数值分析实验误差分析
- 格式:doc
- 大小:218.00 KB
- 文档页数:10
数值分析中的误差分析与收敛性数值分析是一门研究利用计算机进行数学计算和问题求解的学科,它在科学计算、工程设计、金融分析等领域中具有广泛的应用。
然而,在数值计算过程中,由于计算机的有限精度和数值算法的近似性质,误差问题成为了一个不可避免的挑战。
因此,了解误差的来源和性质,以及数值计算方法的收敛性,对于保证计算结果的准确性和可靠性非常重要。
本文将探讨数值分析中的误差分析与收敛性问题。
1. 误差的来源及分类在数值计算中,误差可以分为四类:舍入误差、截断误差、模型误差和舍入误差。
舍入误差是由于计算机内部使用有限位数表示实数导致的误差,它来源于将实数近似为计算机可表示的数值。
截断误差是在计算过程中采取舍入法或截断法将无限级数或无限小量等进行有限近似所引入的误差。
模型误差是将实际问题用数学模型进行近似所引入的误差,它包括了模型的简化和不完全描述等因素。
舍入误差是由于使用有限位数存储和运算导致的误差。
2. 误差的度量方法误差的度量方法包括绝对误差和相对误差。
绝对误差是指数值近似解与真实解之间的差值,它可以用来度量数值计算的准确度。
相对误差是绝对误差除以真实解的绝对值后得到的比值,它可以用来度量数值计算的相对准确度。
通过对误差进行度量和分析,可以评估数值计算方法的准确性,并选择合适的数值方法来解决实际问题。
3. 收敛性在数值计算中,所谓的收敛性是指数值方法的逼近解序列以某种方式趋近于真实解。
一个数值方法是收敛的,意味着当步长趋于0时,逼近解趋近于真实解。
收敛性的评估是数值分析中一个重要的问题,它关系到数值方法的稳定性和可靠性。
常见的收敛性分析方法包括局部截断误差、阶、收敛速度等。
局部截断误差是用来评估数值方法在每个步长上的近似误差,阶是用来度量数值方法逼近真实解的速度。
4. 提高数值计算的准确性与可靠性为了提高数值计算的准确性与可靠性,我们可以采取多种方法。
首先,选择合适的数值方法和算法,确保其满足问题的数学性质和准确性要求。
方程的数值解法及其误差分析随着计算机技术的不断发展,数值解法在科学计算中得到了广泛的应用。
方程的解是科学研究、工程设计及经济决策中常常要求得到的重要信息之一。
而大多数方程无法通过解析方法求得精确解,因此需要使用数值解法进行计算,得到近似解。
数值解法的误差分析是研究数值解法精度和可靠性的重要方法,本文将介绍方程的数值解法及其误差分析。
一、数值解法数值解法是一种用数值计算的方法寻找或逼近某一方程或系统的解。
数值解法可以分为直接方法和迭代方法两种。
直接方法是通过运用一些固定的算法来直接求出答案,但代价是计算程度较高。
例如,高斯消元法、LU分解法就是常见的直接方法。
迭代方法是通过从一个开始值开始一直进行计算的方式,来逼近方程数值解的方法。
迭代方法计算量相对比较小,常常被用于大规模数据的计算。
常见的迭代方法有牛顿迭代法、Jacobi迭代法和Gauss-Seidel迭代法等。
数值解法的误差分为截断误差和舍入误差。
截断误差是由于采用数值计算方法得出的结果和真实结果的差值所引入的误差。
舍入误差是由于计算机进行计算时,因为计算机对数据所能表示的精度有限,导致近似值和真实值的差值所引入的误差。
二、误差分析误差分析对于确保数值解计算精度、保证计算结果可靠非常重要。
误差分析的基本方法有理论分析法和实验分析法两种。
实验分析法是通过实验数据分析误差特征、精度评定得出误差估计结果的方法。
这种方法相对比较直接,但是实验数据的质量和数量很大程度上影响了误差的分析精度。
而理论分析法通过推导计算或数学模型,直接得出误差算式或误差范围,从而得到误差估计值。
这类方法应用非常广泛,是基本的误差分析方法之一。
误差分析方法对于保证数值解法的精度和可靠性有重要意义。
不同的误差分析方法在实际应用中需要根据具体情况进行选择,以提高误差估计的准确性和精度。
三、数值解法应用数值解法应用广泛,例如在工程设计中,常常需要通过数值解法来求解大规模非线性方程组。
数值分析中的梯形法误差估计技巧数值分析是一门研究利用计算方法处理数学问题的学科。
在数值分析中,梯形法是一种常用的数值积分方法,用于计算定积分的近似值。
然而,使用梯形法进行数值积分时,误差的估计是非常重要的。
本文将详细介绍数值分析中的梯形法以及误差估计技巧。
梯形法是一种基于积分的数值逼近方法,它将曲线下的面积近似为由梯形的面积组成的和。
对于一个区间[a, b]上的函数f(x),我们可以将该区间等分为n个小区间,宽度为h=(b-a)/n。
