大型交流发电机励磁系统
- 格式:ppt
- 大小:937.00 KB
- 文档页数:59
发电机励磁系统原理及运行1.(发电机励磁系统图:)励磁系统构成及优缺点:励磁电源由励磁变引自发电机机端,通过可控硅整流元件直接控制发电机的励磁,这种励磁方式即为自并励可控硅整流励磁,其特点如下:(1)因采用可控硅整流器和无需考虑同轴励磁机时间常数的影响,故可获得较高的电压响应速度。
(2) 励磁变压器接到发电机端不受厂用电压的影响,但需起励电源。
(3)缺点:其一整流输出的直流顶值电压受发电机或电力系统短路故障形式和故障点远近的影响,缺乏足够的强励能力。
其二由于自并励可控硅整流励磁系统的发电机短路电流衰减较快,对发电机带延时的后备保护可靠动作不利。
为此,过流保护可采用电流启动记忆,由复合电压或低电压闭锁的延时保护。
2. 发电机励磁装置:(1) 励磁装置组成:并联励磁变、可控整流装置、励磁调节器、灭磁及转子过电压保护、起励回路。
(2) 并联励磁变压器:型号:SCLLB-1800KVA / 容量:1800kVA一次电压15.75KV 二次电压:0.6kv接线Y/△ -11••••• 自并励励磁系统的励磁变压器不设自动开关,只设有隔离刀闸。
励磁变装设过流保护,该保护动作引跳出口油开关及灭磁开关。
励磁变接在主变底压侧,不受系统及厂用电影响。
•(3) 可控硅整流回路:(整流回路原理图:)以单相半波整流电路为例说明可控硅整流电路的工作原理。
要使可控硅导通,必须在可控硅的阳极及控制极同时加正向电压,并且使流过可控硅的阳极电流大于它的维持电流。
当阳极加反响电压,或流过可控硅阳极的电流小于维持电流时,可控硅截止。
从可控硅承受正向电压开始,到可控硅导通为止,这一段区间为控制角。
改变控制角的大小,可调整可控硅输出电压的大小。
可控硅整流电路可输出连续可调的直流电压。
主整流器采用三相全控桥,2个功率柜并列运行。
整流元件采用晶闸管整流,•每个功率柜额定功率输出2000A。
整流柜为强迫风冷式。
风机设有主、备用电源,互为备用(•主、备用电源:均用机旁I II段电源)。
三相交流发电机励磁原理三相交流发电机的励磁原理基于电磁感应,通过机械能转换为电能。
以下是详细的励磁过程:1. 组成结构:三相交流发电机主要由定子(电枢)和转子(磁极)两部分组成。
定子固定不动,其内圆周表面有槽,用于放置三相电枢绕组。
转子上绕有励磁绕组,并通过直流电源进行励磁。
2. 励磁系统:励磁系统通常包含一个直流电源,如蓄电池,以及相关的控制设备,如电刷和滑环。
在启动时,励磁系统提供初始的直流电流,使转子产生磁场。
这个磁场随着转子的旋转而在定子的绕组中感应出交流电动势。
3. 工作原理:当原动机(如蒸汽轮机、水轮机等)带动发电机的转子旋转时,转子上的励磁绕组产生的磁场也随之旋转。
这个旋转的磁场穿过定子的绕组,根据电磁感应原理,在定子绕组中感应出交流电动势。
由于定子绕组布置成相隔120度,因此每个绕组会依次切割磁力线,产生频率相同、幅值相等的正弦波形的交流电动势。
4. 自励与他励:励磁系统可以分为自励和他励两种类型。
自励系统中,发电机自身输出的一部分电能被用来为励磁绕组供电。
他励系统则使用外部的直流电源为励磁绕组供电。
5. 起励过程:在启动发电机时,需要先给转子的励磁绕组通入直流电,建立起初始磁场。
这个初始磁场可以由励磁系统自带的直流电源(如蓄电池)提供。
6. 电压建立:随着转子的旋转,定子绕组中感应出的电动势逐渐增大,最终达到稳定输出电压。
这时,发电机就可以向外部电网或负载提供电能了。
