电力牵引传动控制系统介绍
- 格式:ppt
- 大小:1.73 MB
- 文档页数:37
crh1型动车组牵引传动系统的工作原理CRH1型动车组的牵引传动系统是一种电力传动系统,由以下几个主要部分组成:1. 主变压器(Main Transformer):将输入的高电压交流电能转换为适合驱动电机的低电压交流电能。
2. 三相异步牵引电动机(Three-phase Asynchronous Traction Motor):采用交流电供电,通过电磁感应产生旋转力,将电能转换为机械能,驱动车辆前进。
3. 变频装置(Variable Frequency Drive):控制电动机的转速和扭矩。
它将来自主变压器的低电压交流电能转换为可调频率、可调电压的交流电,以满足不同工况下的牵引需求。
4. 牵引变流器(Traction Inverter):将变频装置输出的交流电能转换为直流电能,供给电动机使用。
5. 牵引控制器(Traction Controller):负责控制和监测牵引传动系统的各个部分,包括电压、电流、转速等参数的调节与保护。
6. 齿轮箱(Gearbox):连接电动机和车轮,通过齿轮传动将电动机的高速旋转转换为车轮的合适速度和扭矩。
7. 轮对(Wheelset):将齿轮箱输出的扭矩传递给车轮,推动车辆前进。
整个系统的工作原理是:主变压器将输入的高电压交流电能转换为低电压交流电能,并通过变频装置调节输出电能的频率和电压。
牵引变流器将变频装置输出的交流电能转换为直流电能供给电动机使用。
牵引控制器对牵引传动系统进行监测和控制,调节电压、电流、转速等参数以满足不同的牵引需求。
电动机接受来自牵引变流器的电能,并通过电磁感应产生旋转力,将电能转换为机械能驱动车辆前进。
齿轮箱将电动机高速旋转的动力传递给车轮,推动车辆行驶。
总结起来,CRH1型动车组的牵引传动系统利用电能转换原理,通过主变压器、电动机、变频装置、牵引变流器和齿轮箱等部件实现电能到机械能的转换,从而推动车辆前进。
目录1. 概述 (1)1.1 电力牵引的特点 (1)2. 电力机车的传动方式 (2)2.1 直-直流传动 (2)2.2 交-直流传动 (3)2.3 直-交流传动 (3)2.4 交-直-交流传动 (4)3. 我国机车电传动技术的发展与现状 (4)3.1 交-直传动技术的发展 (4)3.2 交流传动技术的发展 (5)4. 动车组的牵引传动系统的现状 (6)5. 电力牵引传动系统网侧原理图 (8)1.概述1.1电力牵引的特点电力机车属非自带能源式机车,电力牵引具有一系列内燃牵引所不及的优越性,表现在以下几方面:1、电力机车的功率大内燃机车功率受到柴油机本身容量、尺寸和重量的限制,故机车功率不能过大。
而电力机车不受上述条件的限制,机车功率(或单位重量功率)要大得多,目前轴功率已达1000kW(若交流牵引电动机可达1600kW)。
一台电力机车的牵引能力相当于1.5台(或更多一些)内燃机车的牵引能力。
由于电力机车功率大、起动快、允许速度高,所以能够多拉快跑,极大地提高了线路的通过能力和输送能力。
2、电力机车的效率高由于电力牵引所需的电能是由发电厂(或电站)集中产生,因此燃料的利用率要比内燃牵引高得多。
由火电厂供电的电力牵引的效率高达35%,由水电站供电的电力牵引则更高,可达60%以上。
而内燃牵引的效率约为25%左右,而且柴油价格较贵,有燃烧排放污染。
3、电力机车的过载能力强机车在起动列车或牵引列车通过限制坡道时,其过载能力具有很大的意义。
由于电力机车的过载能力不会受到能源供给的限制,而牵引电动机的短时过载能力总是比较大。
