不变子空间.若当.最小多项式(简介)
- 格式:docx
- 大小:41.61 KB
- 文档页数:12
一个线性变换的所有不变子空间探讨摘 要线性变换的不变子空间理论是高等代数的重要理论之一,但是对于一个线性变换的所有不变子空间,在高等代数教材中也只是简单的讲解一下,于是本文对它做了更进一步的讨论.本文首先给出了线性变换与不变子空间的定义,然后介绍线性变换以及不变子空间的性质,讨论了复数域及一般数域P 上的线性空间的线性变换的不变子空间.同时本文总结了求解一个线性变换所有不变子空间的方法,并且结合一些实例加以应用.关键词:线性变换,子空间,不变子空间引言线性变换与不变子空间是高等代数中的重要的概念,但是对于一个线性变换的所有不变子空间的探讨,在高等代数教材中也只是粗略的讲解一下.为了增加这方面的知识,本文首先给出了线性变换,子空间的定义和不变子空间的性质,由线性变换与不变子空间的相关定理,得出复数域上和一般数域P 上的线性变换的所有不变子空间. 这样对每一个具体的线性变换,我们能表示出它的不变子空间,所以本文尝试探究一个线性变换的所有不变子空间的求法,又给出了一些具体应用事例.本文如不特别指明,所考虑的线性空间V 都是某一数域P 上的线性空间V,线性空间V 上的线性变换的集合为L(V).一、预备知识(一)、线性变换和不变子空间定义定义1[1] 线性空间V 的一个变换σ称为线性变换,如果对于V 中任意的元素,αβ和数域P 中任意数k ,都有()()()σαβσασβ+=+()()k k σασα=定义2[1] 设σ是数域P 上线性空间V 的线性变换,W 是V 的子空间.如果W中的向量在σ下的像仍然在W 中,换句话说,对于W 中任意一个向量ξ,有(),W σξ∈我们W是σ的不变子空间,简称σ-子空间.(二)、不变子空间的性质性质1[2] 设()L V σ∈,1V ,2V 都是σ的不变子空间,则1212,V V V V + 都是σ的不变子空间. 性质2[2] 设()L V σ∈,若1V 为σ的不变子空间,则1V 也是()f σ的不变子空间,其中()f x 是数域P 上x 的多项式. 性质3[3] 设()L V σ∈,若σ可逆且1V 为σ的不变子空间,则1V 也为1σ-的不变子空间.性质4[3] 设W 是线性变换σ,τ的不变子空间,则W 在στ+,στ下也不变.二、复数域上线性变换的所有不变子空间我们来研究Jordan 块mmJ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=λλλ11定理4[2] 设V 是复数域上n 维线性空间,σ是V 的线性变换,在基1α,2α, ,n α 下的矩阵是一若当标准形11A λλλ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭证明:σ有且仅有{}0和以下非零不变子空间1(,,,)i i i n W L ααα+= ,(1,2,,)in =证明 由不变子空间性质可知,{}0是σ的不变子空间.又由于A 中一阶主子式所在列的其他元素全部是零的只有第n 列,因此一维不变子空间仅有()n L α;A 中二阶主子式所在列其余元素全部是零的子式只有第1n -,n 列的主子式,故二维不变子空间只有1(,)n n L αα-,以此类推可得,A中所在列的其他元素均为零的1n -阶主子式为第2,,n 列的主子式为111n λλλ-.因此σ的1n -维不变子空间仅有2(,,)n L αα ,而n 维不变子空间只有12(,,,)n V L ααα=综上,于是得到σ的非零不变子空间有且仅有n 个1(,,,)i i i n W L ααα+= ,(1,2,,)in = .注:由此证明了以下推论:推论1 V 中包含1α的σ的不变子空间只有V 自身; 推论2 V 中σ的任一非零不变子空间都包含n α; 推论3 V 不能分解成σ的两个非平凡不变子空间的直和;1111(,,,)ii i i in n jn j n n W L ααα---++++= ,(1,2,,)i jn =,(1,2,,)is = .定理4[1] 在复数域上 (1)如果线性变换σ是一个对称变换,那么σ的不变子空间的正交补也是σ的不变子空间.(2)如果线性变换σ是一个反对称变换,那么σ的不变子空间的正交补也是σ的不变子空间.(3)如果线性变换σ是一个酉变换,那么σ的不变子空间的正交补也是σ的不变子空间.三、一般数域P 上的线性变换的不变子空间例1 对任意的()L V σ∈,V本身及零子空间都是σ的不变子空间,称为平凡不变子空间.例2 对任意的()L V σ∈,分别称 (){V V σα=∈︱,}V βασβ∃∈=1(0){Vσα-=∈︱0}σα=为σ的像与核.容易证得()v σ与1(0)σ-都是σ的不变子空间.例3[6] 设()L V σ∈,λ是σ的一个特征值,()L V ε∈为V的恒等变换,则称{VVα*=∈︱存在正整数k ,()0}kλεσα-=为σ的对应于λ的根子空间,Vα*∈称为σ的属于λ的高为k 的根向量,V λ*为σ的不变子空间. 证明 若∀,V λαβ*∈,其高分别为12,k k ,令12m a x {,}kk k =,则,a bP∈,()()[()()][()Kkka b a b λεσαβλεσαλεσβ-+=-+- 1122[()()()][()()()]k k kk k k a b λεσλεσαλεσλεσβ--=--+--12[()(0)][()(0)]k k k k a b λεσλεσ--=-+-= 0故V λ*为V 的子空间.又设Vα*∈且高为k ,则()()[()]kkλεσσαλεσσα-=- = [()]kσλεσα-=(0)σ= 0 故V λ*为σ的不变子空间.四、应用举例例4[8]设σ是2R 的线性变换,σ在基12,εε下矩阵2512A -⎛⎫=⎪-⎝⎭,求σ的所有不变子空间解 在V 中至少有以下四个σ的不变子空间:2R ,{0},2()R σ,1(0)σ-,又A ≠,知σ为可逆的线性变换. 故,2()R σ=2R ,1(0)σ-={0},此外若还有其它不变子空间必是一维的,因而应为特征向量所生成,但是由于σ的特征多项式2()1f λλ=+无实根,故σ在R 中无特征值,从而没有实特征向量,这表明σ仅有两个平凡的不变子空间.结论 (1)在求σ的所有不变子空间时,既不能漏掉也不能重复. (2)给定σ后,线性空间V 中至少有V ,{0},()V σ,1(0)σ-四个不变子空间, 然后再设法去找其他的不变子空间.结束语本文在一个线性变换的所有不变子空间等知识具备的条件下,借助一定的数学思想方法,探讨与研究了一个线性变换的所有不变子空间,通过一些具体事例的求解,归纳、总结了求解线性变换的所有不变子空间的方法. 由于学习知识的有限,对求解线性变换的所有不变子空间的方法可能不够系统与全面,在以后的学习中我会继续加强对相关知识的学习与总结, 进而进一步加深对相关理论知识的理解.。