7. 调节功能:在一些高级的励磁系统中,还可以通过调节励磁电流的大小来控制发电机输出电压的高低,从而实现对电网电压的自动调节。
三相交流发电机的励磁原理是通过励磁系统提供的直流电流产生磁场,再通过原动机的机械能驱动转子旋转,使得定子绕组中感应出交流电动势,最终生成并输出三相交流电能。
发电机励磁系统工作原理
发电机励磁系统工作原理是通过在发电机的励磁线圈中通电产生电磁场,从而激发转子磁极上的磁场,进而导致转子磁极和定子磁极之间的磁场相互作用,产生电磁感应,最终实现电能的转换和发电。
具体过程如下:
1. 发电机的励磁线圈通电:励磁线圈被连接到直流电源上,通电后产生电流,从而在励磁线圈内形成电磁场。
2. 电磁场激发转子磁极:产生的电磁场经过磁路作用,激发转子磁极上的磁场。
3. 转子磁场与定子磁场交互作用:转子磁场和定子磁场之间相互作用,引发电磁感应现象。
4. 电磁感应产生交流电:由于转子磁场和定子磁场的相互作用,导致定子线圈中产生交流电流。
5. 交流电输出:产生的交流电经过定子线圈的接触器或整流器等装置,进行调整和控制后输出为电能。
总之,发电机励磁系统工作原理是通过励磁线圈通电产生电磁场,激发转子磁极上的磁场,并与定子磁场相互作用产生电磁感应,从而实现电能的转换和发电。
交流发电机的励磁方式
发电机的励磁方式通常有三种,分别是恒磁励磁、电动励磁和自励励磁。
恒磁励磁方式是通过永磁体或交流励磁机产生一定的恒磁通,使发电机在运行时维持较高的电势。
电动励磁方式是通过交流或直流电源将电能供给发电机,产生磁通。
这种方式的优点是稳定性好、响应速度快,但需要一定的电源。
自励励磁方式则是利用发电机自身产生的感应电动励磁,将直流电源供给发电机励磁线圈,使发电机产生电势。
这种方式的优点是无需外部电源,但对发电机的特性有一定要求。
三种励磁方式各有优缺点,具体选择需要根据实际情况做出合理的决策。
各种励磁系统介绍励磁系统是指用来产生磁场的一种系统。
它在许多领域都有应用,包括发电机、电动机和变压器等电力设备,以及医学成像设备、磁选机和磁共振成像仪等。
1.直流励磁系统直流励磁系统是最简单的励磁系统之一,它使用直流电源来供应磁场。
在直流发电机和直流电动机中,一个直流电源通过励磁线圈提供电流,产生一个稳定的磁场。
直流励磁系统具有响应速度快、控制简单、稳定性高等优点,但需要较大的电源容量。
2.交流励磁系统交流励磁系统是利用交流电源来供应磁场的一种励磁系统。
它适用于交流发电机、交流电动机和变压器等设备。
在交流励磁系统中,通常使用电力变压器将输入电压从高电压变成合适的低电压,然后通过整流电路将交流电转换为直流电。
此外,交流励磁系统可以通过改变输入电压的频率和幅度来调节输出磁场的强度。
3.永磁励磁系统永磁励磁系统是利用永磁体产生磁场的一种励磁系统。
永磁励磁系统适用于小型发电机和电动机,具有体积小、质量轻、效率高等优点。
永磁材料可以分为强磁性永磁材料和软磁性永磁材料两类,前者适用于高速运动的设备,后者适用于低速设备。
永磁励磁系统的磁场强度可通过改变永磁体的形状和材料来调节。
4.感应励磁系统感应励磁系统利用电磁感应原理产生磁场。
在感应励磁系统中,通过交变磁场的作用,在导体中感应出涡流,从而产生磁场。
感应励磁系统广泛应用于感应加热设备和感应炉等领域。
感应励磁系统的磁场强度可通过改变交变磁场的频率、幅度和导体材料来调节。
5.分段励磁系统分段励磁系统是指将励磁线圈分成多个段落,每个段落通过控制电流来产生不同强度的磁场。
分段励磁系统可以根据需要调节每个段落的电流,从而改变整个励磁系统的磁场强度。
这种系统适用于电力变压器和磁选机等设备中,可以减少能量消耗和提高效率。