因此,电力机车所需的起动加速时间一般约为内燃机车的1/2,从而能够提高列车速度。
4、电力机车的运营费用较低(1)功率大、起动快、运行速度高、过载能力强、可以多拉快跑;(2)整备距离长、适合于长交路,提高了机车的利用率;(3)检修周期长、日常维护保养工作量也小。
一般情况下,电力牵引的运营费用比内燃牵引要低15%左右。
简述电力牵引系统的组成电力牵引系统是指利用电能驱动车辆行驶的系统,电力牵引系统主要由电源系统、变流器系统、牵引电机系统和控制系统组成。
1. 电源系统:电力牵引系统的电源系统主要是提供电能给牵引电机系统,一般采用锂电池组、混合动力系统或接触网供电。
锂电池组是目前广泛应用于电动车的一种电源系统,其具有体积小、重量轻、能量密度高、无记忆效应等优点。
混合动力系统综合了高效的内燃机和清洁的电力系统,通过内燃机和发电机来供电。
接触网供电是指通过高压电缆连接到铁路接触网,将电能供给给牵引电机系统。
2. 变流器系统:变流器系统是将电源提供的直流电转换为交流电,并且能够调节电流和电压的系统。
变流器通常由电源逆变器、牵引逆变器和充电机组成。
电源逆变器将电源提供的直流电转换成交流电供给牵引逆变器和充电机。
牵引逆变器将交流电转换为牵引电机所需要的电能,同时可以根据需要调节电流和电压,以实现对牵引电机的驱动控制。
充电机则负责对电池组进行充电。
3. 牵引电机系统:牵引电机系统是电力牵引系统的核心部分,负责将电能转换为机械能,驱动车辆行驶。
牵引电机通常采用交流异步电机或永磁同步电机。
交流异步电机具有结构简单、可靠性高等特点,适用于牵引车辆的起步和低速行驶;永磁同步电机具有高效、体积小等特点,适用于高速行驶和大功率需求的车辆。
另外,牵引电机系统还包括传动装置,将电机输出的转矩传递给车轮,通常采用传统的机械传动装置,如齿轮传动、链传动等。
4. 控制系统:控制系统是对电力牵引系统的各个部分协调、控制和保护的核心部分。
控制系统主要包括控制器、传感器、控制算法和通信系统。
控制器是对整个牵引系统的控制中心,利用传感器采集到的电流、电压、转速等参数信息,通过控制算法完成对牵引电机的驱动控制,并实现对整个系统的保护功能。
传感器主要用于采集牵引电机和其他关键部件的运行状态,如电流传感器、温度传感器等。
控制算法主要是对电机的控制策略进行优化,使得系统能够更加稳定、高效地工作。
地铁车辆牵引控制方案有哪些
一、分散型牵引控制方案
分散型牵引控制方案是指在地铁车辆内部安装多种电动控制机构,通
过手动、自动或远程控制方式,克服局部机构动力故障,实现牵引控制的
一种技术方案。
传统的分散型控制方案主要分为机械传动控制和电力传动
控制两种,分别由操纵杆、无线控制器、限位开关、门控制器等机械机构
和主变流器、轨道电流检测器、车载发电机控制器等电气机构共同构成。
1、机械传动控制
机械传动控制技术是由操纵台、无线控制器、限位开关等机械机构组
成的控制系统,其主要功能是实现车辆牵引、制动、位置控制、通过信号
控制等多种功能,它可以通过操纵台杆、车载电池、外部控制等多种方式
实现车辆牵引控制。
2、电力传动控制
电力传动控制是指地铁车辆的牵引控制由主变流器、轨道电流检测器、车载发电机控制器等电气机构共同完成的控制系统。
它可以实现车辆的最
大电动力、最小拉力及最高移动速度等多种复杂的牵引控制功能,在一定
程度上可以消除机械操纵杆带来的复杂性及一定程度的安全隐患。
浅谈高速动车组电力牵引传动控制系统摘要:高速动车组的发展为我国铁路事业做出了巨大贡献。
人们的出行方式从最初的汽车到飞机,再到现在的高速动车组,也是铁路行业多年努力的结果。
