蚁群优化算法69893
- 格式:ppt
- 大小:1.96 MB
- 文档页数:46
【优秀作业】蚁群优化算法蚁群优化算法一.概述生物学家发现,自然界中的蚁群觅食是一种群体性行为,并非单只蚂蚁自行寻找食物源。
蚂蚁在寻找食物源时,会在其经过的路径上释放一种信息素,并能够感知其它蚂蚁释放的信息素。
信息素浓度的大小表征到食物源路径的远近,信息素浓度越高,表示对应的路径距离越短。
通常,蚂蚁会以较大的概率优先选择信息素浓度较高的路径,并释放一定量的信息素,以增强该条路径上的信息素浓度,这样会形成一个正反馈。
最终,蚂蚁能够找到一条从巢穴到食物源的最佳路径,即最短距离。
值得一提的是,生物学家同时发现,路径上的信息素浓度会随着时间的推进而逐渐衰减。
20世纪90年代初,意大利学者M.Dorigo等人提出了模拟自然界蚂蚁群体觅食行为的蚁群算法。
其基本思想是:用蚂蚁的行走路径表示待优化问题的可行解,整个蚂蚁群体的所有路径构成待优化问题的解空间。
路径较短的蚂蚁释放的信息素量较多,随着时间的推进,较短的路径上积累的信息素浓度逐渐增高,选择该路径上的蚂蚁个数也越来越多。
最终,整个蚂蚁会在正反馈的作用下集中到最佳的路径上,此时对应的便是待优化问题的最优解。
二.蚁群算法解决TSP问题1. 算法原理M.Dorigo等人最早将蚁群算法用于解决旅行商问题(Traveling Salesman Problem,TSP),并取得了较好的实验结果。
设整个蚂蚁群体中蚂蚁的数量为,城市的数量为,城市与城市之间的距离为,时刻城市与城市连接路径上的信息素浓度为。
初始时刻,各个城市间连接路径上的信息素浓度相同,不妨设。
蚂蚁根据各个城市间连接路径上的信息素浓度决定下一个访问城市,设表示时刻蚂蚁从城市转移到城市的转移概率,其公式为:其中:为启发函数,表示蚂蚁从城市转移到城市的期望程度;为蚂蚁待访问城市的集合,开始时,中有个元素,即包括除了蚂蚁出发城市的所有其它城市,随着时间的推进,中的元素不断减少,直至为空,即表示所有的城市均访问完毕;为信息素重要程度因子,其值越大,表示信息素的浓度在转移中起的作用越大;为启发函数重要程度因子,其值越大,表示启发函数在转移中的作用越大,即蚂蚁会以较大的概率转移到距离短的城市。
其中,表示在t时刻蚂蚁k由元素(城市)i转移到元素(城市)j的状态转移概率。
allowedk = C − tabuk表示蚂蚁k下一步允许选择的城市。
α为启发式因子,表示轨迹的相对重要性,反映了蚂蚁在运动过程中所积累的信息在蚂蚁运动时所起的作用,其值越大,则该蚂蚁越倾向于选择其他蚂蚁经过的路径,蚂蚁之间的协作性越强。
β为期望启发式因子,表示能见度的相对重要性,反映了蚂蚁在运动过程中启发信息在蚂蚁选择路径中的受重视程度,其值越大,则该状态转移概率越接近于贪心规则;ηij(t) 为启发函数,表达式为。
式中,dij表示相邻两个城市之间的距离。
(6)修改禁忌表指针,即选择好之后将蚂蚁移动到新的元素(城市),并把该元素(城市)移动到该蚂蚁个体的禁忌表中。
(7)若集合C中元素(城市)未遍历完,即k<m,则跳转到第(4)步,否则执行第(8)步。
(8)根据公式更新每条路径上的信息量:τij(t + n) = (1 − ρ) * τij(t) + Δτij(t),(9)若满足结束条件,即如果循环次数,则循环结束并输出程序计算结果,否则清空禁忌表并跳转到第(2)步。
蚁群算法的matlab源程序1.蚁群算法主程序:main.m%function [bestroute,routelength]=AntClccleartic% 读入城市间距离矩阵数据文件CooCity = load( 'CooCity.txt' ) ;% 城市网络图坐标数据文件,txt形式给出NC=length(CooCity); % 城市个数for i=1:NC % 计算各城市间的距离for j=1:NCdistance(i,j)=sqrt((CooCity(i,2)-CooCity(j,2))^2+(CooCity(i,3)-CooCity(j,3))^2);endendMAXIT=10;%最大循环次数Citystart=[]; % 