不变子空间.若当.最小多项式(简介)§7 不变子空间◎ 本节重点:不变子空间的定义与“限制”.已知可对角化对应于对角矩阵,但是并不是每个都能对角化的.退一步,对应于准对角形也好;虽然比对角形复杂,但也算简单.这个问题的研究需要用到不变子空间的概念.一、定义与例子1.定义:σ∈L(Vn),W是σ的不变子空间⇔W是V的子空间,且∀ξ∈W,有σ(ξ)∈W.简称σ-子空间. (注意:与线性变换有关)2.例子:设σ∈L(Vn),则下列子空间W都是σ的不变子空间: 1)W={0} 2)W=V 3)W=σ-1(0) 4)W=σ(V) 5)W=Vλ0={ξ∈V|σ(ξ)=λ0ξ}A与B是可交换的,则B的核与值域都是A-子空间. 二、线性变换在不变子空间上的“限制”1.定义:设W是σ∈L(Vn)的不变子空间,可只在W中考虑σ,记为σ|W.【意义】缩小了线性变换的范围,从而简化线性变换.因此,如果V可分解为若干σ-子空间Wi的直和,那么对V的线性变换σ的研究就归结为对各个子空间Wi的直和研究.2.区别:σ|W与σ的作用结果一样,但作用范围不同.即ξ∈W⇒(σ|W)ξ=σξ;ξ∉W⇒(σ|W)ξ无意义.三、不变子空间与线性变换矩阵化简之间的关系(意义)V=W1⊕W2⊕ ⊕Ws,设V可分解为若干个σ-子空间的直和:在每个不变子空间Wi中取基εi,εi, ,εi,i=1,2, s,并把他们合并为V的一组基,则在这组基下,σ的矩阵具有12k⎛A1准对角形⎝⎫⎪⎪,其中Ai,i=1,2, s是A|Wi在对应基下的矩阵. As⎪⎭进一步的,我们有: *四、不变子空间的直和分解定理12:设线性变换σ∈L(Vn)的特征多项式f(λ)可分解成一次因式:f(λ)=(λ-λ1)r(λ-λ2)r (λ-λS)r,则V可以分解成不变子空间的直和: 12SV=V1⊕V2⊕⊕Vs,其中Vi={ξ∈V|(σ-λiE)iξ=0}.r§8 若当(Jordan)标准形介绍若当(Jordan)标准形是一类特殊的准对角矩阵. 一、基本定义 1. 若当块⎛λ 1J(λ,t)=0 ⎝000 1000λ 00λ10⎫⎪0⎪⎪(λ是复数;注意对角元相同)⎪0⎪⎪λ⎭2. 若当形矩阵=由若干个若当块(阶数未必相同、λ未必相同)组成(不计顺序)的准对角矩阵. (若当形矩阵中包括对角矩阵)【问题】若当形矩阵的特征值=?.(若当块不计排列顺序)二、主要结论定理13:∀σ∈L(Vn(C)),在V中必定存在一组基,使σ在这组基下的矩阵式若当形矩阵. (这个若当形矩阵除去其中若当块的排列次序外,是被σ唯一决定的,它称为σ的若当标准形)若用矩阵来描述,即定理14:复数域上,每个方阵都相似于某个若当形矩阵.(好用的结论)三、若当标准形的求法(第八章介绍)【特例】若A可对角化,则若当标准形就是相似的对角矩阵.⎛0【第二届中国大学生数学竞赛预赛2019】设B= 00⎝100030⎫⎪2019⎪, 0⎪⎭证明X2=B无解,这里X为三阶复数矩阵.[证法]对复数矩阵,优先考虑它相似于某个Jordan矩阵这个性质,并联系特征值.§9 最小多项式介绍最小多项式有着良好的理论意义,特别是适用于对角化问题.已知Hamilton-Cayley定理:方阵A的特征多项式是A的零化多项式.要寻找其中次数最低的,这就是最小多项式的研究思路. 一、基本定义定义:ϕ(x)是方阵A的最小多项式⇔f(A)=0且ϕ(x)次数最低、首项系数为1. 例数量矩阵kE的最小多项式是二、基本性质引理1矩阵A的最小多项式必唯一. 证法带余除法引理2f(x)是A的零化多项式⇔f(x)是A的最小多项式ϕ(x)的倍式,即ϕ(x)|f(x). 【特例】最小多项式是特征多项式的因式. 证法带余除法⎛1例求A=⎝11⎫⎪2⎪的最小多项式. (x-1) 1⎪⎭【问题】相似矩阵有相同的最小多项式?⎛a 1例 k阶若当块J=⎝a1⎫⎪⎪⎪的最小多项式是⎪a⎪⎭k⨯k(直接计算,(x-a)k)三、主要结论定理数域P上矩阵A可对角化的充要条件是A的最小多项式是P上互素的一次因式的乘积. 推论复数域上A可对角化的充要条件是A的最小多项式无重根.例设A是n阶幂等矩阵,且秩为r.试求A的相似标准形,并说明理由;求2E-A. 解法:由A2=A知A有最小多项式g(λ)=λ2-λ=λ(λ-1)且无重根,所以A相似于对角矩阵,且特征值只能是1或0.又r(A)=r,故存在可逆矩阵P使P⎛ErAP= 0⎝02En-r⎛ErAP= 0⎝0⎫⎪. 0⎪⎭从而 P-1(2E-A)P=2E-P-1⎫n-r⎪⇒2E-A=2. ⎪⎭矩阵相似对角化的应用1.利用矩阵相似对角化计算矩阵多项式若矩阵A与B相似,则存在可逆矩阵P使得A=PBP进一步有:当ϕ(x)是多项式时,ϕ(A)=Pϕ(B)P-1.特例:当A相似于对角矩阵时,由Ak=PBkP-1容易计算方幂Ak. 2.求Fibonacci数列通项:an+2=an+1+an(a0=0,a1=1)⎛an+1⎫⎛1解法用矩阵形式表示递推关系式 a⎪⎪=⎝n⎭⎝1⎛1A= 1⎝-1,于是Ak=PBkP-1.1⎫⎛an⎫⎛1⎪ a⎪⎪= 0⎪⎭⎝n-1⎭⎝11⎫⎪0⎪⎭na⎝0⎫⎪⎪⎭'⎛⎫1⎫⎛λ11±51±5-1 ⎪⎪的特征值为λ1,2=,对应的特征向量为,1,PAP=⎪0⎪22⎭⎝⎝⎭⎫⎪λ2⎪⎭nn⎡⎛⎤⎫⎛⎫11+51-5n⎪- ⎪⎥. ⎢由此可求A,即得an=⎪ 2⎭2⎪5⎢⎝⎝⎭⎥⎣⎦3.利用矩阵相似对角化线性方程组【例】(人口流动问题)设某国人口流动状态的统计规律是每年有十分之一的城市人口流向农村,十分之二的农村人口流入城市.假定人口总数不变,则经过许多年以后,全国人口将会集中在城市吗?解设最初城市、农村人口分别为x0,y0,第k年末人口分别为xk,yk,则⎛x1⎫⎛0.9y⎪⎪=⎝1⎭⎝0.1⎛0.9记A= 0.1⎝0.2⎫⎛x0⎪⎪0.8⎭⎝y0⎛xk⎫⎛0.9⎫⎪,⎪ y⎪⎪= ⎝k⎭⎝0.1⎭0.2⎫⎛xk-1⎫⎪⎪⎪⎪0.8⎭⎝yk-1⎭x0.2⎫⎛xk⎫k⎛0⎫⎪⎪,可得⎪=A ⎪⎪⎪. 0.8⎭yy⎝k⎭⎝0⎭为计算Ak,可考虑把A相似对角化.特征多项式λE-A=(λ-1)(λ-0.7). λ=1对应的特征向量为α1=(2,1)';λ=0.7对应的特征向量为α2=(1,-1)'取P=(α1,α2)= 1⎝k⎛21⎫1⎛1-1⎪ P=,得⎪-1⎭3⎝11⎫⎪⎪-2⎭A⎛1=P 0⎝0⎫1⎛2-1⎪P= 0.7⎪3⎝1⎭kk1⎫⎛1⎪ -1⎪⎭⎝00⎫⎛1⎪ k 0.7⎪⎭⎝11⎫⎪ -2⎪⎭1⎫1⎛2⎪= ⎪-2⎭3 ⎝22⎫⎪ 1⎪⎭k令k→∞,有0.7→0,得A1⎛2→3⎝11⎫⎛1⎪⎪-1⎭⎝00⎫⎛1⎪⎪0⎭⎝1⎛xk⎫1⎛2 ⎪ → 2 y⎪3⎝⎝k⎭⎛2⎫⎪2⎫⎛x0⎫3⎪⎪⎪=(x+y)00⎪⎪1⎭ 1⎪⎝y0⎭⎪⎝3⎭可见当k→∞时,城市与农村人口比例稳定在2:1.定理7:设A为实对称矩阵,则必存在正交矩阵T,使得T'AT=T-1AT为对角阵.(注意:对角元恰好是A的全体特征值)(常用于证明题)[证明思路]:利用对称变换的理论,等价于对称变换有n个特征向量作成标准正交基(见教材).也可用数学归纳法,将实对称矩阵A用两次正交相似变换化为对角阵.证明:设σ在n维欧氏空间V的标准正交基下的矩阵是A,则σ是对称变换. n=1时,V=L(α),取e1=α/α∈V,则σ(e1)∈V,有σ(e1)=ke1,e1即为所求. 设n-1时命题成立(含义?),考虑n的情形.设法把Vn分解成V1+Vn-1,才能使用归纳假设:1)σ对称−引理−−→σ有实数特征值λ1(才能保证特征向量α1∈V(R),正交矩阵要求实数矩阵);2)取e1=α1/1,则是实特征向量.设V1是L(e1)的正交补,则V1是σ-子空间,维数为n-1,.且σ|V是V1的对称变换.于是利用归纳假设,V1有n-1个特征向量e2, ,en 标准正交,联合1e1,e2, ,en即为V的特征向量、标准正交基.另证:直接从矩阵角度证明,数学归纳法:n=1显然. 设n-1时命题成立,A必有实数特征n值λ1(特征向量α1∈Rn),取e1=α1/α1,则也是实.特征向量.扩充成R的标准正交基e1,e2, ,en,以它们为列作n级矩阵T1,则T1正交,且T1'AT1=T1A(e1,e2, ,en)=T1(Ae1,Ae2, ,Aen)=(λ1T1e1,T1Ae2, ,T1Aen)-1-1-1-1-1注意到E=T1T1=T1(e1,e2, ,en)=(T1e1,T1e2, ,T1en),故T1e1-1-1-1-1-1-1是E的第一列,于是T1'AT1形如⎛λ1⎝0C⎫⎪,而AB⎭对称,T1'AT1也对称,得C=0,且B是n-1级对称矩阵.λ2, ,λn),取由归纳假设,存在n-1级正交矩阵Q,使得Q'BQ=dia(g1T2=⎛ 0⎝0⎫,T=T1T2Q⎪⎭⎛1T'AT=⎝可得T是正交矩阵,并且⎫⎛λ1⎪ Q'⎪⎭⎝⎫⎛1⎪ B⎪⎭⎝⎫⎪= =diag(λ1, ,λn)Q⎪⎭又T'AT=T-1AT与A相似,有相同的特征值,于是λ1, ,λn是A的全部特征值.《欧氏空间》复习一、主要概念1)内积 2)长度 3)夹角 4)正交 5)度量矩阵 6)标准正交基 7)正交矩阵 8)正交变换 9)正交补 10)对称变换 11)最小二乘法二、重要方法1.