随着经济、高效、安全型高速动车组越来越受到人们的青睐,人们也对高速动车提出了更高的需求,因此有必要对动车牵引系统加以优化,以更好地推进高速动车牵引体系的发展,并维护着我国高速动车交通运输业的平稳发展。
动车组传动系统,是指动车组的动力传动装置。
牵引电机所产生的驱动力经由轴承和变速箱直接传导给轮胎,最后形成牵引作用。
主要阐述了我国高速动车组牵引系统的基本构造,并对各元件的分布情况和工作原理进行了详细描述。
关键词:高速动车组;牵引系统;结构分布;工作原理引言:随着国内高速运输的全面发展,电力机车以其功率大、运量大、牵引力大、速度快等特点在我国得到广泛应用。
特别是近年来,高速动车组列车的速度等级不断提高,载重能力也在不断增加,对列车运行质量提出了更高的要求。
作为动车组列车的十大关键技术之一,牵引传动控制系统的可靠性一直是研究的重点和难点。
结合当前先进的控制理论和方法,深入研究动车组牵引传动控制系统,有效提高牵引系统的可靠性,是保证动车组列车安全稳定运行的一个重大突破点。
通过对动车组列车牵引传动控制系统现状的讨论,分析了列车牵引系统的可靠性。
一、我国高速动车组牵引传动控制系统的发展现状1.牵引动力配置方式以动力集中方式为主我国高速动车组主要是CRH3型动车组,有两种方式:牵引电源配置有集中电源和分散电源。
电力集中的第一种形式是常见的、常规的电力牵引,这种牵引已经使用多年,在上都地区无论是结构上还是技术上都比较成熟,应用广泛。
第二种是权力分散的方式,这种方式现阶段技术还不成熟,使用的范围较小,技术还不太成熟,所具有的缺点是技术不稳定,资金投入不足等缺点。
2.我国高速动车组以直流传动制式为主我国的高速铁路动车组大多采用CRH3系列动车组动车组,牵引传动系统一般分为两种形式:直流传动系统、交流传动系统。
城市轨道交通车辆-第章-电力牵引传动系统课件 (一)城市轨道交通车辆是现代城市交通中非常重要的一部分,而他们的电力牵引传动系统就是其运行的核心和动力。
本文将详细介绍城市轨道交通车辆的电力牵引传动系统。
一、电力牵引传动系统的组成电力牵引传动系统由三个组成部分构成:牵引变流器、牵引电机和制动电阻。
1.牵引变流器:牵引变流器是电力牵引的核心和决定因素,它可以将直流电转化为交流电。
牵引变流器能够控制电机的转速和力矩,以达到牵引车辆的目的。
2.牵引电机:城市轨道交通车辆的牵引电机是三相异步电动机或同步电动机。
牵引电机可以将电能转化为机械能,从而提供动力以驱动轨道车辆。
3.制动电阻:制动电阻是在车辆紧急制动时提供制动力的电阻元件。
当电机接通制动电阻电路时,电机旋转速度要逐渐降低,从而达到制动效果。
二、电力牵引传动系统的分类根据使用条件和使用要求的不同,电力牵引传动系统可以分为直流电力牵引传动系统和交流电力牵引传动系统两种类型。
1.直流电力牵引传动系统:直流电力牵引传动系统具有简单、可靠、成熟的技术,对牵引电机的故障诊断和控制较为方便。
同时,直流电力牵引传动系统还具有调速范围大,可靠性高的特点。
2.交流电力牵引传动系统:交流电力牵引传动系统采用AC电机,可以在不同速度下提供更高的牵引力和效率。
此外,交流电力牵引传动系统可以通过能量回馈来降低整车的能耗。
三、电力牵引传动系统的优缺点1.优点电力牵引传动系统具有牵引力大、加速度快、稳定性高和运行平稳等特点。
同时,电力牵引传动系统能够提供更为舒适的乘坐环境,降低噪声和振动。
另外,电力牵引传动系统还能够节能环保,大大减少空气污染和噪声污染。
2.缺点电力牵引传动系统的成本较高,维护和保养也比较复杂。
