高中数学竞赛辅导——函数(精品课件)
- 格式:ppt
- 大小:999.50 KB
- 文档页数:14
第三章函数(高中数学竞赛标准教材)第三函数一、基础知识定义1 映射,对于任意两个集合A,B,依对应法则f,若对A中的任意一个元素x,在B中都有唯一一个元素与之对应,则称f: A→B 为一个映射。
定义2 单射,若f: A→B是一个映射且对任意x, ∈A, x , 都有f(x) f()则称之为单射。
定义3 满射,若f: A→B是映射且对任意∈B,都有一个x∈A使得f(x)=,则称f: A→B是A到B上的满射。
定义4 一一映射,若f: A→B既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B到A由相反的对应法则f-1构成的映射,记作f-1: A→B。
定义函数,映射f: A→B中,若A,B都是非空数集,则这个映射为函数。
A称为它的定义域,若x∈A, ∈B,且f(x)=(即x对应B中的),则叫做x的象,x叫的原象。
集合{f(x)|x∈A}叫函数的值域。
通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数=3 -1的定义域为{x|x≥0,x∈R}定义6 反函数,若函数f: A→B(通常记作=f(x))是一一映射,则它的逆映射f-1: A→B叫原函数的反函数,通常写作=f-1(x) 这里求反函数的过程是:在解析式=f(x)中反解x得x=f-1(),然后将x, 互换得=f-1(x),最后指出反函数的定义域即原函数的值域。
例如:函数= 的反函数是=1- (x 0)定理1 互为反函数的两个函数的图象关于直线=x对称。
定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数。
定义7 函数的性质。
(1)单调性:设函数f(x)在区间I上满足对任意的x1, x2∈I并且x1< x2,总有f(x1)<f(x2)(f(x&nt;)>f(x2)),则称f(x)在区间I上是增(减)函数,区间I称为单调增(减)区间。
(2)奇偶性:设函数=f(x)的定义域为D,且D是关于原点对称的数集,若对于任意的x∈D,都有f(-x)=-f(x),则称f(x)是奇函数;若对任意的x∈D,都有f(-x)=f(x),则称f(x)是偶函数。
高中数学竞赛辅导第四讲 常见的初等函数、二次函数知识、方法、技能常函数y=c ,幂函数y=x α(α∈Q),指数函数y=a x ,对数函数y=log a x,三角函数(y=sinx, y=cosx , y=tanx 等),反三角函数(y=arcsinx, y=arccosx , y=arctanx 等)是数学中最为基本的函数,我们把它们统称为基本初等函数.学习中应熟练掌握各基本初等函数的定义域、值域、单调性、奇偶性、周期性等基本性质,并能利用这些性质快捷地比较两个数值的大小或解有关不等式.具体解题时,若绘出各基本初等函数的草图,往往能“一目了然”地获得问题的结果.绘制幂函数y=x α(α=,nmm 、n 是互质的整数)草图的一般步骤是: (1)根据指数α的大小判断函数图象在第一象限的情形如图 I-1-4-1.(2)判断函数的奇偶性并确定函数图像在其他象限的情况①m,n 均为奇数时,y=x α为奇函数,图象在一、三象限内关于原点中心对称. ②m 为偶数,n 为奇数时Y=x α为偶函数,图象在一、二象限内关于y 轴对称. ③m 为奇数,n 为偶数时,y=x α既不是奇函数也不是偶函数,函数只在第一象限有图像.常见的函数往往是由基本初等函数通过有限次加减乘除运算或复合而得到的,我们称之为初等函数.其中二次函数和形如y=x+xk的分式函数在高考和竞赛中具有尤为重要的地位.同学们要熟练掌握求二次函数解析式、值域的有关方法,并会用这些方法解决相关的问题;会判断二次方程根的分布情况;会利用函数y=x+xk的性质求出一些分式函数的值域.赛题精讲例1 3个幂函数y=4321,x y x =和y=65x 的图象如图I —1—4—2:试写出各个函数的图象的对应编号. 【思路分析】3个函数的定义域、值域、单调性都相同,具有类似的草图,仅从草图已无法区分这三者了.只能更为“精细”地考察和函数值的大小,不妨取x=2试一试.