总结起来,励磁系统有直流励磁系统、交流励磁系统、永磁励磁系统、感应励磁系统和分段励磁系统等多种形式。
每种励磁系统都有各自的特点和应用领域,可以根据实际需求选择适合的励磁系统。
励磁系统起励的名词解释励磁系统起励在电力工程领域中扮演着至关重要的角色。
简单来说,励磁系统是指为发电机或电动机供应直流电流的系统,以使电机产生磁场。
通过这种方式,电机可以正常运作,并实现所需的功率输出。
在理解励磁系统起励之前,首先需要了解电机的工作原理。
电机是将电能转化为机械能的设备。
在电机中,磁场起着至关重要的作用,因为磁场是使电机的转子和定子之间产生转矩的关键。
而这种磁场是通过励磁系统产生的。
励磁系统可以通过不同的方式来起励,其中包括刷式励磁、永磁励磁和感应励磁等。
不同的励磁方式适用于不同的电机类型和工作环境。
首先,刷式励磁是励磁系统中最常见的一种方式。
它使用励磁发电机或励磁装置产生直流电流,并将其供应给电机的励磁线圈。
这种方式适用于交流发电机或电动机,因为交流电机通常需要直流电流来产生磁场。
刷式励磁系统通常由刷槽、励磁发电机和励磁线圈等组成。
其次,永磁励磁是一种利用永磁材料产生磁场的方式。
在这种方法中,励磁系统会使用永磁体,例如永磁发电机或永磁电流源,来产生直流电流。
这种方式适用于小型电机或要求高效率的应用。
与刷式励磁不同,永磁励磁系统不需要外部电源来供应励磁电流。
最后,感应励磁是利用感应原理产生磁场的一种方式。
这种方法基于法拉第电磁感应定律,通过变化的磁场在励磁线圈中产生感应电动势,从而形成电流。
感应励磁适用于大型发电机和电动机,因为它可以提供高强度的励磁磁场。
励磁系统是电机顺利运行的关键,也对适当的电机性能至关重要。
正确的励磁系统起励可以保证电机在各种负载条件下正常运行,并提供所需的功率。
不合适的励磁系统起励可能导致电机失效、功率输出降低或其他性能问题。
总之,励磁系统起励是电机工程领域中的关键概念。
通过为发电机或电动机提供直流电流,励磁系统确保磁场的产生和维持,从而使电机能够正常运行并实现所需的功率输出。
不同的励磁方式适用于不同的应用场景,包括刷式励磁、永磁励磁和感应励磁等。
正确的励磁系统起励对电机的性能和可靠性至关重要,需要根据具体的需求和环境来选择适当的励磁方式。
三相交流发电机励磁原理当我们谈到电力发电的时候,三相交流发电机无疑是一个不可忽视的关键组件。
在三相交流发电机中,励磁原理起着至关重要的作用。
励磁原理是指在三相交流发电机中通过外加电流或磁场激励发电机的转子,从而产生感应电动势,最终实现电能的转换。
三相交流发电机的励磁原理可以追溯到十九世纪中叶,当时科学家们通过对电磁感应现象的研究,发现可以通过旋转导体在磁场中产生电动势。
这一发现为发电机的发展奠定了基础。
在三相交流发电机中,励磁原理的核心是通过外加电流或磁场激励转子中的导体,从而产生一个旋转的磁场,进而产生感应电动势。
这一过程是实现发电的关键。
三相交流发电机的励磁原理涉及到多个重要概念,包括电磁感应、磁场旋转、感应电动势等。
在三相交流发电机中,励磁回路是通过外加电流或磁场来激励转子,使得转子旋转产生感应电动势。
励磁回路的设计和控制对于发电机的性能和效率至关重要。
在三相交流发电机中,励磁原理的实现离不开先进的技术和工艺。
通过在转子中安装励磁线圈、磁极和其他关键部件,可以有效地控制励磁过程,确保发电机的正常运行。
此外,通过先进的控制系统和监测设备,可以实时监测励磁回路的状态,并根据需要进行调整,保证发电机的稳定性和可靠性。
三相交流发电机的励磁原理是发电系统中的一个重要环节。
通过对励磁原理的深入研究和理解,可以更好地优化发电系统的性能,提高发电效率,降低能源消耗。
