基本蚁群优化算法及其改进
- 格式:ppt
- 大小:1.01 MB
- 文档页数:61
c law enforcement. Therefore, c congestion was ciency of the improved algorithm with the Dijkstra algorithm. Thus, it could simulate the optimal driving path with better performance, which was targeted and innovative.关键词:蚁群算法;实际路况;最优路径Key words :ant colony optimization; actual road conditions; optimal path文/张俊豪蚁群算法在最优路径选择中的改进及应用0 引言在国务院发布的《国家中长期科学和技术发展规划纲要(2006-2020年)》中,将交通拥堵问题列为发展现代综合交通体系亟待解决的“三大热点问题”之一。
智能交通系统作为“互联网+交通”的产物,利用先进的科学技术对车、路、人、物进行统一的管控、调配,成为了当下各国缓解交通拥堵的一个重要途径。
路径寻优是智能交通系统的一个核心研究内容,可以有效的提升交通运输效率,减少事故发生频率,降低对城市空气的污染以及提升交通警察的执法效率等。
最著名的路径规划算法是Dijkstra算法和Floyd算法,Dijkstra算法能够在有向加权网络中计算得到某一节点到其他任何节点的最短路径;Floyd算法也称查点法,该算法和Dijkstra算法相似,主要利用的是动态规划思想,寻找加权图中多源节点的最短路径。
近些年,最优路径的研究主要集中以下几个方面:(1)基于A*算法的路径寻优。
A*算法作为一种重要的路径寻优算法,其在诸多领域内都得到了应用。
随着科技的发展,A*算法主要运用于人工智能领域,特别是游戏行业,在游戏中,A*算法旨在找到一条代价(燃料、时间、距离、装备、金钱等)最小化的路径,A*算法通过启发式函数引导自己,具体的搜索过程由函数值来决定。
一种求解多目标优化问题的改进蚁群算法1.简介多目标优化问题在实际应用中普遍存在,例如工程设计、金融投资与风险管理等领域。
而蚁群算法(Ant Colony Optimization,ACO)作为一种基于自组织方法的启发式优化算法,已经在许多领域得到了成功的应用。
然而,原始的ACO 算法仅适用于单目标优化问题,而多目标优化问题则需要改进ACO 算法才能更好地解决。
在本文中,我们将介绍一种改进的ACO 算法,用于求解多目标优化问题。
该算法结合了传统的ACO 算法与一些有效的技术,并优化了算法的选择策略和信息素更新策略,以实现更准确和高效的解。
2.多目标优化问题多目标优化问题(Multi-objective Optimization Problem,MOP)通常包括一个目标函数集合,每个目标函数都需要最小化或最大化。
与单目标优化问题不同的是,MOP 存在多个最优解,而这些最优解不可比较显著。
例如,对于两个最优解x1 和x2,如果x1 的第一个目标函数优于x2,但x2 的第二个目标函数优于x1,则无法判断哪个解更好。
在MOP 中,通常是存在一个Pareto 最优集合P,其中的解都是不可比较的最优解。
在求解过程中,我们希望找到尽可能多的Pareto 最优解。
因此,MOP 的求解算法需要能够实现有效的Pareto 最优搜索,并在保证收敛性和多样性的同时尽可能接近Pareto 最优集合。
3.ACO 算法ACO 算法是群智能中的一种最受欢迎的启发式优化算法,已经在许多领域得到了广泛应用。
在ACO 算法中,许多无序的蚂蚁会在图中随机移动并留下信息素,通过信息素的积累和更新,最终使整个蚁群能够找到最佳路径。
ACO 算法的核心是信息素的积累和更新,以及蚂蚁的选择策略。
在ACO 算法中,每个蚂蚁都有一个当前城市和一些已经遍历过的城市。
蚂蚁在城市之间移动时,将信息素沿其路径释放。
当选择下一个城市时,蚂蚁会考虑信息素和城市间的距离,并采用轮盘赌选择策略选择下一个城市。