梯形法将每个小区间内的曲线近似为一条直线段,然后计算这些直线段所构成的梯形的面积,并将它们相加,得到整个区间上的面积近似值。
下面我们来具体介绍使用梯形法进行数值积分的步骤。
假设我们要计算函数f(x)在区间[a, b]上的定积分,即∫[a, b]f(x)dx。
首先,我们将区间[a, b]等分为n个小区间,计算每个小区间的宽度h=(b-a)/n。
然后,利用梯形法的思想,将每个小区间内的曲线近似为一条直线,从而得到这些梯形的面积。
最后,将这些梯形的面积相加,得到整个区间上的面积近似值。
然而,使用梯形法进行数值积分会引入误差。
为了准确估计误差,我们需要了解梯形法的误差估计技巧。
梯形法的误差估计公式为E = -h^2/12 * f''(ξ),其中ξ∈[a, b],f''(x)表示函数f(x)的二阶导数。
从这个公式可以看出,误差与步长h的平方成反比。
也就是说,当步长h变得更小的时候,误差会变得更小。
在实际应用中,我们可以通过逐步减小步长h的方式来提高梯形法的准确性。
通常情况下,我们使用自适应的方法来选择适当的步长。
自适应方法会根据已有的近似值和误差估计,调整步长的大小,从而得到更精确的数值积分结果。
除了误差估计技巧,我们还可以通过增加区间的划分数n来提高梯形法的准确性。
当n趋向于无穷大时,梯形法的近似值会趋向于定积分的真值。
因此,通过增加区间的划分数,我们可以得到更精确的数值积分结果。
微分方程中的数值解误差分析方法在数学领域中,微分方程是描述自然现象和物理现象的一个非常重要的工具。
然而,大多数微分方程很难用解析的方法求解,因此我们通常使用数值方法来近似求解。
然而,这些数值解不可避免地会引入误差。
本文将介绍微分方程中的数值解误差分析方法。
一、局部截断误差在使用数值方法求解微分方程时,我们通常会引入一个步长h。
在每个步长上,我们通过一系列迭代计算来逼近真实的解。
然而,由于近似计算和舍入误差等原因,我们得到的数值解与真实解之间存在误差。
这个误差被称为局部截断误差。
局部截断误差可以通过泰勒展开来近似计算。
假设我们使用的数值方法是Euler方法,那么可以得到如下的局部截断误差公式:$$LTE = \frac{y(t_{n+1}) - [y(t_n) + hf(t_n, y(t_n))]}{h}$$其中,$y(t_n)$是真实解在时间点$t_n$的值,$f(t_n, y(t_n))$是微分方程的右侧函数在$t_n$和$y(t_n)$处的取值。
二、全局截断误差除了局部截断误差之外,我们还需要考虑全局截断误差。
全局截断误差是指在整个求解过程中,数值解与真实解之间的误差累积情况。
通过对局部截断误差进行逐步累积,我们可以得到全局截断误差的估计。
例如,使用Euler方法求解微分方程,假设总共迭代了N步,步长为h,则全局截断误差的估计为:$$GTE = \frac{LTE}{h} \times N = \frac{y(T) - y(t_0)}{h} = O(h)$$其中,$y(T)$是真实解在求解区间的终点处的值,$y(t_0)$是真实解在求解区间的起点处的值。
三、稳定性分析除了局部截断误差和全局截断误差,稳定性也是数值解的一个重要性质。
在数值方法中,一个稳定的方法可以保证数值解不会因为舍入误差或者数值不稳定性而发散。
稳定性分析通常通过稳定性函数来进行判断。
对于一个给定的数值方法,我们可以将其误差传播到未来的时间点,然后观察误差是否会趋于无穷大。
数值分析中的误差估计理论数值分析是研究通过数值计算方法来解决数学问题的学科。
在数值计算过程中,由于计算机本身的限制以及数值计算方法的局限性,必然会引入一定的误差。
误差估计理论是数值分析中的重要内容,它的主要任务是评估数值计算结果的准确性,并为我们提供合理的结果判断依据。
一、误差类型在进行误差估计之前,我们首先需要了解误差的分类。
在数值计算中,误差可以分为截断误差和舍入误差两种类型。
1. 截断误差:截断误差是由于数值计算方法的有限步骤导致的近似解与准确解之间的差距。
通常情况下,我们使用有限级数或多项式来近似某个函数,但是由于级数或多项式只能截取有限的项数,从而无法精确地表示原函数,所以会引入截断误差。
2. 舍入误差:舍入误差是由于计算机在存储和表示数值时的有限精度所引起的误差。
计算机只能存储有限位数的数字,而且在计算过程中会进行舍入操作,从而导致精确数字的丢失和近似数字的产生。
二、误差估计的方法误差估计的方法主要包括局部误差估计和全局误差估计两种。
1. 局部误差估计:局部误差估计方法是通过分析数值计算方法的近似性质,对每一步计算过程的误差进行估计。
通常情况下,我们会使用泰勒级数展开来近似求解函数值,然后通过对级数剩余项的估计来获得局部误差的上界。