验证欧氏空间.[内积4条公理]2.利用内积计算长度、夹角;证明向量相等、长度关系式.3.求标准正交基.[可验证!先正交化再单位化,反之…错.]4.正交补的构造与求法.5.正交矩阵、正交变换、对称变换的应用与证明.[注意变换与矩阵的转化]6.求正交矩阵T,使得T'AT=T-1AT为对角阵.(可验证!注意区别第五、七章的方法)7.利用正交线性替换化实二次型为标准形. *8.求最小二乘解. 三、思考题1.什么是内积?欧氏空间的哪些概念与内积有关?(长度、夹角、正交、度量矩阵、标准正交基、同构、正交变换、对称变换、正交补)2.内积与标准正交基有何联系? 3.标准正交基有何作用? 4.如何构造子空间的正交补?5.正交矩阵、实对称矩阵各有哪些特点?6.正交变换、对称变换各有哪些特点和区别?四、例题选讲◎ A正定⇒A+E>1证1:A正定⇒特征值λi>0⇒A+E的特征值λi+1>1 于是A+E=(λ1+1)(λ2+1)(λn+1)>1⋅1 1=1 证2:A正定⇒T-1AT=diag(λ1, ,λn),λi>0A+E=Tdiag(λ1, ,λn)T-1+E=Tdiag(λ1+1, ,λn+1)T-1-1=T(λ1+1)(λ2+1) (λn+1)>1⋅1 1=1《期末总复习》一、考试题型填空、计算、证明、讨论或判断二、复习依据作业(习题集)、例题、课外提高三、各章主线 1.线性空间2.线性变换、运算、关于基的矩阵及变换问题的转化、不变子空间可验证)、结论、对角化判定及求可逆矩阵C3.Jordan标准形4.欧氏空间(注意:涉及的概念都与内积有关)(四条公理)、长度、夹角、标准正交基(求法,可验证)可验证)[可验证].区别第5章方法)四、注意事项1.几类矩阵的特点、区别与联系:……可逆矩阵、对称矩阵、合同矩阵、相似矩阵、正定矩阵、正交矩阵. 2.线性变换问题与矩阵问题的转化……线性空间(通过基)、欧氏空间(通过标准正交基) 3.可验证的几种计算类型特征值(迹)、特征向量(代入方程组)、标准正交基(两两正交、长度为1)、正交矩阵(行[或列]向量组标准正交,或A'A=E)。
§7 不变子空间◎ 本节重点:不变子空间的定义与“限制”.已知可对角化对应于对角矩阵,但是并不是每个都能对角化的.退一步,对应于准对角形也好;虽然比对角形复杂,但也算简单.这个问题的研究需要用到不变子空间的概念. 一、定义与例子1.定义:)(n V L ∈σ,W 是σ的不变子空间W ⇔是V 的子空间,且,W ∈∀ξ有W ∈)(ξσ.简称σ-子空间. (注意:与线性变换有关)2.例子:设)(n V L ∈σ,则下列子空间W 都是σ的不变子空间:1){}0=W 2)V W = 3))0(1-=σW 4))(V W σ= 5){}ξλξσξλ0)(|0=∈==V V W 例1若线性变换A 与B 是可交换的,则B 的核与值域都是A -子空间. 二、线性变换在不变子空间上的“限制”1.定义:设W 是)(n V L ∈σ的不变子空间,可只在W 中考虑σ,记为W |σ.【意义】缩小了线性变换的范围,从而简化线性变换.因此,如果V 可分解为若干-σ子空间i W 的直和,那么对V 的线性变换σ的研究就归结为对各个子空间i W 的直和研究.2.区别:W |σ与σ的作用结果一样,但作用范围不同.即σξξσξ=⇒∈)|(W W ;ξσξ)|(W W ⇒∉无意义.三、不变子空间与线性变换矩阵化简之间的关系(意义)设V 可分解为若干个σ-子空间的直和:s W W W V ⊕⊕⊕= 21,在每个不变子空间i W 中取基k i i i εεε,,,21 ,s i ,2,1=,并把他们合并为V 的一组基,则在这组基下,σ的矩阵具有准对角形⎪⎪⎪⎭⎫ ⎝⎛s A A 1,其中i A ,s i ,2,1=是i W A |在对应基下的矩阵. 进一步的,我们有: *四、不变子空间的直和分解定理12:设线性变换)(n V L ∈σ的特征多项式)(λf 可分解成一次因式:S r S r r f )()()()(2121λλλλλλλ---= ,则V 可以分解成不变子空间的直和:s V V V V ⊕⊕⊕= 21,其中}0)(|{=-∈=ξλσξi r i i E V V .§8 若当(Jordan )标准形介绍若当(Jordan )标准形是一类特殊的准对角矩阵. 一、基本定义 1. 若当块⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=λλλλλ1000010000010000),(t J (λ是复数;注意对角元相同)2. 若当形矩阵=由若干个若当块(阶数未必相同、λ未必相同)组成(不计顺序)的准对角矩阵. (若当形矩阵中包括对角矩阵) 【问题】若当形矩阵的特征值=?例1求所有的三阶若当形矩阵.(若当块不计排列顺序) 二、主要结论定理13: ))((C V L n ∈∀σ,在V 中必定存在一组基,使σ在这组基下的矩阵式若当形矩阵. (这个若当形矩阵除去其中若当块的排列次序外,是被σ唯一决定的,它称为σ的若当标准形)若用矩阵来描述,即定理14:复数域上,每个方阵都相似于某个若当形矩阵.(好用的结论) 三、若当标准形的求法(第八章介绍)【特例】若A 可对角化,则若当标准形就是相似的对角矩阵.【第二届中国大学生数学竞赛预赛2010】设⎪⎪⎪⎭⎫⎝⎛=00020100030100B ,证明B X =2无解,这里X 为三阶复数矩阵.[证法]对复数矩阵,优先考虑它相似于某个Jordan 矩阵这个性质,并联系特征值.§9 最小多项式介绍最小多项式有着良好的理论意义,特别是适用于对角化问题.已知Cayley Hamilton -定理:方阵A 的特征多项式是A 的零化多项式.要寻找其中次数最低的,这就是最小多项式的研究思路. 一、基本定义定义:)(x ϕ是方阵A 的最小多项式0)(=⇔A f 且)(x ϕ次数最低、首项系数为1. 例 数量矩阵kE 的最小多项式是 二、基本性质引理1矩阵A 的最小多项式必唯一. 证法 带余除法引理2)(x f 是A 的零化多项式)(x f ⇔是A 的最小多项式)(x ϕ的倍式,即)(|)(x f x ϕ. 【特例】最小多项式是特征多项式的因式. 证法 带余除法例 求⎪⎪⎪⎭⎫ ⎝⎛=1111A 的最小多项式. 2)1(-x【问题】相似矩阵有相同的最小多项式?例 k 阶若当块kk a a a J ⨯⎪⎪⎪⎪⎪⎭⎫⎝⎛=11的最小多项式是 (直接计算,k a x )(-) 三、主要结论定理 数域P 上矩阵A 可对角化的充要条件是A 的最小多项式是P 上互素的一次因式的乘积. 推论 复数域上A 可对角化的充要条件是A 的最小多项式无重根.例 设A 是n 阶幂等矩阵,且秩为r .试求A 的相似标准形,并说明理由;求A E -2. 解法:由A A =2知A 有最小多项式)1()(2-=-=λλλλλg 且无重根,所以A 相似于对角矩阵,且特征值只能是1或0.又r A r =)(,故存在可逆矩阵P 使⎪⎪⎭⎫ ⎝⎛=-0001rE AP P .从而 rn r n rA E E E AP P E P A E P ----=-⇒⎪⎪⎭⎫ ⎝⎛=-=-222002)2(11. 矩阵相似对角化的应用1.利用矩阵相似对角化计算矩阵多项式若矩阵A 与B 相似,则存在可逆矩阵P 使得1-=PBP A ,于是1-=P PB A k k . 进一步有:当)(x ϕ是多项式时,1)()(-=P B P A ϕϕ.特例:当A 相似于对角矩阵时,由1-=P PB A k k 容易计算方幂kA .2.求Fibonacci 数列通项:)1,0(1012==+=++a a a a a n n n解法 用矩阵形式表示递推关系式⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-+011101110111a a a a a a nn n n n⎪⎪⎭⎫ ⎝⎛=0111A 的特征值为2512,1±=λ,对应的特征向量为'⎪⎪⎭⎫ ⎝⎛±1,251,⎪⎪⎭⎫⎝⎛=-211λλAP P 由此可求nA ,即得⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+=nn n a 25125151. 