同时,励磁原理也是提高发电机运行稳定性和可靠性的关键,有效地减少停机时间,提高发电系统的可用性和可维护性。
在未来的发展中,随着电力需求的不断增长和能源结构的调整,三相交流发电机的励磁原理也将不断得到完善和优化。
通过引入新的材料、技术和理论,可以进一步提高发电机的效率和性能,实现清洁能源的可持续发展。
三相交流发电机励磁原理的研究将继续深入,为电力行业的发展和进步做出贡献。
发电机励磁系统原理一.励磁系统1.励磁系统基本原理同步发电机励磁电源一般采用直流电,励磁系统的作用主要就是供给发电机转子绕组的直流电源。
同步发电机励磁系统一般由励磁功率单元和励磁调节器两部分组成。
励磁功率单元包括整流装置及其交流电源,它向发电机的励磁绕组提供直流励磁功率;励磁调节器,感受发电机电压及运行工况的变化,自动地调节励磁功率单元输出励磁电流的大小,以满足系统运行要求。
整个励磁自动控制系统是由励磁调节器、励磁功率单元和发电机构成的一个反馈控制系统。
励磁系统大致可分为直流励磁机励磁系统和交流励磁机励磁系统以及自并励励磁(静止半导体励磁)系统。
2.励磁系统的任务1). 正常运行条件下,供给发电机励磁电流。
2). 根据发电机所带负荷的情况调整励磁电流,维持发电机机端电压。
3). 使并列运行的各同步发电机所带的无功功率得到稳定而合理的分配。
4). 增加并网运行发电机的阻尼转矩,以提高电力系统动态稳定性及输电线路的有功传输能力。
5). 电力系统发生短路故障造成发电机机端电压严重下降时,强行励磁,将励磁电压迅速提升到足够的顶值,以提高系统的暂态稳定性。
6). 发电机突然解列、甩负荷时,强行减磁,将励磁电流迅速降到安全值,以防止发电机电压过高。
7). 发电机内部发生短路故障时,快速灭磁,将励磁电流迅速减到零值,经减小故障损坏程度。
8). 不同的运行工况下,根据要求对发电机实行过励限制和欠励限制,以保证发电机机组的安全稳定运行。
3.励磁系统的励磁方式.1).直流励磁机励磁系统直流励磁机是用于供给发电机励磁的直流发电机,过去机组容量不大,采用由直流发电机组成的励磁系统,励磁机与发电机同轴旋转,由于直流励磁机具有电刷和整流子等接触部件,需定期更换电刷和换向器,特别是当其容量随发电机容量而增大时换向问题很难解决,一般只在单机容量100MW以下的机组上采用。
直流励磁机通常采用自并励式,是利用励磁机电枢旋转切割剩磁来实现建压的,电枢绕组内的电势电流是交变的,借助换向装置将电枢内的交流电变成直流电。
发电机励磁方式有哪些_三种发电机励磁方式励磁系统原理励磁装置是指同步发电机的励磁系统中除励磁电源以外的对励磁电流能起控制和调节作用的电气调控装置。
励磁系统是电站设备中不可缺少的部分。
励磁系统包括励磁电源和励磁装置,其中励磁电源的主体是励磁机或励磁变压器;励磁装置则根据不同的规格、型号和使用要求,分别由调节屏、控制屏、灭磁屏和整流屏几部分组合而成。
励磁装置的使用,是当电力系统正常工作的情况下,维持同步发电机机端电压于一给定的水平上,同时,还具有强行增磁、减磁和灭磁功能。
对于采用励磁变压器作为励磁电源的还具有整流功能。
励磁装置可以单独提供,亦可作为发电设备配套供应。
中小型水利发电设备已实施出口产品质量许可制度,未取得出口质量许可证的产品不准出口。
励磁系统的组成自动调节励磁的组成部件有机端电压互感器、机端电流互感器、励磁变压器;励磁装置需要提供以下电流,厂用AC380v、厂用DC220v控制电源。
厂用DC220v 合闸电源;需要提供以下空接点,自动开机。
自动停机。