同时,由于其本身的构造和性能,电力牵引传动系统的动力响应有些慢,无法满足部分应急情况下的需要。
总之,电力牵引传动系统是城市轨道交通车辆运行的核心,也是现代城市交通发展的重要标志之一。
电力牵引传动控制系统:核心技术与应用优势一、电力牵引传动控制系统概述电力牵引传动控制系统,作为现代轨道交通领域的关键技术,以其高效、环保、低噪音等优势,逐渐成为我国铁路、城市轨道交通等领域的主流驱动方式。
该系统主要包括电力变换、电机控制、传动装置及监控系统等部分,通过先进的控制策略,实现列车牵引与制动的高效运行。
二、电力牵引传动控制系统的核心技术1. 电力变换技术电力变换技术是电力牵引传动控制系统的核心,主要包括整流、逆变和滤波等环节。
通过对输入的电能进行高效转换,为电机提供稳定、可靠的电源供应,确保列车在各种工况下都能实现优异的牵引性能。
2. 电机控制技术电机控制技术主要针对牵引电机进行精确控制,包括速度、转矩和位置控制等。
采用矢量控制、直接转矩控制等先进控制策略,实现电机的高效、稳定运行,降低能耗,提高列车运行品质。
3. 传动装置技术传动装置技术主要包括齿轮箱、联轴器等部件,将电机输出的动力传递到车轮,实现列车的牵引和制动。
通过优化传动装置的设计,降低噪音、提高传动效率,确保列车运行的安全性和舒适性。
4. 监控系统技术监控系统技术负责对整个电力牵引传动控制系统进行实时监控,包括故障诊断、保护、数据处理等功能。
通过集成化、智能化的监控手段,提高系统的可靠性和运行稳定性。
三、电力牵引传动控制系统的应用优势1. 节能环保电力牵引传动控制系统采用电能作为动力来源,相较于传统燃油驱动方式,具有显著的节能环保优势。
同时,系统的高效运行有助于降低能源消耗,减少污染物排放。
2. 运行速度快电力牵引传动控制系统具有较高的功率密度,能够实现列车的快速启动、加速和制动,提高运行速度,缩短运行时间。
3. 维护成本低相较于传统传动系统,电力牵引传动控制系统结构简单,故障率低,维护方便。
通过智能化监控手段,可实现故障预警和远程诊断,降低维护成本。
4. 噪音低、舒适性高电力牵引传动控制系统采用交流电机驱动,相较于直流电机,噪音更低,振动更小,提高了乘客的舒适度。
电力牵引传动与控制技术的现状与发展电力牵引系统是指在铁路运输中通过电力传动和控制机械的运动。
电力牵引系统是铁路运输中的一种重要的机械传动系统。
近年来,随着铁路交通的高速化、绿色化和智能化的发展,电力牵引技术迎来了新的发展机遇。
本文将介绍电力牵引传动与控制技术的现状与发展。
一、电力牵引传动技术的现状电力牵引传动是铁路运输中必备的技术,其主要作用是将电能转换为机械能,实现列车运动。
目前,中国的电力牵引传动技术具有较高的水平,已经实现了直流电力牵引技术、交流电力牵引技术和混合动力牵引技术三种形式的电力牵引传动技术。
直流电力牵引技术是传统的电力牵引技术,在国内外均得到广泛应用。
直流电力牵引系统由车辆直流电源、逆变器、电机和磁控制器等组成,能够实现电能的高效转换和调节。
交流电力牵引技术是目前铁路运输中应用最为广泛的一种电力牵引技术,主要依靠交流电机的牵引效应实现列车的运动。
交流电力牵引系统由车辆交流电源、逆变器、电机和控制器等组成,其优点是能够实现无级变速调节和电能回馈。
混合动力牵引技术是近年来快速发展的一种牵引技术,其主要特点是将各种牵引系统进行组合,提高列车的牵引效率、降低能耗和减少污染排放。
二、电力牵引控制技术的现状电力牵引控制技术是电力牵引系统的重要组成部分。
现代电力牵引系统的控制技术主要分为两种方式,一种是非智能化的集中控制方式,另一种是智能化的分散控制方式。