3.利用矩阵相似对角化线性方程组【例】(人口流动问题)设某国人口流动状态的统计规律是每年有十分之一的城市人口流向农村,十分之二的农村人口流入城市.假定人口总数不变,则经过许多年以后,全国人口将会集中在城市吗? 解 设最初城市、农村人口分别为00,y x ,第k 年末人口分别为k k y x ,,则 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛00118.01.02.09.0y x y x ,⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛--118.01.02.09.0k k k k y x y x 记⎪⎪⎭⎫⎝⎛=8.01.02.09.0A ,可得⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛00y x A y x k k k . 为计算kA ,可考虑把A 相似对角化.特征多项式)7.0)(1(--=-λλλA E .1=λ对应的特征向量为)1,2(1'=α;7.0=λ对应的特征向量为)1,1(2'-=α取⎪⎪⎭⎫⎝⎛-==1112),(21ααP ,得⎪⎪⎭⎫ ⎝⎛-=-2111311P ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=-21117.00011112317.00011k kk P P A令∞→k ,有07.0→k ,得⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-→12223121110001111231k A ⎪⎪⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫ ⎝⎛3132)(1222310000y x y x y x k k 可见当∞→k 时,城市与农村人口比例稳定在1:2.定理7:设A 为实对称矩阵,则必存在正交矩阵T ,使得1T AT T AT -'=为对角阵.(注意:对角元恰好是A 的全体特征值) (常用于证明题)[证明思路]:利用对称变换的理论,等价于对称变换有n 个特征向量作成标准正交基(见教材).也可用数学归纳法,将实对称矩阵A 用两次正交相似变换化为对角阵.证明:设σ在n 维欧氏空间V 的标准正交基下的矩阵是A ,则σ是对称变换. 1=n 时,)(αL V =,取V e ∈=αα/1,则V e ∈)(1σ,有11)(ke e =σ,1e 即为所求. 设1-n 时命题成立(含义?),考虑n 的情形.设法把n V 分解成11-+n V V ,才能使用归纳假设:1)σ对称σ−−→−引理有实数特征值1λ(才能保证特征向量)(1R V ∈α,正交矩阵要求实数矩阵);2)取111/αα=e ,则是实.特征向量.设1V 是)(1e L 的正交补,则1V 是σ-子空间,维数为1-n ,且1|V σ是1V 的对称变换.于是利用归纳假设,1V 有1-n 个特征向量n e e ,,2 标准正交,联合n e e e ,,,21 即为V 的特征向量、标准正交基.另证:直接从矩阵角度证明,数学归纳法:1=n 显然. 设1-n 时命题成立,A 必有实数特征值1λ(特征向量n R ∈1α),取111/αα=e ,则也是实.特征向量.扩充成n R 的标准正交基n e e e ,,,21 ,以它们为列作n 级矩阵1T ,则1T 正交,且),,,(),,,(),,,(1121111112111211111n n n Ae T Ae T e T Ae Ae Ae T e e e A T AT T -----===' λ注意到),,,(),,,(112111112111111n n e T e T e T e e e T T T E -----=== ,故111e T -是E 的第一列,于是11AT T '形如⎪⎭⎫⎝⎛B C 01λ,而A 对称,11AT T '也对称,得0=C ,且B 是1-n 级对称矩阵. 由归纳假设,存在1-n 级正交矩阵Q ,使得),,(2n diag BQ Q λλ =',取212,001T T T Q T =⎪⎭⎫ ⎝⎛=可得T 是正交矩阵,并且),,(1111n diag Q B Q AT T λλλ ==⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛'=' 又AT T AT T 1-='与A 相似,有相同的特征值,于是n λλ,,1 是A 的全部特征值.《欧氏空间》复习一、主要概念 1)内积 2)长度 3)夹角 4)正交 5)度量矩阵 6)标准正交基7)正交矩阵 8)正交变换 9)正交补 10)对称变换 11)最小二乘法二、重要方法1.验证欧氏空间.[内积4条公理]2.利用内积计算长度、夹角;证明向量相等、长度关系式.3.求标准正交基.[可验证!先正交化再单位化,反之…错.]4.正交补的构造与求法.5.正交矩阵、正交变换、对称变换的应用与证明.[注意变换与矩阵的转化]6.求正交矩阵T ,使得1T AT T AT -'=为对角阵.(可验证!注意区别第五、七章的方法)7.利用正交线性替换化实二次型为标准形. *8.求最小二乘解. 三、思考题1.什么是内积?欧氏空间的哪些概念与内积有关?(长度、夹角、正交、度量矩阵、标准正交基、同构、正交变换、对称变换、正交补) 2.内积与标准正交基有何联系? 3.标准正交基有何作用? 4.如何构造子空间的正交补?5.正交矩阵、实对称矩阵各有哪些特点?6.正交变换、对称变换各有哪些特点和区别? 四、例题选讲 ◎ A 正定1>+⇒E A证1:A 正定⇒特征值E A i +⇒>0λ的特征值11>+i λ 于是1111)1()1)(1(21=⋅>+++=+ n E A λλλ 证2:A 正定⇒0),,,(11>=-i n diag AT T λλλ1111)1()1)(1()1,,1(),,(1211111=⋅>+++=++=+=+--- TT T Tdiag E T Tdiag E A n n n λλλλλλλ《期末总复习》一、考试题型填空、计算、证明、讨论或判断 二、复习依据作业(习题集)、例题、课外提高 三、各章主线 1.线性空间线性空间……定义、线性运算、基、维数、坐标子空间……两个封闭性、基、维数、生成子空间、扩充基、维数公式、和、直和 同构……构造、判定、意义 2.线性变换线性变换……验证(定义)、运算、关于基的矩阵及变换问题的转化、不变子空间 特征值与特征向量……证明、求法(可验证)、结论、对角化判定及求可逆矩阵C 值域与核……基、维数、两者维数关系 3.Jordan 标准形不变因子 初等因子 Jordan 标准形4.欧氏空间(注意:涉及的概念都与内积有关)内积……验证(四条公理)、长度、夹角、标准正交基(求法,可验证) 正交变换……判定、不变性、正交矩阵(可验证)对称变换……判定、特征值、对角化(求正交矩阵[可验证].区别第5章方法)四、注意事项1.几类矩阵的特点、区别与联系:……可逆矩阵、对称矩阵、合同矩阵、相似矩阵、正定矩阵、正交矩阵.2.线性变换问题与矩阵问题的转化……线性空间(通过基)、欧氏空间(通过标准正交基)3.可验证的几种计算类型特征值(迹)、特征向量(代入方程组)、标准正交基(两两正交、长度为1)、')正交矩阵(行[或列]向量组标准正交,或EAA=3、大、中、小队长标志要求各队长必须每天佩戴,以身作则,不得违纪,如有违纪现。