并网(一常开,一常闭)增,减;需要提供以下模拟信号,发电机机端电压100V,发电机机端电流5A,母线电压100V,励磁装置输出以下继电器接点信号;励磁变过流,失磁,励磁装置异常等。
励磁控制、保护及信号回路由灭磁开关,助磁电路、风机、灭磁开关偷跳、励磁变过流、调节器故障、发电机工况异常、电量变送器等组成。
在同步发电机发生内部故障时除了必须解列外,还必须灭磁,把转子磁场尽快地减弱到最小程度,保证转子不过的情况下,使灭磁时间尽可能缩短,是灭磁装置的主要功能。
根据额定励磁电压的大小可分为线性电阻灭磁和非线性电阻灭磁。
发电机获得励磁电流的三种方式1、直流发电机供电的励磁方式这种励磁方式的发电机具有专用的直流发电机,这种专用的直流发电机称为直流励磁机,。
1.“三机”励磁系统发电机交流励磁机-静止整流器励磁系统(“三机”励磁系统)简介交流主励磁机(ACL)和交流副励磁机(ACFL)都与发电机同轴。
副励磁机是自励式的,其磁场绕组由副励磁机机端电压经整流后供电。
也有用永磁发电机作副励磁机的,亦称三机它励励磁系统。
2.“三机”励磁系统慨述主励磁机的交流输出,经硅二极管整流器整流后,供给汽轮发电机励磁。
主励磁机的励磁,由永磁副励磁机之中频输出经可控硅整流器整流后供给。
自动电压调节器根据汽轮发电机之端电压互感器、电流互感器取得的调节信号,控制可控硅整流器输出的大小,实现机组励磁的自动调节。
3.“三机”励磁系统的优点——发电机的励磁电源取自同轴的交流主励磁机,不受电力系统运行的情况影响,工作可靠。
——高速大容量交流主励磁机的设计制造、运行维护比直流励磁机容易。
直流励磁机电枢产生的是交流电势,经过整流子(换向器)的机械整流作用,变成直流电输出,供给发电机励磁。
“三机”励磁系统用静止硅整流器代替旋转的机械整流子。
——永磁式副励磁机PMG工作可靠,只要机组转动,即可为主励磁机提供励磁电流。
4.“三机”励磁系统的缺点——交流主励磁机是一“时滞”环节1. 交流主励磁机(发电机生产厂家制造) 1台2. 永磁副励磁机(发电机生产厂家制造) 1台3. 硅二极管整流装置 1套4. 微机励磁调节装置 1套5. 灭磁及转子绕组过电压保护装置 1套6. 主励磁机手动备用励磁装置(可不设置) 1套7. 交流主励磁机额定容量根据发电机参数和强励磁电压顶值倍数确定额定电压根据发电机参数和强励磁电压顶值倍数确定额定电流根据发电机参数和强励磁电压顶值倍数确定相数三相频率 100 Hz(用以减小发电机转子绕组的电感及时间常数)额定转速与同轴发电机相同8. 永励副励磁机额定容量根据发电机、交流主励磁机参数和强励磁电压顶值倍数确定额定电压根据发电机、交流主励磁机参数和强励磁电压顶值倍数确定额定电流根据发电机、交流主励磁机参数和强励磁电压顶值倍数确定相数三相频率 400 或500 Hz(中频)额定转速与同轴发电机相同励磁方式永磁式9. 硅整流装置整流方式三相全波桥式不可控整流整流元件大功率硅二极管整流桥数量 1 ~ 2(并联)个单个整流桥输出电压≮ 2 倍发电机额定励磁电压单个整流桥输出电流≮ 2 倍发电机额定励磁电流只需单个整流桥即可满足发电机强励需要硅二极管参数:额定电流额定电压反向电压10. 微机励磁调节装置内有单通道或双通道容错型数字式(微机型)自动励磁调节器(AER)。
交流励磁发电机是一种常见的发电设备,它通过将机械能转化为电能,为工业和生活提供了稳定可靠的电力支持。
本文将对交流励磁发电机的运行原理、励磁系统的控制方式以及相关的技术参数进行详细介绍。
一、交流励磁发电机的运行原理1.1 发电机的基本原理发电机是利用磁场的相互作用产生电流的装置。
当导体在磁场中运动时,就会有感应电动势产生。