非智能化的集中控制方式主要依靠人工控制集中控制室中的观察仪表和按钮进行车辆的控制。
这种控制方式功能较单一,且控制效率较低,但是由于成本低廉,仍然在一定范围内适用。
智能化的分散控制方式是近年来的一种新兴技术,通过集成智能芯片、传感器和计算机技术等实现集控与分控的平衡,使电力牵引控制系统可以实现更加精准、灵活的控制。
三、电力牵引传动与控制技术的未来发展随着铁路交通不断高速化、绿色化和智能化的发展,电力牵引传动与控制技术也不断向高效、可靠、节能、环保和智能化方向发展。
电力牵引系统的组成
电力牵引系统是指电力机车或电动车辆的动力源,它将电能转化为机械能,驱动车辆行驶。
电力牵引系统通常由以下几个部分组成:
1. 电源:电力牵引系统的电源可以是来自于电网的交流电,也可以是由发电机产生的直流电。
电源的电压和频率需要与牵引电机的要求相匹配。
2. 变压器:变压器将电源的电压升高或降低到适合牵引电机工作的电压等级。
变压器还可以用于将交流电转换为直流电。
3. 牵引电机:牵引电机是电力牵引系统的核心部件,它将电能转化为机械能,驱动车辆行驶。
牵引电机的类型和参数根据车辆的类型和用途而定。
4. 控制系统:控制系统用于控制牵引电机的运行,包括电机的启动、停止、调速和转向等。
控制系统还可以监测电机的运行状态,确保其安全可靠地运行。
5. 传动系统:传动系统将牵引电机的转矩传递到车轮上,驱动车辆行驶。
传动系统包括齿轮箱、传动轴、联轴节等部件。
6. 制动系统:制动系统用于控制车辆的速度和停止,它可以是机械制动、电气制动或两者的组合。
制动系统需要与控制系统协调工作,确保车辆安全可靠地制动。
7. 辅助系统:电力牵引系统还包括一些辅助系统,如冷却系统、通风系统、照明系统等,它们为车辆的正常运行提供必要的支持。
总之,电力牵引系统是电力机车或电动车辆的核心部分,它由电源、变压器、牵引电机、控制系统、传动系统、制动系统和辅助系统等组成,协同工作,为车辆的安全、可靠、高效运行提供保障。
电力牵引传动与控制第一章电力牵引传动与控制系统概述一、系统组成与功用1.①内燃机车电力传动与控制系统组成②电力机车电力传动与控制系统组成2.机车理想牵引特性曲线图1.2 牛马特性理想特性要求:机车在运行时能经常利用其动力装置的额定功率.即:F·V=3.6η·N=const.3.电传动装置的功用?图1.3 柴油机功率特性和扭矩特性①充分利用和发挥机车动力装置的功率;②扩大机车牵引力F与速度V的调节范围;③提高机车过载能力,解决列车起动问题;④改善机车牵引控制性能。
Why要电传动:柴油机通过机械直接传动不能适应机车起动、过载、恒功等要求二、系统分类1.直-直电力传动系统内燃或电力机车采用直流牵引发电机或直流电网直接向数台直流牵引电动机供电的传动方式。
特点:①调速性能优良,系统简洁。
②直流牵引电机造价较高,但可靠性、维护性相对较差。
③受直流电机换向条件和机车限界、轴重等限制,主发电机单机功率受到限制。
一般在2200KW以下。
④车型:早期DF,DF2,DF3,ND1,ND2等2.交-直电力传动系统内燃或电力机车采用交流牵引发电机或单相交流网及变压器,通过整流器向数台直流牵引电动机供电的传动方式。
特点:①采用三相交流同步发电机,结构简单,可靠性高,重量轻,造价较低。
②适用于大功率机车。
③车型:DF4,DF5,DF7,DF11,ND4,ND5,SS3-SS9等。
3.交-直-交电力传动系统内燃或电力机车采用交流牵引发电机或单相交流电网及变压器,经整流器将交流电变换成直流,再通过逆变器将直流电变换成频率和幅值按列车运行控制要求变化的交流电,向数台交流牵引电动机供电的传动方式。