§9 最小多项式根据哈密尔顿—凯莱定理,任给数域P 上一个n 级矩阵A ,总可以找到数域P 上一个多项式)(x f ,使0)(=A f . 如果多项式)(x f 使0)(=A f ,就称)(x f 以A 为根 当然,以为A 根的多项式是很多的.一、定义1.定义:次数最低的首项系数为1的以A 为根的多项式称为A 的最小多项式. 2.基本性质引理1 矩阵A 的最小多项式是唯一的.引理2 设)(x g 是矩阵A 的最小多项式,那么)(x f 以A 为根的充要条件是)(x g 整除)(x f . 由此可知,矩阵A 的最小多项式是A 的特征多项式的一个因式. 3.如何求矩阵A 的最小多项式例1 数量矩阵kE 的最小多项式为k x -, 特别地,单位矩阵的最小多项式为1-x , 零矩阵的最小多项式为x .另一方面,如果A 的最小多项式是1次多项式,那么A 一定是数量矩阵. 例2 设⎪⎪⎪⎭⎫ ⎝⎛=1111A求A 的最小多项式.例3 相似矩阵有相同的最小多项式, 反之不然. 设111111,1222A B ⎛⎫⎛⎫⎪ ⎪⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. A 与B 的最小多项式都等于)2()1(2--x x ,但是它们的特征多项式不同,因此A 和B 不是相似的.二、应用最小多项式来判断一个矩阵能否对角化的问题1.引理3 设A 是一个准对角矩阵⎪⎪⎭⎫⎝⎛=21A A A ,并设1A 的最小多项式为)(1x g ,2A 的最小多项式为)(2x g , 那么A 的最小多项式为)(1x g ,)(2x g 的最小公倍式)](),([21x g x g .这个结论可以推广到A 为若干个矩阵组成的准对角矩阵的情形.即:如果⎪⎪⎪⎪⎪⎭⎫⎝⎛=s A A A A21, i A 的最小多项式为s i x g i ,,2,1,)( =,那么A 的最小多项式为 )](,),(),([21x g x g x g s2.引理4 k 级若尔当块⎪⎪⎪⎪⎪⎭⎫⎝⎛=a a a J 11 的最小多项式为k a x )(-.3.定理15 数域P 上n 级矩阵A 与对角矩阵相似的充要条件为A 的最小多项式是P 上互素的一次因式的乘积.4.推论 复数矩阵A 与对角矩阵相似的充要条件是A 的最小多项式没有重根.更广一点讲, 在复数域上, 如果存在一个没有重根的多项式 ()f x , 满足()0f A =, 则 A 就可以对角化.例. 设 A 是 n 阶方阵,满足 32220A A A E +--=, 问 A 是否相似于对角矩阵 解:32()22(1)(1)(2)f x x x x x x x =+--=+-+ 是 A 的化零多项式, 从而 A 的最小多项式没有重根,可以对角化,第七章 线性变换(小结)线性变换是线性代数的中心内容之一,它对于研究线性空间的整体结构以及向量之间的内存联系起着重要作用.线性变换的概念是解析几何中的坐标变换、数学分析中的某些变换替换等的抽象和推广,它的理论和方法,(特别是与之相适应的矩阵理论和方法)在解析几何、微分方程等许多其它应用学科,都有极为广泛的应用.本章的中心问题是研究线性变换的矩阵表示, 在方法上则充分利用了线性变换与矩阵对应和相互转换.一、线性变换及其运算1. 基本概念:线性变换,可逆线性变换与逆变换;线性变换的值域与核,秩与零度;线性变换的和与差,乘积和数量乘法,幂和多项式.2. 基本结论(1) 线性变换保持零向量、线性组合与线性关系不变; 线性变换把负向量变为象的负向量、把线性相关的向量组变为线性相关的向量组(2) 线性变换的和、差、积、数量乘法和可逆线性变换的逆变换仍为线性变换. (3) 线性变换的基本运算规律(略).(4) 一个线性空间的全体线性变换关于线性变换的加法与数量乘法作成一个线性空间. (5) 线性空间V 的线性变换A 的象与核是V 的子空间.若dim(V )=n ,则Im(A )由V 的一组基的象生成,而A 的秩+A 的零度=n ,且A 是双射⇔A 是单射⇔ Ker(A )={0}.二、线性变换与矩阵1.基本概念:线性变换在基下的矩阵;相似矩阵.2.基本结论(1) 若n ααα,,,21 是线性空间V 的一个基, V n ∈∀βββ,,,21 ,则存在唯一A )(V L ∈,使得A n i i i ,,2,1,)( ==βα.(2) 在取定n 维线性空间V 的一个基之后,将V 的每一线性变换与它在这个基下的矩阵相对应,则这个对应使得线性变换的和、乘积、数量乘积的矩阵分别对应于矩阵的和、乘积、数量乘积;可逆线性变换与可逆矩阵对应,且逆变换对应逆矩阵。
§7.4 不变子空间教学目的本节要求掌握不变子空间的概念及其不变子空间的判断方法,掌握值域和核的概念以及它们都是σ的不变子空间的事实,了解σ的秩和零度的概念及其相关结论。
教学难点不变子空间的证明教学重点不变子空间的概念、值域和核的概念以及它们都是σ的不变子空间的证明教学过程备注教学内容一、不变子空间的定义为了解决不变子空间的问题,我们需要不变子空间的概念.先看一个例子.在3V中,设σ是数量变换,即有一个确定的数k,使得对任意αασαk)(,3=∈V,设W是3V中过原点的一个平面,W是3V的一个子空间,对W中每一个向量ξ,ξ在σ作用之下的像)(ξσ仍是W中的向量,这样的子空间W就是σ的不变子空间.定义1 设σ是F上向量空间V的一个线性变换,W是V的一个子空间,若W中向量在σ下的像仍在W中,即对于W中任一向量ξ,都有W∈)(ξσ,则称W是σ的一个不变子空间,或称W在σ之下不变.例1 向量空间V本身和零子空间是V的任一个线性变换的不变子空间,称它们为V的平凡不变子空间,其它不变子空间称为非平凡不变子空间.例2 向量空间V的任一子空间都是数量变换的不变子空间.例3 在R[x]中,令x)(f(f(x))'=σ,对任意][],[)(xRxRxfn∈是R[x]的子空间,并且]x[nR是σ的不变子空间.例4 设σ是3V中以过原点的一条直线L为轴,旋转θ角的变换,则L是σ的一维不变子空间;过原点且与L垂直的平面H是σ的一个二维不变子空间.二、不变子空间的判断下面给出一种判断不变子空间的方法定理7.4.1 设σ是n维向量空间V的一个线性变换,W是V的子空间,{}r21,,,ααα 是W的基.则W是σ的不变子空间的充要条件是)(,),(),(r21ασασασ 在W中.设W是向量空间V的关于线性变换σ的不变子空间,那么对于任意的W ∈α,必有W ∈)(ασ,因此σ也可看作是向量空间W 的一个线性变换,用Wσ表示,即对于任意W ∈ξ,若W ∉ξ,那么)(ξσW就没有意义. Wσ叫做σ在W 上的限制.三、不变子空间与线性变换的矩阵的关系设σ是n 维向量空间V 的一个线性变换,W 是σ的一个非平凡不变子空间.在W 中取一个基{}r 21,,,ααα ,把它扩充成V 的一个基},,,,,,{1r 21n r ααααα +,由于),,2,1()(r i W i =∈ασ,故可设……………………因此,σ关于这个基的矩阵为 这里1A 是Wσ关于W 的基{}r 21,,,ααα 的矩阵. 如果V 可以分解成两个非平凡不变子空间1W 与2W 的直和那么选取1W 的一个基{}r 21,,,ααα 和2W 的一个基{}n 1,,αα +r ,凑成V 的一个基{}n r ααααα,,,,,,1r 21 +,当1W 和2W 都在σ下不变时,σ关于这个基的矩阵是这里1A 是r 阶矩阵,2A 是n-r 阶矩阵,它们分别是1W σ关于基{}r 21,,,ααα 的矩阵和2W σ关于基{}n 1,,αα +r 的矩阵. 若V 可分解成s 个非平凡子空间s 21,,,W W W 的直和,并且每一i W 都是σ的不变子空间,那么在每一子空间中取一个基,凑成V 的基,σ关于这个基的矩阵就为分块对角形矩阵其中i A 是i W σ关于i W 的基的矩阵,.,2,1s i =如果能将V 分解成n 个在σ下不变的一维子空间的直和,那么σ在适当选取的基下的 矩阵就是对角矩阵. σ的一维不变子空间的问题与线性变换的本征值和本征向量有密切关系,我们将在下一节进行讨论.四、线性变换的值域与核定义2 设是向量空间的一个线性变换,由V 中全体向量的像构成的集合称为的值域,记作或;有零向量在之下的全体原像作成的集合称为的核,记作,即定理7.4.2 设σ是向量空间V 的线性变换,那么σm I 和σKer 是V 的子空间,并且在σ之下不变.