2. 全局误差估计:全局误差估计方法是通过分析数值计算方法的整体性质,对整个计算过程的误差进行估计。
该方法通常使用数值稳定性定理或者收敛速度分析来评估数值计算的精度,从而给出全局误差的上界。
三、误差控制策略在数值计算中,确保误差控制是非常重要的。
误差控制策略通过采用合适的数值计算方法和调整计算过程的步骤,减小误差并控制误差的传播,从而提高结果的准确性。
1. 精确算法选择:在进行数值计算之前,我们需要评估不同数值计算方法的精确性和稳定性,并选择适合的方法。
合适的数值计算方法可以最大程度地减小误差的产生。
2. 步长控制:对于迭代算法或差分方法,我们可以通过控制步长的大小来控制误差。
数值分析中的复化梯形法误差分析数值分析中的复化梯形法误差分析在数值分析中,复化梯形法是一种常用的数值积分方法。
它使用梯形规则进行近似求解定积分,通过将定积分区间分割成若干个小区间,并在每个小区间上使用梯形规则进行求解,最后将各个小区间上的积分结果相加得到整个定积分的近似值。
本文将对复化梯形法进行误差分析。
1. 复化梯形法原理复化梯形法的原理是将定积分区间[a, b]等分为n个小区间,令h=(b-a)/n为小区间长度,梯形法的近似结果T可以表示为:T = h/2 * (f(a) + 2*f(x1) + 2*f(x2) + ... + 2*f(x(n-1)) + f(b))其中,f(x)为被积函数在x点处的取值。
2. 复化梯形法误差分析复化梯形法的误差主要包括局部误差和全局误差。
2.1 局部误差在每个小区间上,我们使用梯形规则进行积分计算,其误差可以通过泰勒展开进行推导。
设f(x)在[a, b]区间上具有充分高阶连续导数,则对于每个小区间[xk, x(k+1)],我们有如下局部误差公式:E_local = - (h^3/12) * f''(ξ)其中,ξ为[xk, x(k+1)]上的某点,f''(ξ)为f(x)的二阶导数在ξ点的取值。
2.2 全局误差全局误差是指整个区间[a, b]上的积分近似与真实积分之差。
复化梯形法的全局误差可以通过对各个小区间上的局部误差进行累加得到。
假设积分的真实值为I,则全局误差E_global可以表示为:E_global = (b-a) * (h^2/12) * f''(ξ)其中,ξ为[a, b]区间上的某点,f''(ξ)为f(x)的二阶导数在ξ点的取值。
3. 误差分析实例为了更好地理解复化梯形法的误差特点,我们以一个具体的例子进行分析。
考虑定积分∫(0, 1)sin(x)dx的近似求解,将积分区间等分为4个小区间进行计算。
1. 计算11n x nI ex e dx -=⎰(n=0,1,2,……)并估计误差。
由分部积分可得计算n I 的递推公式111101,1,2,e 1.nn x I nI n I e dx e ---=-=⎧⎪⎨==-⎪⎩⎰……. (1) 若计算出0I ,代入(1)式,可逐次求出 12,,I I …的值。
要算出0I 就要先算出1e -,若用泰勒多项式展开部分和21(1)(1)1(1),2!!ke k ---≈+-+++…并取k=7,用4位小数计算,则得10.3679e -≈,截断误差14711|0.3679|108!4R e --=-≤<⨯.计算过程中小数点后第5位的数字按四舍五入原则舍入,由此产生的舍入误差这里先不讨论。
当初值取为000.6321I I ≈= 时,用(1)式递推的计算公式为 010.6321A 1nn I I nI -⎧=⎨=-⎩ (),n=1,2,…。
计算结果见表1的n I 列。
用0I 近似0I 产生的误差000E I I =- 就是初值误差,它对后面计算结果是有影响的.表1 计算结果从表1中看到8I 出现负值,这与一切0n I >相矛盾。
实际上,由积分估值得111110001011(im )(max)11x n n n x x e e m e x dx I e x dx n n ---≤≤≤≤=<<=++⎰⎰ (2) 因此,当n 较大时,用n I 近似n I 显然是不正确的。
这里计算公式与每步计算都是正确的,那么是什么原因合计算结果出现错误呢?主要就是初值0I 有误差000E I I =- ,由此引起以后各步计算的误差n n nE I I =- 满足关系1,1,2,n n E nE n -=-=….由此容易推得0(1)!n n E n E =-,这说明0I 有误差0E ,则n I 就是0E 的n!倍误差。
例如,n=8,若401||102E -=⨯,则80||8!||2E E =⨯>。
比起方案一,方案二更为精确。
六、思考题