起点城市编号tau=ones(NC,NC); % 初始时刻各边上的信息痕迹为1rho=0.5; % 挥发系数alpha=1; % 残留信息相对重要度beta=5; % 预见值的相对重要度Q=10; % 蚁环常数NumAnt=20; % 蚂蚁数量routelength=inf; % 用来记录当前找到的最优路径长度for n=1:MAXITfor k=1:NumAnt %考查第K只蚂蚁deltatau=zeros(NC,NC); % 第K只蚂蚁移动前各边上的信息增量为零%[routek,lengthk]=path(distance,tau,alpha,beta,[]); % 不靠率起始点[routek,lengthk]=path(distance,tau,alpha,beta,Citystart); % 指定起始点if lengthk<routelength %找到一条更好的路径:::routelength=lengthk;:::bestroute=routek;endfor i=1:NC-1 % 第K只蚂蚁在路径上释放的信息量deltatau(routek(i),routek(i+1))=deltatau(routek(i),routek(i+1))+Q/lengthk; % 信息素更新end%deltatau(routek(NC),1)=deltatau(routek(NC),1)+Q/lengthk; %endlength_n(n)=routelength; % 记录路径收敛tau=(1-rho).*tau; % 信息素挥发end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%costtime=toc;subplot(1,2,1),plot([CooCity(bestroute,2)],[CooCity(bestroute,3)],'-*')subplot(1,2,2),plot([1:MAXIT],length_n,'-*')[routelength,costtime]2.蚁群算法寻找路径程序:path.m% 某只蚂蚁找到的某条路径routek,lengthkfunction [routek,lengthk]=path(distance,tau,alpha,beta,Citystart)[m,n]=size(distance);if isempty(Citystart) % 如果不确定起点p=fix(m*rand)+1; % 随机方式初始化起点,均匀概率elsep=Citystart; % 外部给定确定起点 endlengthk=0; % 初始路径长度设为 0routek=[p]; % 蚂蚁路径点序列,即该蚂蚁已经过的城市集合,路径初始起点for i=1:m-1np=routek(end); % 蚂蚁路径城市序号,依次经过的城市编号np_sum=0; % 路由长度初始为 0for j=1:mif inroute(j,routek) % 判断城市节点j是否属于tabuk,即是否已经过continue;else % j为还未经过的点ada=1/distance(np,j); % 预见度np_sum=np_sum+tau(np,j)^alpha*ada^beta; % 路由表:信息痕迹、预见度 endendcp=zeros(1,m); % 转移概率,基于路径长度及路由表for j=1:mifinroute(j,routek)continue;elseada=1/distance(np,j); % 预见度cp(j)=tau(np,j)^alpha*ada^beta/np_sum; % np到j的转移概率endendNextCity=nextcitychoose2(cp); % 根据转移概率确定下一个城市,% 直观地,取转移概率最大值方向方法,决策结果稳定且收敛快routek=[routek,NextCity]; % 更新路径lengthk=lengthk+distance(np,NextCity); % 更新路径长度end蚁群算法仿真结果:其中左边是蚂蚁行走的最短路径,右边是最短路径的值的收敛情况。