证 先证σm I 是σ的不变子空间因为,σσm 0)0(,0I V ∈=∈,所以Φ≠m I .由于对任意σηξIm ,,∈∈F k ,存在V ∈βα,,使得)(),(βσηασξ==,而σβασβσασηξIm )()()(∈+=+=+,因此σm I 是V 的子空间.任取σζIm ∈,当然σξσζIm )(,∈∈V .所以σm I 是σ的不变子空间.再证σKer 是σ的不变子空间.因为σKer ∈0,所以σKer 非空.对任意σβαKer F k ∈∈,,,有0)(,0)(==βσασ,于是即有,,σαβαKer k ∈+,所以σKer 是V 的子空间.由于σKer 中的向量在σ下的像都是零向量,因此σKer 是σ的不变子空间. 我们把σm I 的维数称为线性变换σ的秩,记作秩σ.把的维数称为线性变换的零度.定理7.4.3 设σ是n 维向量空间V 的一个线性变换,{}n 21,,,ααα 是V 的一个基,σ关于这个基的矩阵是A ,则(1) ))(,),(),((m 21n L I ασασασσ = (2) σ的秩等于A 的秩证 (1) σξm I ∈∀,存在n n a a a V αααηη+++=∈ 2211,,使得)(ησξ=. 于是故 ))(,),(),((Im 21n L ασασασσ ⊆又 σασασασIm ))(,),(),((21⊆n L ,所以(1)成立.(2) 由(1)知,而 A n n n ),,,())(,),(),((),,,(212121αααασασασααασ ==A n 秩=))(,),(),((21ασασασ ,所以A 秩秩=σ.定理7.4.4 设σ是n 维向量空间V 的一个线性变换,则证 在V 中取定一个基{}n 21ααα,,, .设σ关于这个基的矩阵为A ,由定理7.4.3, σ的秩=秩A若σαααξKer a a a n n ∈+++= 2211,则0)(=ξσ.由于)(ξσ与0向量的坐标相同,即T T n A )0,,0,0(),,,(21 =ααα,因此ξ的坐标T n a a a ),,,(21 是齐次线性方程组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00021n x x x A(1)的在n F 中的解向量.反之,对齐次线性方程组(1)的每个解向量T n b b b ),,,(21 来说,σαααKer b b b n n ∈+++ 2211.令σKer 的任一向量ξ与它的坐标对应,这就得到了F 上向量空间σKer 与(1)的在F 上的解空间W 的同构映射.因此 故例5 设{}4321αααα,,,是四维向量空间V 的一个基,线性变换σ关于这个基的矩阵为A ,并且 求σ的值域与核.解 先求ker σ, 设ξ∈ker(σ), ξ关于{α1,α2,α3,α4}的坐标为(x 1, x 2, x 3,x 4), σ (ξ)在{α1,α2,α3,α4}下的坐标为(0, 0, 0, 0),由定理7.4.4,有⎪⎪⎪⎪⎪⎭⎫⎝⎛---2122552131211201 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛4321x x x x =⎪⎪⎪⎪⎪⎭⎫⎝⎛0000 解得该齐次线性方程组的基础解系为X 1=(-2,-23,1,0), X 2=(-1,-2,0,1).令 β1=-2α123-α2+α3 , β2=-α1-2α2+α4 那么ker (σ)=L (β1, β 2),σ的零度=2 .再求Im σ. 由定理7.4.3,Im σ=L (σ (α1), σ (α2), σ (α3), σ (α4)).而由定理7.4.4, σ的秩为2. 因此,{})(,)(,)(,)(4321ασασασασ的极大无关组含有两个向量,又σ (α1), σ (α2)线性无关,所以Im σ =L (σ (α1), σ (α2)).作 业:P332-333,习题七,第19,20,21,22,23,24,25,26题. 教学小结本节内容分为下面四个问题讲: 1. 加法运算 2. 数乘运算 3. 乘法运算(1). 乘法运算 (2). 线性变换σ的方幂4. 可逆线性变换及线性变换可逆的充要条件 本课作业本课教育评注。
§7 不变子空间对于给定的n 维线性空间V ,A ∈)(V L ,如何才能选到V 的一个基,使A 关于这个基的矩阵具有尽可能简单的形式.由于一个线性变换关于不同基的矩阵是相似的.因而问题也可以这样提出:在一切彼此相似的n 阶矩阵中,如何选出一个形式尽可能简单的矩阵.这一节介绍不变子空间的概念,来说明线性变换的矩阵的化简与线性变换的内在联系.定义7 设A 是数域P 上线性空间V 的线性变换,W 是V 的一个子空间.如果W 中的向量在A 下的像仍在W 中,换句话说,对于W 中任一向量ξ,有A W ∈ξ,就称W 是A 的不变子空间,简称A -子空间.例1 整个空间V 和零子空间{}0,对于每个线性变换A ,都是A -子空间. 例2 A 的值域与核都是A -子空间.例3 若线性变换A 与B 是可交换的,则B 的核与值都是A -子空间. 因为A 的多项式f (A )是和A 交换的,所以f (A )的值域与核都是A -子空间.例4 任何一个子空间都是数乘变换的不变子空间.特征子空间与一维不变子空间之间有着紧密的联系.设W 是一维A -子空间,ξ是W 中任何一个非零向量,它构成W 的一个基.按A -子空间的定义,A W ∈ξ,它必是ξ的一个倍数:A ξλξ0=.这说明ξ是A 的特征向量,而W 即是由ξ生成的一维A -子空间.反过来,设ξ是A 属于特征值0λ的一个特征向量,则ξ以及它任一倍数在A 下的像是原像的0λ倍,仍旧是ξ的一个倍数.这说明ξ的倍数构成一个一维A -子空间.显然,A 的属于特征值0λ的一个特征子空间0λV 也是A 的一不变子空间.A -子空间的和与交还是A -子空间.设A 是线性空间V 的线性变换, W 是A 的不变子空间.由于W 中向量在A 下的像仍在W 中,这就使得有可能不必在整个空间V 中来考虑A ,而只在不变子空间W 中考虑A ,即把A 看成是W 的一个线性变换,称为A 在不变子空间W 上引起的变换.为了区别起见,用符号A |W 来表示它;但是在很多情况下,仍然用A 来表示而不致引起混淆.必须在概念上弄清楚A 与A |W 的异同:A 是V 的线性变换, V 中每个向量在A 下都有确定的像;A |W 是不变子空间W 上的线性变换,对于W 中任一向量ξ,有(A |W )ξ=A ξ.但是对于V 中不属于W 的向量η来说,(A |W )η是没有意义的.例如,任一线性变换在它的核上引起的变换就是零变换,而在特征子空间0λV 上引起的变换是数乘变换0λ.如果线性空间V 的子空间W 是由向量组s ααα,,,21 生成的,即),,,(21s L W ααα =,则W 是A -子空间的充要条件为A 1α,A 2α,…, A s α全属于W .下面讨论不变子空间与线性变换矩阵化简之间的关系.1)设A 是维线性空间V 的线性变换,W 是V 的A -子空间.在W 中取一组基k εεε,,,21 ,并且把它扩充成V 的一组基n k k εεεεε,,,,,,121 +. (1)那么,A 在这组基下的矩阵就具有下列形状⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++++++2311,,11,11,111,11110000A O A A a a a a a a a a a a a a nn k n n k k k kn k k kk k n k k . (2) 并且左上角的k 级矩阵1A 就是A |W 在的基k εεε,,,21 下的矩阵.2) 设V 分解成若干个A -子空间的直和:s W W W V ⊕⊕⊕= 21.在每一个A -子空间i W 中取基),,2,1(,,,21s i iin i i =εεε (3) 并把它们合并起来成为V 的一组基I .则在这组基下,A 的矩阵具有准对角形状⎪⎪⎪⎪⎪⎭⎫ ⎝⎛s A A A 21 (4) 其中),,2,1(s i A i =就是A |W 在基(3)下的矩阵.反之,如果线性变换A 在基I 下的矩阵是准对角形(4),则由(3)生成的子空间i W 是A -子空间.由此可知,矩阵分解为准对角形与空间分解为不变子空间的直和是相当的. 下面应用哈密尔顿-凯莱定理将空间V 按特征值分解成不变子空间的直和. 定理12 设线性变换A 的特征多项式为)(λf ,它可分解成一次因式的乘积s r s r r f )()()()(2121λλλλλλλ---=则V 可分解成不变子空间的直和s V V V V ⊕⊕⊕= 21其中{}V A V i r i i ∈=-=ξξελξ,0)(|.。