思考题:为了防止误差危害现象的产生,以保证计算结果的可靠性,数值运算中应注意哪些原则?试举例说明。
答:数值运算的时候,要注意运算负号的优先级,模糊的时候要加上括号以避免错误。
调用函数的时候,要注意类型的对应。
例如调用pow ( double , double ) 的时候,里面的参数是double 型的。
七、心得体会及实验改进建议
通过这次的实验,更加清楚调用函数的时候该注意一些小问题,例如数据的类型和调用函数。
同时让我更了解分析误差以及如何去缩小误差。
八、实验代码
#include<stdio.h>
#include<math.h>
void main()
{
float a=1,b=-(500000000+1),c=500000000,q;
float x1,x2,x3,x4;
q=b*b-4*a*c;
x1=(-b+sqrt(q))/2;
∑=--=++⋅⋅⋅++=n
i i i n n n n n x l y a x a x a x a x L 00
111)
()(
)
())(()()
())(()()(110110n i i i i i i n i i i x x x x x x x x x x x x x x x x x l -⋅⋅⋅--⋅⋅⋅--⋅⋅⋅--⋅⋅⋅-=
+-+-
3.牛顿(Newton )插值公式
)
())(](,,,[))(](,,[)](,[)()(11010102100100--⋅⋅⋅--⋅⋅⋅+⋅
⋅⋅+--+-+=n n n x x x x x x x x x f x x x x x x x f x x x x f x f x N
四、实验内容步骤
1.给定224951.013sin ,207912.012sin ,190809.011sin =︒=︒=︒,构造Lagrange 插值函数计算'3011sin ︒。
2.已知4个点的函数值如下表,用Newton 插值法求x=0.596时的函数值。
i 0 1 2 3 x i 0.40 0.55 0.65 0.80 y i
0.41075
0.57815
0.69675
0.88811
五、实验结果及分析
1.拉格朗日插值
2.牛顿插值
六、思考题 (无)
七、心得体会及实验改进建议
通过这次实验我对拉格朗日插值和牛顿插值的原理的认识变得更加的深刻,明白了跟多编写此程序时要注意的问题。
]A b ,将其中的.列主元高斯消去法计算步骤将方程组用增广矩阵]()
ij
n B A b a =:消元过程,对1,2,,1n -
选主元,找}1,
,i k n +使得,则矩阵A 奇异,程序结束;否则执行(,则交换第k 行与第k i 行对应元素位置,,1n +。
,n ,计算ik ik l a =,1n +,计算.
则矩阵奇异,程序结束;否则执行(。
;nn 对,2,1i n =-,计算11n ij j i a x =+-∑利用列选主元高斯消去法求解线性方程组
1.183
2.137
3.035
第一组数据为: x0=0.333333 x1=7.33333 x2=2.33333
第二组数据为: x0=0.398234 x1=0.0137951 x2=0.335144
六、思考题
七、心得体会及实验改进建议
本次实验因为对高斯消去法基本思路的认识不够深刻,使我在实验中遇到了非常多的小错误,所以修改程序占用了很多的时间。
经过和同学的讨论,知道实验步骤一的消元过程存在着错误。
八、实验代码
#include<stdio.h>
#include<iostream>
#include <cmath>
using namespace std;
//高斯消去法
void Gauss(float a[3][4]);
void showarray(float a[3][4]);
const int n=3;
void main()
{
int i,j;
int n;//行数
// printf("请输入行数 \n");
// printf("n= ");
// scanf("%d",&n);
float a[3][4]={{2,1,-3,1},{4,1,-2,4},{3,1,-1,6}};
float
b[3][4]={{0.101,2.304,3.555,1.183},{-1.347,3.712,4.623,2.137},{-2.835,1.072,5.643,3 .035}};
Gauss(a);
Gauss(b);
}
void Gauss(float a[n][n+1])
{
int max=0;
int i,j,k;
float b[n+1];//临时
float c[n+1];//。