蚁群优化算法及其在工程中的应用引言:蚁群优化算法(Ant Colony Optimization,ACO)是一种基于蚁群行为的启发式优化算法,模拟了蚂蚁在寻找食物过程中的行为。
蚁群优化算法以其在组合优化问题中的应用而闻名,特别是在工程领域中,其独特的优化能力成为解决复杂问题的有效工具。
1. 蚁群优化算法的原理与模拟蚁群优化算法源于对蚂蚁觅食行为的研究,它模拟了蚂蚁在寻找食物时使用信息素沉积和信息素蒸发的策略。
蚂蚁释放的信息素作为信息传播的媒介,其他蚂蚁会根据信息素浓度选择路径。
通过这种方式,蚁群优化算法利用信息素的正反馈机制,不断优化路径选择,从而找到全局最优解。
2. 蚁群优化算法的基本步骤蚁群优化算法的基本步骤包括:初始化信息素浓度、蚁群初始化、路径选择、信息素更新等。
2.1 初始化信息素浓度在蚁群优化算法中,信息素浓度表示路径的好坏程度,初始时,信息素浓度可以设置为一个常数或随机值。
较大的初始信息素浓度能够提醒蚂蚁找到正确的路径,但也可能导致过早的收敛。
2.2 蚁群初始化蚂蚁的初始化包括位置的随机选择和路径的初始化。
通常情况下,每只蚂蚁都在搜索空间内的随机位置开始。
2.3 路径选择蚂蚁通过信息素和启发式信息来选择路径。
信息素表示路径的好坏程度,而启发式信息表示路径的可靠程度。
蚂蚁根据这些信息以一定的概率选择下一个位置,并更新路径。
2.4 信息素更新每只蚂蚁走过某条路径后,会根据路径的好坏程度更新信息素浓度。
信息素更新还包括信息素的挥发,以模拟现实中信息的流失。
3. 蚁群优化算法在工程中的应用蚁群优化算法在工程领域中有广泛的应用,以下将从路径规划、交通调度和电力网络等方面进行说明。
3.1 路径规划路径规划是蚁群算法在工程中最为常见的应用之一。
在物流和交通领域,蚁群算法可以帮助寻找最短路径或最佳路线。
例如,蚁群优化算法在无人驾驶车辆中的应用,可以通过模拟蚁群的行为,找到最优的路径规划方案。
3.2 交通调度蚁群优化算法在交通调度中的应用可以帮助优化交通流,减少拥堵和行程时间。
7.1 蚁群优化算法概述•7.1.1 起源•7.1.2 应用领域•7.1.3 研究背景•7.1.4 研究现状•7.1.5 应用现状7.1.1 蚁群优化算法起源20世纪50年代中期创立了仿生学,人们从生物进化的机理中受到启发。
提出了许多用以解决复杂优化问题的新方法,如进化规划、进化策略、遗传算法等,这些算法成功地解决了一些实际问题。
20世纪90年代意大利学者M.Dorigo,V.Maniezzo,A.Colorni等从生物进化的机制中受到启发,通过模拟自然界蚂蚁搜索路径的行为,提出来一种新型的模拟进化算法——蚁群算法,是群智能理论研究领域的一种主要算法。
背景:人工生命•“人工生命”是来研究具有某些生命基本特征的人工系统。
人工生命包括两方面的内容。
•研究如何利用计算技术研究生物现象。
•研究如何利用生物技术研究计算问题。
•现在关注的是第二部分的内容,现在已经有很多源于生物现象的计算技巧。
例如,人工神经网络是简化的大脑模型,遗传算法是模拟基因进化过程的。
•现在我们讨论另一种生物系统-社会系统。
更确切的是,在由简单个体组成的群落与环境以及个体之间的互动行为,也可称做“群智能”(swarm intelligence)。
这些模拟系统利用局部信息从而可能产生不可预测的群体行为(如鱼群和鸟群的运动规律),主要用于计算机视觉和计算机辅助设计。
•在计算智能(computational intelligence)领域有两种基于群智能的算法。
蚁群算法(ant colony optimization)和粒子群算法(particle swarm optimization)。
前者是对蚂蚁群落食物采集过程的模拟,已经成功运用在很多离散优化问题上。
•作为一种新兴演化计算技术,群智能已成为新的研究热点,它与人工生命,特别是进化策略和遗传算法有着极为特殊的联系,已完成的理论和应用研究证明群智能方法是一种能够有效解决大多数全局优化问题的新方法.••更为重要的是,群智能的潜在并行性和分布式特点为处理大量的以数据库形式存在的数据提供了技术保证.•因此无论是从理论研究还是应用研究的角度分析,群智能理论及其应用研究都是具有重要学术意义和现实价值的。