【略解】当x=2时,3个函数值分别为6543212,2,2.因为 y=t2为增函数,而图中所以.222,654321654321<<<<,x=2时,图象①的对应点纵坐标最大,图象③的对应点纵坐标最小,所以y=654321,x y x y x ==和对应的图象依次为③,②,①.【评述】一般地,当α越大大时,幂函数图像在x>1对应的部分越“高”.此外,本题方法也可应用于辨别两个草图相近的指数函数或对函数的图象.例2 比较下列各题中两个值的大小:(1)5353)3()2(----与;(2);)()14.3(3232π--与 (3)5432)()(ππ--与(4)log 23与log 23.1.【思路分析】(1)中两数有相同的指数-53,故可将这两者看做同一函数53-=x y 的两个不同函数值,利用函数单调性比较两数大小.【略解】(1)因为53-=xy 是(-∞,0)上的减函数,又,32->-所以5353)3()2(---<-.(2)因为;)()14.3(,14.3)0,(323232ππ-<-->--∞=所以上的减函数又是x y(3)因为y=54323232)(,5432,)(,),(πππππ<-<=-+∞-∞所以又上的增函数是x(4)因为y=log 2x 是(0,+∞)上的增函数,又3<3.1,所以log 23<log 23.1. 例3 求下列函数的定义域:(1));1,0(log log log ≠>=a a x y a a a (2).1223log )31(91.03+-+-=x x y x【略解】(1)据题意有log a log a x>0.①a>1时,上式等价于log a x>1,即x>a.②0<a<1时,上式等价于0<log a x<1,即1>x>a . 所以,当a>1时,函数定义域为(a,+∞);而当0<a<1时,函数定义域为(a,1).(2)据题意有⎪⎪⎪⎩⎪⎪⎪⎨⎧≤-+->+-≤⎪⎪⎩⎪⎪⎨⎧≤+-<≤⎪⎪⎩⎪⎪⎨⎧≥+-≥--.011223,01223,)31()31(.1122309)31(.01223log ,0)31(932311.03x x x x x x x x x x x 即即解得].3,32(.321.332,213232所以函数定义域为即或⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<-≤<-<>-≥x x x x x【评述】解指数、对数不等式时,要注意比较底数a 与1的大小,从而确定去掉指数、对数符号后不等号是否改向.例4 解方程:(1);34)223()223(=++-x x (2))0.(1446>=x x x【略解】(1)因为,1)223)(223(=+-所以原方程等价于.34)223(1)223(=-+-xx126666612)(144144)(144)2(.2.21217.341,)223(6666====±=±==+=-x x x x x x x x x x t t t t 即则令令y=x 6,显然y>1,则f(x)=y y 是y 的增函数.所以y y =1212只有惟一解y=12. 即原方程有解.126=x例5 比较下列各组数的大小 : (1)sin48°, cos313°;(2)cos96°, sin96°, tan69°.【思路分析】 比较两数大小的一种方法是将两数看成同一函数的两个函数值,然后利用函数单调性来比较;另一种方法是寻找某个中介量(如0,1)等.【略解】(1)cos313°=cos(360°-47°)=cos47°=sin43°<sin48° 所以cos313°<sin48°(2)因为钝角的余弦小于0,正弦大于0,所以cos96°<0, 0<sin96°<1. 又tan69°>tan45°=1所以cos96°<sin96°<tan69°.例6 已知x ∈[0,π],比较cos(sinx)与sin(cosx)的大小.【略解】)sin 2sin()cos(sin x x -=π).cos(sin )sin(cos )sin 2sin()sin(cos .sin 2cos ,]2,2[sin ,22cos sin .1cos 1,2sin 212,],0[x x x x x x t y x x x x x <-<-<-=<≤+<≤-≤-≤-∈即所以所以上的增函数是且又因为时当πππππππππ例7 已知40,10πα<<<<b ,比较下列三数的大小:..)