特点:①采用交流牵引电机,彻底克服了直-直系统的不足,重量轻,造价低,可靠性及维修性好②良好的粘着性能③适用于大功率④控制系统复杂⑤车型:DF4DAC,NJ1; DJ,DJ2,DJJ1,DJ4; HX、CRH系列等三、发展历史与现状1.大功率(内然)机车电力传动与液力传动两种主要传动方式的演变与发展主要趋势:电力传动2.电力传动形式的发展:直-直→交-直→交-直-交发展趋势:大功率、电力牵引、交流传动第二章、电力牵引交-直传动与控制、一、直流牵引电动机1.基本方程①感应电势和电磁力矩电枢感应电势:Es=CeΦsn(v)(2-1)电枢电磁力矩:M=CmΦsIs(N·m)(2-2)式中:n 电机转速(r/m)Φs 每极下磁通量(wb)Is 电机电枢电流(A)Ce=pN/60a(电机电势常数)Cm=pN/2πa(电机扭矩常数)p 极对数;a 电枢绕组并联支路对数;N 电枢绕组有效导体总数②电势平衡方程③转矩平衡方程式④能量(功率)平衡方程2.直流牵引电动机的工作特性------着重把握比较串励与他励直流牵引电动机转速特性:n =f(Is)转矩特性:M=f(Is)机械特性:n =f(M)条件:不对电源电压和励磁电流进行人为调节。
HXD1型电力机车牵引电传动系统分析HXD1型电力机车是目前中国国内主要采用的交流传动电力机车之一、该型号机车采用了牵引电传动系统,由电机、变压器、整流器、逆变器和控制装置等组成。
本文将对HXD1型机车的牵引电传动系统进行分析,包括其工作原理、特点以及存在的问题等方面。
首先,HXD1型机车的牵引电传动系统主要由交流牵引电机驱动,电机与车轮通过齿轮减速器、驱动轴传递动力。
在牵引过程中,电机接收来自整流器输出的直流电能,通过电机的转子与零部件之间的相对运动,将电能转化为机械能,驱动车轮产生牵引力。
同时,在制动过程中,电机作为电动制动器,将机械能转化为电能,并通过逆变器将电能转化为热能散发。
其次,HXD1型机车牵引电传动系统的特点有以下几点。
首先是动力性能稳定可靠。
该型机车采用了电机传动,相比于传统的机械传动方式,具有动力传递效率高、响应速度快等特点,能够提供稳定可靠的动力输出。
其次是能源利用效率高。
传统的机车通过牵引发动机与传动系统实现牵引力,但在过程中会有功率损耗,而电力机车通过直接利用电能驱动电传动系统,能够更高效地利用能源,提高能源的利用效率。
再次是环境友好。
电力机车不需要燃料燃烧,减少了尾气排放,对环境的污染较小,有利于环境保护。
然而,HXD1型机车的牵引电传动系统还存在一些问题。
首先是系统的复杂性。
电力机车的牵引电传动系统涉及到多种电力、电子设备,需要较高的技术水平和维修保养能力。
其次是电力系统的稳定性。
机车的电力系统在工作过程中需要经常进行调整和优化,以确保系统的稳定性和安全性。
再次是能源供给的问题。
电力机车需要外部供电,如果供电系统不稳定或故障,会影响机车的正常运行和维护。
综上所述,HXD1型电力机车的牵引电传动系统具备稳定可靠、能源利用效率高、环境友好等特点。
然而,还需要进一步解决系统复杂性、电力系统稳定性和能源供给等问题,以提高机车的性能和可靠性。
掌握电流型、电压型变流器中间回路储能其所用的器件(电感L、电容C)并知道各自所接电动机的电压、电流波形的形状。