第五章蚁群优化算法5.1介绍蚁群优化(ACO)是群体智能的一部分,它模仿蚂蚁的合作行为来解决复杂的组合优化问题。
它的概念是由Marco Dorigo[1]和他的同事提出的,当他们观察到这些生物在寻找食物时所采用的相互交流和自我组织的合作方式时,他们感到很惊讶。
他们提出了执行这些策略的想法,为不同领域的复杂优化问题提供了解决方案,并获得了广泛的欢迎[1, 2]。
蚁群算法是一组被称为人工蚂蚁的软件代理,它们为特定的优化问题寻找好的解决方案。
蚁群算法是通过将问题映射成一个加权图来实现的,在加权图中,蚂蚁沿着边缘移动,寻找最佳路径。
蚁群研究(实际上是真正的蚂蚁)始于1959年,当时皮埃尔•保罗•格拉斯(Pierre Paul Grasse)发明了“协同”理论,解释了白蚁的筑巢行为。
之后于1983年Deneubourg和他的同事们[3]对蚂蚁的集体行为进行了研究。
1988年,Mayson和Manderick发表了一篇关于蚂蚁的自组织行为的文章。
最终在1989年,Goss, Aron, Deneubour, and Pasteelson在其研究工作(阿根廷蚂蚁的集体行为)中提出了蚁群算法的基本思想[4],同年,Ebling 及其同事提出了一食物定位模型。
1992年,Marco Dorigo(Dorigo, 1992)在其博士论文中提出了蚂蚁系统(Ant System)[1]。
一些研究人员将这些算法扩展到各个研究领域的应用中,Appleby和英国电信主管发表了第一个在电信网络中的应用,后来Schoonderwoerd 和他的同事在1997年对其进行了改进。
在2002年,它被应用于贝叶斯网络中的调度问题。
蚁群算法的设计是基于蚂蚁搜索巢穴和食物位置之间短路径的能力,这可能会因蚂蚁的种类而有所不同。
近年来,研究人员对蚁群算法的应用结果进行了研究,结果表明,所使用的大多数人工蚂蚁并不能提供最好的解决方案,而精英蚁群通过重复的交换技术提供了最好的解决方案。
一、蚁群算法的背景信息蚁群优化算法(ACO)是一种模拟蚂蚁觅食行为的模拟优化算法,它是由意大利学者Dorigo M等人于1991年首先提出,之后,又系统研究了蚁群算法的基本原理和数学模型,并结合TSP优化问题与遗传算法、禁忌搜索算法、模拟退火算法、爬山法等进行了仿真实验比较,为蚁群算法的发展奠定了基础,并引起了全世界学者的关注与研究蚁群算法是一种基于种群的启发式仿生进化系统。
蚁群算法最早成功应用于解决著名的旅行商问题(TSP),该算法采用了分布式正反馈并行计算机制,易于与其他方法结合,而且具有较强的鲁棒性。
二、蚁群算法的原理[1]蚁群算法是对自然界蚂蚁的寻径方式进行模似而得出的一种仿生算法。
蚂蚁在运动过程中,能够在它所经过的路径上留下一种称之为外激素(pheromo ne)的物质进行信息传递,而且蚂蚁在运动过程中能够感知这种物质,并以此指导自己的运动方向,因此由大量蚂蚁组成的蚁群集体行为便表现出一种信息正反馈现象 :某一路径上走过的蚂蚁越多,则后来者选择该路径的概率就越大。
基本的ACO模型由下面三个公式描述:a g(2-1;m号("1)二05®)+》蚯(2-2;(如果第k个蚂蚁经过了由i到j的路轻)〈2-3)btagJBJ.CDdTYykrLaoiO 式(2-1)、式(2-2)和式(2-3)中:m为蚂蚁个数;n为迭代次数;i为蚂蚁所在位置;j为蚂蚁可以到达的置;为蚂蚁可以到达位置的集合;为启发性信息(3-8>(3-9>Dlog. iirykii_2O1CJ式(3-9)中根据进行信息素更新的蚂蚁的类别可以是已知的最优解的路径长度或者是本次循环中的最优解的路径长度。
(2)信息素浓度的限制。
为了防止某条路径上的信息素出现大或者过小的极端情况,设定信息素浓度区间为。
通过这种方式使得在某条路径上的信息素浓度增大到超过区间上限或者减小到低于区间下限时,算法采用强制手段对其进行调整,以此提高算法的有效性。