==⎜⎟⎝⎠∑()10(;)[][][]n E T H E s n w n s n ε=⎛⎞=+=⎜⎟⎝⎠∑(信号能量)1N −200var(;)var [][]n T H w n s n σε=⎛⎞==⎜⎟⎝⎠∑2=1var(;)T H σε(1)T 的分布202(0,)~N under H T H σε⎧⎪⎨81(,)N under εσε⎪⎩输信能声关参MF 输出SNR ,或(信号)能量—噪声比ENR ,或是一项关键参量。
2εσ(4)ROC1′.1.6 处理增益PG:是基于检验统计作判决还是从直接查看数据作判决?PG:已处理数据(即检验统计)SNR与单个数据采样(未处理数据)之比SNR之比。
1′.1.7 Deflection coefficient 2d11modified signal ,广义匹配滤波器=预白器+拷贝相关器(匹配滤波器)(2)检验统计量(3)广义匹配滤波器预白形式Fig 4.7 Generalized matched filter as prewhitener plus replica-correlator (matched filter)(4)检验统计量谱表示141′.2.5 广义MF检测性能151′.2.7 相关噪声信号设计及检验统计量·最佳信号16·检验统计量·Deflection coefficient21,d ρ→→∞——,这是因为噪声被抵消了。