(cos )(sin ..cos sin .),0()(,0cos log .)(sin )(sin 0cos log sin log ,10.1cos 22sin 040][.)(sin ,cos log )(cos ,)(sin cos log cos log cos log cos log sin log cos log log sin y z x y z t t f z x b z y x b b b b b b bb b b b <<∴<<∴<+∞=∴>∴><∴>>∴<<<<<<∴<<===即又上的增函数是即又解αααααααααααααααααπαααααα例8 求下列函数的最小正周期:(1)y=tanx -cotx; (2)y=sin(cosx); (3)y=cos(sinx).【略解】(1)因为.222sin 212cos cos sin cos sin cot tan 22x ctg x xxx x x x x -=-=-=- 所以函数y=tanx -cotx 的最小正周期T=2π. (2)因为sin(cos(x+2π))=sin(cosx),所以2π是函数y=sin(cosx)的周期.设最小正周期为T ,若0<T<2π,则sin[cos(x+T)=sin(cosx)特别地,令x=0, sin(cosT)=sinl.而另一方面,0<T<2π,-1≤cosT<1,由正弦函数的单调性和sin(cosT)<sinl ,与sin(cosT)=sinl 矛盾,所以假设不成立.综上,函数y=sin(cosx) 的最小正周期为2π.(3)因为cos(sin(π+x))=cos(-sinx)=cos(sinx),所以π是函数y=cos(sinx)的周期,仿(2)可证函数y=cos(sinx)的最小正周期为π.【评述】(1)求函数最小正周期时,应尽量将函数化简.(2)对于由两个函数f(x)和g(x)复合而成的函数f(g(x)),如果g(x)是周期函数,且其最小正周期为T 1,那么,f(g(x))也是周期函数,且T 1仍是f(g(x))的一个周期,但未必是它的最小正周期.例9 判断下列函数的周期性,若是周期函数,试求出其最小正周期.(1)y=2sin25x+3cos6x ; (2)y=sin πx+cos2x . 【略解】(1)y=2sin 25x 和y=3cos6x 的最小正周期分别是πππ54,354因此和 ,3π的最小公倍数4π是y=2sin25x+3cos6x 的周期.可以证明4π也是它的最小正周期.(2)y=sin πx 和cox2x 的周期分别为2和π,因为π2不是有理数,所以2和π没有最小公倍数(此处倍数应为整数倍),可以证明y=sin πx+cos2x 不是周期函数.【证明】假设T 是函数y=sin πx+cos2x 的周期.则 sin π(x+T)+cos2(x+T)=sin πx+cos2x. sin π(x+T)-sin πx=cos2x -cos2(x+T),2sin2πTcos(πx+2πT)=2sinTsin(2x+T), (*) 令x=0, 得2cos 2πTsin 2πT=2sin 2T.即sin 2πTcos 2πT=sin 2T ①而令x=-2, 化简得 sin 2πTcos 2πT=sinTsin(T+4).②令x=-2, 得sin 2πTcos 2πT=sinTsin(T -4) ③由②-③得 sinTsin(T+4)-sinTsin(T -4)=0,即2sinTcosTsin4=0, sin2T=0, T=Z k k ∈,2π④ 但显然④不适合①,矛盾,所以假设不成立.函数y=sin πx+cos2x 不是周期函数.【评述】一般地,周期函数f(x)和g(x)的最小正周期分别为T 1和T 2,若T 1/T 2∉θ,则函数f(x)+g(x)不是周期函数,若T 1/T 2∈θ,则f(x)+g(x)是周期函数.针对性训练题1.已知∈++=b a x b x a x f ,(,4sin )(3R )且f(lglog 310)=5,则f(lglg3)的值是 . 2.