兰州理工大学<材料力学A>科目考试大纲考试科目代码:802适用招生专业:工程力学,固体力学考试内容1、绪论结构力学的基本任务及研究对象。
结构的计算简图。
2、体系的几何构造分析几何不变。
3、剪切掌握剪切的概念和实例,掌握剪切的近似计算及挤压的近似计算。
4、扭转了解扭转的概念和实例,熟练掌握扭矩的计算和扭矩图的作法。
掌握剪切虎克定律、剪应力互等定理。
掌握圆轴扭转时的横截面剪应力的计算和斜截面上的应力分析,掌握扭转变形的计算。
掌握扭转轴的强度计算和刚度计算。
5、截面图形的几何性质掌握形心和面矩,惯性矩、惯性积和惯性半径,形心主轴和主形心惯性矩的概念及计算公式,掌握平行轴公式。
6、弯曲(1)内力理解平面弯曲、剪力和弯矩的概念。
熟练掌握梁的剪力图和弯矩图的作法,弯矩、剪力和分布载荷集度间的关系及其应用。
掌握刚架的轴力图、剪力图和弯矩图的作法,掌握叠加原理作弯矩图的方法。
(2)应力掌握纯弯曲时梁横截面上的正应力公式、弯矩和挠曲线曲率半径的关系。
理解并掌握抗弯截面模量、抗弯刚度的概念。
理解弯曲剪应力。
掌握梁弯曲时的强度计算及提高梁弯曲强度的措施。
(3)变形掌握挠度和转角的概念及梁的挠曲线近似微分方程。
掌握用积分法、叠加法计算梁的挠度和转角。
掌握梁的刚度条件进行梁的设计。
(4)简单超静定梁的问题掌握简单超静定梁的解法及提高梁弯曲刚度的措施。
7、应力状态理解应力状态的概念。
掌握平面应力状态下的应力分析及主应力、主平面、最大剪应力的概念。
掌握广义虎克定律。
了解三向应力状态下的应力分析。
8、强度理论及应用理解强度理论的概念。
掌握几个基本的强度理论及应用。
9、组合变形下的强度计算理解组合变形的概念和实例。
掌握斜弯曲、拉(压)弯组合变形(包括偏心拉、压)及弯扭组合变形的强度计算。
10、压杆稳定掌握压杆稳定的概念、两端铰支压杆的临界应力、杆端约束对临界应力的影响、经验公式。
掌握压杆稳定校核。
了解提高压杆稳定性的措施。
《高等代数》考试大纲考试科目代码:870适用招生专业:应用数学,运筹学与控制论,基础数学考试内容1.多项式数域,一元多项式,整除的概念,最大公因式,因式分解定理,重因式,多项式函数,复系数与实系数多项式的因式分解,有理系数多项式。
2.行列式排列,n级行列式,n级行列式的性质,行列式的计算,行列式按一行(列)展开,克兰姆法则3.线性方程组消元法,n维向量空间,线性相关性,矩阵的秩,线性方程组有解判别定理,线性方程组解的结构。
4.矩阵矩阵的概念,矩阵的运算,矩阵乘积的行列式与秩,矩阵的逆,矩阵的分块,初等矩阵,分块乘法的初等变换。
5.二次型二次型的矩阵表示,标准型,唯一性,正定二次型。
6.线性空间集合映射,线性空间的定义与简单性质,维数、基与坐标,基变换与坐标变换,线性子空间,子空间的交与和,子空间的直和,线性空间的同构。
7.线性变换线性变换的定义,线性变换的运算,线性变换的矩阵,特征值与特征向量,对角矩阵,线性变换的值域与核,不变子空间,若当标准型,最小多项式。
8.欧几里得空间定义与基本性质,标准正交基,同构,正交变换,子空间,对称矩阵的标准型,向量到子空间的距离最小二乘法。
建议参考书《高等代数》,北京大学,高等教育出版社兰州理工大学样题《数学分析》科目考试大纲考试科目代码:760适用招生专业:应用数学,运筹学与控制论,基础数学考试内容1.函数。
2.极限。
3.函数的连续性。
4.导数与微分。
5.微分中值定理。
6.连续性的基本理论。
7.不定积分。
8.定积分。
9.定积分的应用。
10.数项级数。
11.函数项级数。
12.幂级数。
13.傅里叶级数。
14.广义积分。
15.多元函数及其极限与连续。
16.多元函数的微分学。
17.重积分。
18.曲线积分与曲面积分。
19.含参变量积分。
建议参考书《数学分析》,华东师范大学编(第三版),高等教育出版社《数学分析》,陈传璋编,高等教育出版社兰州理工大学样题《结构力学B》科目考试大纲考试科目代码:820适用招生专业:工程力学,固体力学考试内容1、绪论结构力学的基本任务及研究对象。
不变子空间.若当.最小多项式(简介)§7 不变子空间◎ 本节重点:不变子空间的定义与“限制”.已知可对角化对应于对角矩阵,但是并不是每个都能对角化的.退一步,对应于准对角形也好;虽然比对角形复杂,但也算简单.这个问题的研究需要用到不变子空间的概念.一、定义与例子1.定义:σ∈L(Vn),W是σ的不变子空间⇔W是V的子空间,且∀ξ∈W,有σ(ξ)∈W.简称σ-子空间. (注意:与线性变换有关)2.例子:设σ∈L(Vn),则下列子空间W都是σ的不变子空间: 1)W={0} 2)W=V 3)W=σ-1(0) 4)W=σ(V) 5)W=Vλ0={ξ∈V|σ(ξ)=λ0ξ}A与B是可交换的,则B的核与值域都是A-子空间. 二、线性变换在不变子空间上的“限制”1.定义:设W是σ∈L(Vn)的不变子空间,可只在W中考虑σ,记为σ|W.【意义】缩小了线性变换的范围,从而简化线性变换.因此,如果V可分解为若干σ-子空间Wi的直和,那么对V的线性变换σ的研究就归结为对各个子空间Wi的直和研究.2.区别:σ|W与σ的作用结果一样,但作用范围不同.即ξ∈W⇒(σ|W)ξ=σξ;ξ∉W⇒(σ|W)ξ无意义.三、不变子空间与线性变换矩阵化简之间的关系(意义)V=W1⊕W2⊕ ⊕Ws,设V可分解为若干个σ-子空间的直和:在每个不变子空间Wi中取基εi,εi, ,εi,i=1,2, s,并把他们合并为V的一组基,则在这组基下,σ的矩阵具有12k⎛A1准对角形⎝⎫⎪⎪,其中Ai,i=1,2, s是A|Wi在对应基下的矩阵. As⎪⎭进一步的,我们有: *四、不变子空间的直和分解定理12:设线性变换σ∈L(Vn)的特征多项式f(λ)可分解成一次因式:f(λ)=(λ-λ1)r(λ-λ2)r (λ-λS)r,则V可以分解成不变子空间的直和: 12SV=V1⊕V2⊕⊕Vs,其中Vi={ξ∈V|(σ-λiE)iξ=0}.r§8 若当(Jordan)标准形介绍若当(Jordan)标准形是一类特殊的准对角矩阵. 一、基本定义 1. 若当块⎛λ 1J(λ,t)=0 ⎝000 1000λ 00λ10⎫⎪0⎪⎪(λ是复数;注意对角元相同)⎪0⎪⎪λ⎭2. 若当形矩阵=由若干个若当块(阶数未必相同、λ未必相同)组成(不计顺序)的准对角矩阵. (若当形矩阵中包括对角矩阵)【问题】若当形矩阵的特征值=?.(若当块不计排列顺序)二、主要结论定理13:∀σ∈L(Vn(C)),在V中必定存在一组基,使σ在这组基下的矩阵式若当形矩阵. (这个若当形矩阵除去其中若当块的排列次序外,是被σ唯一决定的,它称为σ的若当标准形)若用矩阵来描述,即定理14:复数域上,每个方阵都相似于某个若当形矩阵.(好用的结论)三、若当标准形的求法(第八章介绍)【特例】若A可对角化,则若当标准形就是相似的对角矩阵.⎛0【第二届中国大学生数学竞赛预赛2019】设B= 00⎝100030⎫⎪2019⎪, 0⎪⎭证明X2=B无解,这里X为三阶复数矩阵.[证法]对复数矩阵,优先考虑它相似于某个Jordan矩阵这个性质,并联系特征值.§9 最小多项式介绍最小多项式有着良好的理论意义,特别是适用于对角化问题.已知Hamilton-Cayley定理:方阵A的特征多项式是A的零化多项式.