利用这一原理,发电机可以将机械能转化为电能。
1.2 励磁系统的作用励磁系统是交流励磁发电机中至关重要的组成部分,它负责在发电机中产生恒定的磁场,以保证发电机正常运行。
励磁系统的稳定性和控制方式直接影响着发电机的性能和输出功率。
二、励磁系统的控制方式2.1 手动控制手动控制是一种最基本的励磁系统控制方式,操作人员通过调节励磁电压和励磁电流的大小来控制发电机的输出功率。
这种方式简单直接,但需要操作人员具有一定的经验和技术水平。
2.2 自动控制自动控制是一种通过自动调节器件来实现励磁系统控制的方式。
自动调节器件可以根据发电机的输出功率和电网负载情况,自动调节励磁电压和励磁电流的大小,以保证发电机的正常运行和电网的稳定运行。
2.3 数字化控制随着科技的发展,数字化控制方式逐渐应用到励磁系统中。
数字化控制可以实现对励磁系统的精确控制和调节,提高了发电机的稳定性和效率,同时也降低了对操作人员的技术要求。
三、相关技术参数3.1 励磁电压励磁电压是励磁系统中的重要参数,它决定了发电机中的磁场大小,直接影响着发电机的输出功率和电网的负载能力。
3.2 励磁电流励磁电流是励磁系统中的另一重要参数,它是产生磁场所需要的电流大小,直接影响着发电机的稳定性和响应速度。
3.3 励磁系统的响应时间励磁系统的响应时间是衡量励磁系统性能的一项重要指标,它影响着发电机在电网负载变化时的稳定性和可靠性。
四、结语通过本文对交流励磁发电机运行及控制原理的详细介绍,希望读者能够了解到交流励磁发电机的基本原理、励磁系统的控制方式以及相关的技术参数。
发电机原理及构造——发电机的励磁系统发电机是一种将机械能转化为电能的装置,通过利用电磁感应现象产生电流。
它主要由励磁系统、转子、定子和输出电路组成。
发电机的励磁系统是产生磁场的部分,它为发电机提供所需的磁场能量,使机械能转化为电能。
励磁系统通常由励磁线圈、励磁电源和励磁控制系统组成。
励磁线圈是励磁系统最关键的部分,它是由导体绕制而成的线圈。
根据具体的发电机类型和要求,励磁线圈可以分为直流励磁和交流励磁。
直流励磁线圈通常是一个或多个线圈,绕制在发电机的励磁枢纽上,形成强磁场。
这些线圈由直流电源供电,产生稳定的磁场。
直流励磁线圈的数量和布置方式取决于具体的发电机设计要求。
交流励磁线圈通常是由稳定的交流电源供电的主励磁线圈和励磁枢纽上的辅励磁线圈组成。
主励磁线圈产生主磁场,辅助磁线圈通过控制电压和电流,改变励磁系统的磁场强度和方向。
励磁电源是供给励磁线圈的电源。
根据发电机的类型和规格,励磁电源可以是直流电源、交流电源或者是由发电机的输出电流转换的交流电源。
励磁控制系统负责监测和控制励磁电源的电压和电流,确保励磁线圈获得适当的电能,保持恒定和稳定的磁场。
励磁控制系统可以是手动操作或自动控制,以满足不同负荷和输出电压的要求。
除了励磁系统,发电机还包括转子、定子和输出电路。
转子是发电机的旋转部分,通常由导体绕制的线圈或磁铁组成。
当励磁系统产生磁场时,转子受到磁力的作用,开始旋转。
转子的旋转产生交变磁场,进而感应出电流。
定子是发电机的静止部分,通常由一组绕制导线制成的绕组环绕在铁心上。
当转子旋转时,定子绕组感应出电流。
这个电流通过导线流过输出电路,供应给外部负载。
输出电路是电能传送的路径,它由导线和负载组成。
通过输出电路,发电机的产生的电能可以传送到外部负载,进行实际的功率应用。
总之,发电机的励磁系统起着关键的作用,它提供稳定和适当的磁场能量,使发电机能够将机械能转化为电能。
励磁系统主要由励磁线圈、励磁电源和励磁控制系统组成,其各方面的设计和运行状态对于发电机的性能和稳定性具有重要影响。