设a 、b 满足2a 2+6b 2=3,证明函数f(x)=ax+b 在[-1,1]上的满足|f(x)|≤2. 3.已知方程x 2+2mx+2m 2-3=0,有一根比2大,另一根比2小,求m 的取值范围. 4.关于x 的实系数二次方程x 2+ax+b=0有两个实数根α、β,证明: (1)如果|α|<2, |β|<2,那么2|a|<4+b,且|b|<4. (2)如果2|α|<4+b, 且|b|<4,那么|α|<2, |β|<2. 5.若a<0,求证:方程01112=++++ax a x x (1)有两个异号实根; (2)正根必小于-32a ,负根必大于-32a 2.6.已知f(x)=|1-2x|, x ∈[0,1],那么方程f(f(f(x)))=21x 的解的个数是 . 7.已知集合A={(x, y)||x|+|y|=a,a>0}, B={(x, y)||xy|+1=|x|+|y|}, A ∩B 是平面上正八边形的 顶点构成的集合,则a 的值为 . 8.函数11363)(2424+--+--=x x x x x x f 的最大值为 .9.函数),0[11)(2+∞+-+=是x ax x f 上的单调函数,求a 的取值范围. 10.关于x 的方程(a 2-1)x 2-2(5a+1)x+24=0有两个不等的负整数根,求a.。
第三讲函数的概念和性质知识、方法、技能I.函数的定义设A,B都是非空的数集,f是从A到B的一个对应法则.那么,从A到B的映射f:A→B就叫做从A到B的函数.记做y=f(x),其中x∈A,y∈B,原象集合,A叫做函数f(x)的定义域,象的集合C 叫做函数的值域,显然C B.II.函数的性质(1)奇偶性设函数f(x)的定义域为D,且D是关于原点对称的数集.若对任意的x∈D,都有f(-x)=-f(x),则称f(x)是奇函数;若对任意的x∈D,都有f(-x)=f(x),则称f(x)是偶函数.(2)函数的增减性设函数f(x)在区间D′上满足:对任意x1, x2∈D′,并且x1<x2时,总有f(x1)<f(x2) (f(x1)>f(x2)),则称f(x)在区间D′上的增函数(减函数),区间D′称为f(x)的一个单调增(减)区间.III.函数的周期性对于函数 f(x),如果存在一个不为零的正数T,使得当x取定义域中的每个数时,f(x+T)=f(x)总成立,那么称f(x)是周期函数,T称做这个周期函数的周期.如果函数f(x)的所有周期中存在最小值T0,称T0为周期函数f(x)的最小值正周期.IV.高斯函数对任意实数x,我们记不超过x的最大整数为[x],通常称函数y=[x]为取整函数,又称高斯函数.进一步,记{x}=x -[x],则函数y={x}称为小数部分函数,它表示的是x 的小数部分.根据高斯函数的定义,可得到其如下性质.性质1 对任意x ∈R ,均有x -1<[x]≤x<[x]+1.性质2 对任意x ∈R ,函数y={x}的值域为)1,0[.性质3 高斯函数是一个不减函数,即对任意x 1, x 2∈R ,若x 1≤x 2, 则[x 1] ≤[x 2].性质3 若n ∈Z , x ∈R ,则有 [x+n]=n+[x], {n+x}={x} 后一个式子表明y={x}是一个以1为周期的函数.性质4 若x , y ∈R , 则 [x]+ [y]≤[x+y] ≤[x]+ [y]+1. 性质5 若n ∈N*, x ∈R , 则[nx]≥n[x]性质6 若n ∈N*, x ∈R , 则]][[][n x n x . 性质7 若n ∈N*, x ∈R +, 则在区间[1,x]内,恰有][n x个整数是n 的倍数.性质8 设p 为质数,n ∈N*,在p 在n!的质因数分解式中的幂次为赛题精讲函数是高中数学,也是高等数学的基础.因此,也是高考和高中数学竞赛的重要内容.下面分类介绍此类题目.I 函数的定义域和值域例1 当x 为何值时,x lg lg lg lg lg lg 才有意义.【思路分析】应根据对数的意义,从最外层开始一层一层地逐步消去根号和对数符号求出x 的范围. 【略解】由x lg lg lg lg lg lg >0,得x lg lg lg lg lg ≥1 ……∴1021021021010⋅⋅⋅≥x【评述】这种多层对数及根式问题,一定要逐层由外向内求解,要有耐心。