电流型变流器:电容器C用作中间回路的储能器,电压型变流器:电抗器L作为中间回路的储能器,电流:正弦波,方波掌握列车制动的方法(3种)摩擦制动电气制动电磁制动电力牵引交流传动控制系统的硬件配置(3个部分组成)车顶高压设备车内变流设备以及相关的附加设备转向架中的机电能量变换装置直流电机的调速方式:恒转矩:1、保持磁通φ不变,改变电枢端电压调速恒功率:2、保持电枢电压不变,减弱磁通φ调速三相异步电动机基频以下和基频以上调速的特点以及所对应的恒转矩或恒功率调速基频以下:横转矩调速基频以上:横功率调速SPWM控制模式3重算法: 自然采样法规则采样法指定谐波消除法P28IGBT栅极驱动电路基本要求(1-5点)1提供适当的正向和反向输出电压,使IGBT能可靠的开通和关断;2提供足够大的瞬时功率或瞬时电流,使IGBT能及时迅速建立栅控电场而导通;3输入、输出延迟时间尽可能小,以提高工作频率;4输入、输出电气隔离性能足够高,使信号电路与栅极驱动电路绝缘;5具有灵敏的过流保护能力。
P104直流电动机PWM调速的3种方法及优点1定宽调频法。
2调宽调频法 3定频调宽法优点:需要的滤波装置很小甚至只利用电枢电感已经足够,不需要外加滤波装置;电动机的损耗和发热较小,动态响应快,开关频率高,控制线路简单。
P169-P170感应电动机矢量控制原理,绘图说明把感应电动机经坐标变换为等效成直流机,然后,仿照直流机的控制方法,求得直流电动机的控制。
在经过相应的反变换,就可以控制交流机了。
P138-140交流转动电力机车三级控制的特点及作用列车级控制特点:特性控制,速度控制,目标控制,运行状态选择显示,列车安全防护诊断。
作用:严格保持列车的运行速度,避免加速或减速时出现的冲击,并且在目标制动时,能够迅速、准确的停靠在站台上。
ss8电力机车牵引传动系统的构成SS8电力机车牵引传动系统的构成一、概述SS8型电力机车是中国自主研发的一种大功率电力机车,其牵引传动系统是机车运行的关键部分。
本文将详细介绍SS8电力机车牵引传动系统的构成。
二、主要组成部分1. 电机组SS8电力机车采用了4台三相异步电动机作为牵引动力,每台电动机的额定功率为1800kW。
这些电动机通过联轴器连接到减速器上,提供足够的驱动力来推动整个列车。
2. 减速器减速器是连接在电动机和轮轴之间的重要设备,它可以将高速旋转的电动机输出转换为适合轮轴转速的输出。
SS8型电力机车采用了两级齿轮减速器,能够有效地提高传输效率和降低噪音。
3. 转向架转向架是连接在轮轴和底架之间的重要部件,它可以使列车沿着弯曲铁路线路行驶。
SS8型电力机车采用了单侧支撑式转向架,并配备有空气弹簧悬挂系统,能够提供更好的行驶稳定性和乘坐舒适性。
4. 制动系统制动系统是保证列车安全运行的重要组成部分。
SS8型电力机车采用了电阻制动和空气制动两种制动方式,能够快速停车并保持列车稳定。
5. 控制系统控制系统是整个牵引传动系统的大脑,它可以监控电机组、减速器、转向架和制动系统等各个部件的运行情况,并根据实际情况进行调整和控制。
SS8型电力机车采用了微机控制技术,能够实现高效、智能化的运行管理。
三、工作原理SS8型电力机车的牵引传动系统采用了交流传动技术,其工作原理如下:1. 电源供应首先,通过集电装置将外部供电汇流至主变压器中,然后将其转换为适合电机组使用的交流电源。
2. 电机组驱动接着,在控制器的指令下,交流电源被送入到每台三相异步电动机中,并产生旋转力矩。
这些力矩由减速器转换为轮轴上的推进力,从而推动整个列车前进。
3. 制动控制当需要减速或停车时,控制器会通过电阻或空气制动等方式来减缓列车的速度,并保持其稳定。
四、总结SS8型电力机车牵引传动系统是整个列车运行的核心部分,其高效、智能化的工作原理和优秀的性能表现为中国铁路运输事业做出了重要贡献。