要寻找其中次数最低的,这就是最小多项式的研究思路. 一、基本定义定义:ϕ(x)是方阵A的最小多项式⇔f(A)=0且ϕ(x)次数最低、首项系数为1. 例数量矩阵kE的最小多项式是二、基本性质引理1矩阵A的最小多项式必唯一. 证法带余除法引理2f(x)是A的零化多项式⇔f(x)是A的最小多项式ϕ(x)的倍式,即ϕ(x)|f(x). 【特例】最小多项式是特征多项式的因式. 证法带余除法⎛1例求A=⎝11⎫⎪2⎪的最小多项式. (x-1) 1⎪⎭【问题】相似矩阵有相同的最小多项式?⎛a 1例 k阶若当块J=⎝a1⎫⎪⎪⎪的最小多项式是⎪a⎪⎭k⨯k(直接计算,(x-a)k)三、主要结论定理数域P上矩阵A可对角化的充要条件是A的最小多项式是P上互素的一次因式的乘积. 推论复数域上A可对角化的充要条件是A的最小多项式无重根.例设A是n阶幂等矩阵,且秩为r.试求A的相似标准形,并说明理由;求2E-A. 解法:由A2=A知A有最小多项式g(λ)=λ2-λ=λ(λ-1)且无重根,所以A相似于对角矩阵,且特征值只能是1或0.又r(A)=r,故存在可逆矩阵P使P⎛ErAP= 0⎝02En-r⎛ErAP= 0⎝0⎫⎪. 0⎪⎭从而 P-1(2E-A)P=2E-P-1⎫n-r⎪⇒2E-A=2. ⎪⎭矩阵相似对角化的应用1.利用矩阵相似对角化计算矩阵多项式若矩阵A与B相似,则存在可逆矩阵P使得A=PBP进一步有:当ϕ(x)是多项式时,ϕ(A)=Pϕ(B)P-1.特例:当A相似于对角矩阵时,由Ak=PBkP-1容易计算方幂Ak. 2.求Fibonacci数列通项:an+2=an+1+an(a0=0,a1=1)⎛an+1⎫⎛1解法用矩阵形式表示递推关系式 a⎪⎪=⎝n⎭⎝1⎛1A= 1⎝-1,于是Ak=PBkP-1.1⎫⎛an⎫⎛1⎪ a⎪⎪= 0⎪⎭⎝n-1⎭⎝11⎫⎪0⎪⎭na⎝0⎫⎪⎪⎭'⎛⎫1⎫⎛λ11±51±5-1 ⎪⎪的特征值为λ1,2=,对应的特征向量为,1,PAP=⎪0⎪22⎭⎝⎝⎭⎫⎪λ2⎪⎭nn⎡⎛⎤⎫⎛⎫11+51-5n⎪- ⎪⎥. ⎢由此可求A,即得an=⎪ 2⎭2⎪5⎢⎝⎝⎭⎥⎣⎦3.利用矩阵相似对角化线性方程组【例】(人口流动问题)设某国人口流动状态的统计规律是每年有十分之一的城市人口流向农村,十分之二的农村人口流入城市.假定人口总数不变,则经过许多年以后,全国人口将会集中在城市吗?解设最初城市、农村人口分别为x0,y0,第k年末人口分别为xk,yk,则⎛x1⎫⎛0.9y⎪⎪=⎝1⎭⎝0.1⎛0.9记A= 0.1⎝0.2⎫⎛x0⎪⎪0.8⎭⎝y0⎛xk⎫⎛0.9⎫⎪,⎪ y⎪⎪= ⎝k⎭⎝0.1⎭0.2⎫⎛xk-1⎫⎪⎪⎪⎪0.8⎭⎝yk-1⎭x0.2⎫⎛xk⎫k⎛0⎫⎪⎪,可得⎪=A ⎪⎪⎪. 0.8⎭yy⎝k⎭⎝0⎭为计算Ak,可考虑把A相似对角化.特征多项式λE-A=(λ-1)(λ-0.7). λ=1对应的特征向量为α1=(2,1)';λ=0.7对应的特征向量为α2=(1,-1)'取P=(α1,α2)= 1⎝k⎛21⎫1⎛1-1⎪ P=,得⎪-1⎭3⎝11⎫⎪⎪-2⎭A⎛1=P 0⎝0⎫1⎛2-1⎪P= 0.7⎪3⎝1⎭kk1⎫⎛1⎪ -1⎪⎭⎝00⎫⎛1⎪ k 0.7⎪⎭⎝11⎫⎪ -2⎪⎭1⎫1⎛2⎪= ⎪-2⎭3 ⎝22⎫⎪ 1⎪⎭k令k→∞,有0.7→0,得A1⎛2→3⎝11⎫⎛1⎪⎪-1⎭⎝00⎫⎛1⎪⎪0⎭⎝1⎛xk⎫1⎛2 ⎪ → 2 y⎪3⎝⎝k⎭⎛2⎫⎪2⎫⎛x0⎫3⎪⎪⎪=(x+y)00⎪⎪1⎭ 1⎪⎝y0⎭⎪⎝3⎭可见当k→∞时,城市与农村人口比例稳定在2:1.定理7:设A为实对称矩阵,则必存在正交矩阵T,使得T'AT=T-1AT为对角阵.(注意:对角元恰好是A的全体特征值)(常用于证明题)[证明思路]:利用对称变换的理论,等价于对称变换有n个特征向量作成标准正交基(见教材).也可用数学归纳法,将实对称矩阵A用两次正交相似变换化为对角阵.证明:设σ在n维欧氏空间V的标准正交基下的矩阵是A,则σ是对称变换. n=1时,V=L(α),取e1=α/α∈V,则σ(e1)∈V,有σ(e1)=ke1,e1即为所求. 设n-1时命题成立(含义?),考虑n的情形.设法把Vn分解成V1+Vn-1,才能使用归纳假设:1)σ对称−引理−−→σ有实数特征值λ1(才能保证特征向量α1∈V(R),正交矩阵要求实数矩阵);2)取e1=α1/1,则是实特征向量.设V1是L(e1)的正交补,则V1是σ-子空间,维数为n-1,.且σ|V是V1的对称变换.于是利用归纳假设,V1有n-1个特征向量e2, ,en 标准正交,联合1e1,e2, ,en即为V的特征向量、标准正交基.另证:直接从矩阵角度证明,数学归纳法:n=1显然. 设n-1时命题成立,A必有实数特征n值λ1(特征向量α1∈Rn),取e1=α1/α1,则也是实.特征向量.扩充成R的标准正交基e1,e2, ,en,以它们为列作n级矩阵T1,则T1正交,且T1'AT1=T1A(e1,e2, ,en)=T1(Ae1,Ae2, ,Aen)=(λ1T1e1,T1Ae2, ,T1Aen)-1-1-1-1-1注意到E=T1T1=T1(e1,e2, ,en)=(T1e1,T1e2, ,T1en),故T1e1-1-1-1-1-1-1是E的第一列,于是T1'AT1形如⎛λ1⎝0C⎫⎪,而AB⎭对称,T1'AT1也对称,得C=0,且B是n-1级对称矩阵.λ2, ,λn),取由归纳假设,存在n-1级正交矩阵Q,使得Q'BQ=dia(g1T2=⎛ 0⎝0⎫,T=T1T2Q⎪⎭⎛1T'AT=⎝可得T是正交矩阵,并且⎫⎛λ1⎪ Q'⎪⎭⎝⎫⎛1⎪ B⎪⎭⎝⎫⎪= =diag(λ1, ,λn)Q⎪⎭又T'AT=T-1AT与A相似,有相同的特征值,于是λ1, ,λn是A的全部特征值.《欧氏空间》复习一、主要概念1)内积 2)长度 3)夹角 4)正交 5)度量矩阵 6)标准正交基 7)正交矩阵 8)正交变换 9)正交补 10)对称变换 11)最小二乘法二、重要方法1.验证欧氏空间.[内积4条公理]2.利用内积计算长度、夹角;证明向量相等、长度关系式.3.求标准正交基.[可验证!先正交化再单位化,反之…错.]4.正交补的构造与求法.5.正交矩阵、正交变换、对称变换的应用与证明.[注意变换与矩阵的转化]6.求正交矩阵T,使得T'AT=T-1AT为对角阵.(可验证!注意区别第五、七章的方法)7.利用正交线性替换化实二次型为标准形. *8.求最小二乘解. 三、思考题1.什么是内积?欧氏空间的哪些概念与内积有关?(长度、夹角、正交、度量矩阵、标准正交基、同构、正交变换、对称变换、正交补)2.内积与标准正交基有何联系? 3.标准正交基有何作用? 4.如何构造子空间的正交补?5.正交矩阵、实对称矩阵各有哪些特点?6.正交变换、对称变换各有哪些特点和区别?四、例题选讲◎ A正定⇒A+E>1证1:A正定⇒特征值λi>0⇒A+E的特征值λi+1>1 于是A+E=(λ1+1)(λ2+1)(λn+1)>1⋅1 1=1 证2:A正定⇒T-1AT=diag(λ1, ,λn),λi>0A+E=Tdiag(λ1, ,λn)T-1+E=Tdiag(λ1+1, ,λn+1)T-1-1=T(λ1+1)(λ2+1) (λn+1)>1⋅1 1=1《期末总复习》一、考试题型填空、计算、证明、讨论或判断二、复习依据作业(习题集)、例题、课外提高三、各章主线 1.线性空间2.线性变换、运算、关于基的矩阵及变换问题的转化、不变子空间可验证)、结论、对角化判定及求可逆矩阵C3.Jordan标准形4.欧氏空间(注意:涉及的概念都与内积有关)(四条公理)、长度、夹角、标准正交基(求法,可验证)可验证)[可验证].区别第5章方法)四、注意事项1.几类矩阵的特点、区别与联系:……可逆矩阵、对称矩阵、合同矩阵、相似矩阵、正定矩阵、正交矩阵. 2.线性变换问题与矩阵问题的转化……线性空间(通过基)、欧氏空间(通过标准正交基) 3.可验证的几种计算类型特征值(迹)、特征向量(代入方程组)、标准正交基(两两正交、长度为1)、正交矩阵(行[或列]向量组标准正交,或A'A=E)。